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Accurate determination of the “zero point,” the first contact between an indenter tip
and sample surface, has to date remained elusive. In this article, we outline a relatively
simple, objective procedure by which an effective zero point can be determined
accurately and reproducibly using a nanoindenter equipped with a continuous stiffness
measurement option and a spherical tip. The method relies on applying a data shift,
which ensures that curves of stiffness versus contact radius are linear and go through
the origin. The method was applied to fused silica, sapphire single crystals, and
polycrystalline iron with various indenter sizes to a zero-point resolution of =2 nm.
Errors of even a few nanometers can drastically alter plots and calculations that use the

data, including curves of stress versus strain.

I. INTRODUCTION

Instrumented indentation is a valuable method for
characterizing the mechanical behavior of materials, es-
pecially that of single crystals and thin films. Field and
Swain,? and Oliver and Pharr® have made significant
progress in developing the technique, but recognize the
significant hurdles yet to overcome. One such obstacle is
the accurate and reliable determination of the zero point,
where the indenter tip makes first contact with the sample
surface.’>™ At this point, both the applied indentation
load, P, and the total displacement, 4, or indentation
depth, should be zero, though the sample stiffness, S,
may appear positive. Inset 1 in Fig. 1(a) shows the co-
nundrum, wherein a curve of P versus A, has no clear
ZETO point.

To date, methods of various sophistication have been
proposed to qualitatively or quantitatively determine the
zero point.'®!” For example, one is to simply plot P
versus h, and choose a point where P first exceeds a
certain threshold, while another uses a video camera.'*1°
For instruments with continuous stiffness measurement
(CSM) capabilities, Oliver and Pharr® have suggested
using the point at which S reaches a local minimum
before increasing steadily. Alternatively, they suggested
using abrupt changes in CSM harmonic displacement or
phase angle if they are clearer, but all three options re-
quire some subjectivity, however small. They claim the
method has an accuracy of 2 nm, but we have found that
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it identifies the zero point too early, sometimes by as
much as 14 nm. This may seem insignificant, but as we
show below, the difference can be quite important. Chu-
doba and colleagues'®'! and Ullner'’” have suggested
using regression on the P-versus-k, plots. The former
advocates an iterative numerical method to fit the data to
a variation of the Hertzian model, replacing the conven-
tional parameters of tip radius and effective modulus
with an optimized proportionality constant, and forcing
the data to go through zero.'®!' The latter advocates
optimizing the terms of a second-order polynomial to fit
the data.!” Finally, a variation on the method of Oliver
and Pharr? is to locate the zero point where S first meets
or exceeds 200 N/m. This is based on an assumption that
while the tip is hanging free, other factors such as vibra-
tion produce values below 200 N/m, and that this small
value first appears when the tip makes contact with the
surface. This method indeed works in some cases, but in
the authors’ experience it can falsely locate the surface
up to hundreds of nanometers away from the actual zero
point. In our deductive data analysis, we found that this
is most likely the method used by the MTS instrument
(MTS Nano Instruments, Oak Ridge, TN) that we used,
and all 8 values (see below) in this article are given with
respect to the original zero assumed by the instrument. In
summary, and while some of these methods may be
somewhat successful, they are limited in that both load
and displacement values are noisy at low loads and are
greatly impacted by the zero point.

Herein we present a robust, simple, accurate, and ob-
jective method for reliably determining the effective zero
point for instrumented spherical indentation equipped
with the CSM option. In essence, our method shifts the
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FIG. 1. Fused silica, 13.5-pum indenter. (a) S versus a for various
d values, for a region near the origin. Linear regression is shown. Inset
1: P versus h, at a region near the supposed S = 200 N/m zero point
used by manufacturer to define the zero point. The dashed line denotes
the location of the true effective zero point. Inset 2: Full data set.
(b) Indentation stress-versus-strain curves; the center curve has the
correct 8. The solid line is linear regression of the center curve, and the
dashed line is the expected slope as calculated from 4E*/3mw. Inset
plots error and R? versus .

P and A, columns of a given data set in such a way as to
ensure that the curves of S versus the contact radius, a,
are straight lines that go through the origin. The power of
the technique lies in the fact that, if needed, the results
can be linearly back-extrapolated from a region where
the signal-to-noise level is high (compared to shallow
depths) back through the origin, thus circumventing the
myriad problems encountered at low loads.? In that

sense, our zero point is an “effective” zero point (i.e., the
zero point that one would have obtained had the surface
been atomically flat and perfectly normal to the loading
direction). This effective zero point may, or may not,
correspond to the very first point of contact between the
indenter and the surface.

il. SPHERICAL INDENTATION MODEL

In a previous article,'® and in several subsequent
ones,'>?° we outlined a method for producing nanoin-
dentation stress—strain curves from load-displacement
curves obtained with spherical indenters.'® Inherent in
that method are the tools necessary for our zero-point
method. For an isotropic elastic solid indented with a
spherical indenter, the sample stiffness S and contact ra-

dius a are related by’

S=2E4a , ey
where S is the sample stiffness, given by

1 1 1

STSs @

where S; is the stiffness value of the system, reported by
the CSM, and S; is the load-frame stiffness, as given
by the instrument manufacturer. In our case, this was
5.5 MN/m. E_ is the composite modulus, defined by>
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where E; and v,, respectively, refer to the Young’s
modulus and Poisson’s ratio of the diamond indenter
(1140 GPa and 0.07, respectively); the E and v values are
those of the sample. The contact depth, A, compared to
the distance from the circle of contact to the maximum

penetration depth, is given by'>'®
3P
he=h-35 @

Once h, is calculated, a is determined from

=V 2Rh -k, , (5)

where R, is the indenter tip radius. Finally, making use of
the Hertz equation'>**>** and work by Sneddon®** and

Johnson,?! it can be shown that:
P 4 - ( a ) ©
'n'a2 a 3w Rt ’

The left side of Eq. (6) is defined as the indentation
stress, mean contact hardness, or Meyer hardness.%%?
The expression in parentheses, to the right, is defined as
the indentation strain.'®** The modulus E* in Eq. (6)
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relates to the slope of the elastic portion of the stress—
strain curve, and would equal E_y as found from the
slope of the S—a curve [Eq. (1)] if and only if all assump-
tions made?! in its derivation (i.e., atomically flat sur-
face, surface perpendicular to tip, isotropic material, and
perfectly spherical shape) are valid. Note that in our
method, Egs. (4) and (5) are used to find a, not Eq. (1)
(see below).

Originally, Eq. (4) included a small correction, 9, that
helped ensure that the early regions of the stress—strain
curves behaved in a linear elastic fashion. The origin, or
need for, 8 was not clear at that time.'® We have since
discovered that & arose from using an incorrect zero
point, leading to the method described herein.

lll. EFFECTIVE ZERO POINT DETERMINATION

For a properly zeroed sample, according to Eq. (1), a
plot of S versus a should be a straight line that goes
through the origin, with a slope of 2 E.. The essence of
our method lies in finding the datum point, which, if it is
an effective zero point, would make the S-versus-a
curves go through the origin as predicated by Eq. (1). To
create the S-versus-a plots, the former is known from the
CSM, and we use Egs. (4) and (5) to find a. We have
chosen to express the shift as &, the difference in A,
between the correct effective zero point, X,, and the first
point X where § is 200 N/m, compared to the one given
by the instrument. (Note that X is defined as such here
for convenience, as our instrument was programmed to
choose the zero point based on S = 200 N/m; this may
vary by instrument. The & value itself is not so important
as identifying the correct effective zero point.) To start,
we chose points X; near (£10 nm) where P definitely
becomes positive. To find the correct effective zero
point, we simply shift the P and #, columns by subtract-
ing (even if the values are negative) P; and h,; respec-
tively, from the entire column. Data points with negative
values of 4, are discarded, and S versus a is plotted. The
shift that results in a S-versus-a line that best goes
through the origin is the sought-after effective zero point.

Linear regression is used to quantitatively determine
the degree to which each S-versus-a curve is linear and
goes through the origin (i.e., a straight line forced
through the origin). Note that none of the data sets in-
teract. We used two criteria for quantifying the curve fits,
though one would suffice. The first is the standard error,
defined as the average vertical difference between each
datum point and the best-fit line forced through the ori-
gin. The second is the well-known correlation coeffi-
cient, R?, again, with respect to the same best-fit line
forced through the origin. The value of ; that minimizes
the error or maximizes R? is the correct 3. A detailed
example of the procedure can be found in Appendix 2 of
Ref. 25.

IV. EXPERIMENTAL DETAILS

For this work, we used a Nanoindenter XP system
(MTS) with a CSM attachment. All tests were carried out
with a load rate over a load factor of (dP/df)/P = 0.1 and
an allowable drift rate of 0.05 nm/s. The harmonic dis-
placement for the CSM was 2 nm with a frequency of
45 Hz. Two diamond spherical tips, with radii of 13.5
and 1 pm, were used. The three materials used were:
fused silica (GM Associates Inc., Oakland, CA); C-
orientation sapphire single crystal (Kyocera Industrial
Ceramics, Vancouver, WA); and iron (99.65%, SurePure
Chemetals, Florham Park, NJ). The maximum load was
690 mN for fused silica, and 50 mN for iron and sap-
phire.

V. RESULTS AND DISCUSSION

Figure 1 shows results for fused silica with the 13.5-pum
indenter. The problem at hand is apparent in inset 1 of
Fig. 1(a), where the P-versus-, plot shows no clear zero
point. The correct 3, by our method, is indicated as a
vertical dashed line. Note its location in contradistinction
to the more intuitive point where P begins increasing, at
a d of around 30 nm. Figure 1(a) shows § versus a plotted
for three & values over a span of 10 nm. Inset 2 shows the
entire data set, wherein it is apparent that after =2500 nm,
the value of 3 is no longer of consequence. The inset of
Fig. 1(b) plots the linear regression R*> values and the
above-defined standard error from the data forced
through zero, at various 8 values. In this case, 3, is
clearly =47.2 nm. Figure 1(b) shows a plot of indentation
stress versus strain, as defined by Eq. (6).

Figures 2 and 3 show similar results for iron and sap-
phire, respectively. Here again, the instrument value for
the zero point is slightly off. Note the early spike in the -
results that appears in Figs. 1(b), 2(b), and 3(b), espe-
cially at strains <0.01. This spike, to our knowledge not
previously highlighted or understood, arises primarily
because at low A, the stress is quite sensitive to the
values of P, through a?. Its effect on the early region of
the stress—strain curve is best seen in inset 2 in Fig. 2(b),
which is a replot of the center curve with 8 = 7.5. If the
as-received P = 0.04 mN, is used, the spike is huge
(solid circles). When P is zeroed according to P, (the
P values for the chosen 8), the curve is well behaved and
the spike disappears (solid squares). Surprisingly, adding
just 0.02 mN results in a huge spike (open circles); sub-
tracting 0.02 mN results in negative stresses (solid tri-
angles). This result was unanticipated; 0.02 mN is only
0.08% of the maximum load for this test, and 0.003% of
the full scale of the hardware. For this reason, discarding
the first few early outliers (i.e., the spike at strain <0.1)
in the stress—strain plots is permissible, and, because the
stress—strain curves merge at strains >0.15, would have
no effect on the final results or conclusions. Herein, they
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FIG. 2. Iron, 13.5-pwm indenter. (a) S versus a for various 9 values, for
the region near the origin. Linear regression is shown. Inset: Raw P
versus A, at the region near the supposed S = 200 N/m zero point. The
dashed line denotes the true location of the effective zero point as
determined herein. (b) Indentation stress-versus-strain curves; the cen-
ter curve has the correct 8. The solid line is a linear regression of the
center curve; the dashed line is the expected slope as calculated from
4E*/3m. Inset 1 plots error and R? versus 3. Inset 2 plots the effect
of changing the values of the P data column on the stress—strain
curves for 8 = 7.5 nm. The filled circles use as-received data, P,
filled squares, P,—P(8 = 7.5). Open circles, value for filled squares +
0.02 mN; filled triangles, value for filled squares ~0.02 mN.

were left intact for the purpose of discussion, and the
complete data sets were used. in our calculations. Note
that removing these points would not affect the determi-
nation of & nor any of the S-versus-a curves presented
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FIG. 3. Sapphire, 1-pm indenter. (a) S versus a for various & values,
for the region near the origin. Linear regression shown. Inset: Raw
load versus displacement at the region near the supposed S = 200 N/m
zero point. The dashed line denotes the true location of the effec-
tive zero point as determined herein. (b) Indentation stress-versus-
strain curves; the center curve has the correct 8. The solid line is a
linear regression for the center curve, and the dashed line is the
expected slope as calculated from 4E*/37. Inset plots error and R?
versus 8.

here. Removing the early points also greatly mitigates the
effects of complex surface phenomena,’ further bolster-
ing the robustness of our method. These comments not-
withstanding, gratifyingly, when the correct zero point
was chosen the spike all but disappears, indirectly con-
firming the correctness of our approach. Given the sen-
sitivity of the curves to P, this result is quite remarkable.
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When E,, obtained from the slopes of the S-versus-a
curves divided by 2, for all three samples are plotted as
a function of 8 (Fig. 4), it is clear that E  is a function
3. This is an important result because the choice of the
wrong zero point can lead to an incorrect determination
of E,g. For example, for both Fe and sapphire, an error of
only =2 nm in the choice of the effective zero point
results in an error of 4% or more in E .

According to Eq. (6), the slope of the indentation
stress-versus-strain curve should equal 4E*/3w. The in-
clined dashed lines shown in Figs. 1(b), 2(b), and 3(b)
represent the 4E*/3 line; the solid inclined lines, on the
other hand, represent the least-squares fit of the data
points shown in the linear regime forced through zero.
The following comments are salient. (i) In the case of
silica and sapphire, E* = E_, . This is especially true
considering that Eq. (6) was derived assuming a perfect
sphere indenting a perfectly perpendicular, atomically
smooth, elastically isotropic surface. The latter is prob-
ably only true here for fused silica. The agreement would
have also been more obvious had we chosen to plot the
results for larger increments of 8 as done in Fig. 2(b). The
correlation is also excellent for ZnO,'®'® AL'® and
GaN.?° (ii) For Fe, the dashed line is approximately three
times steeper than the solid line (i.e., E* = 3 E . As
previously discussed,'® this difference, only manifested
when testing metals, is not understood and deserving of
future research. (iii) In principle, the linearity of the
stress—strain curves, and the need that they pass through
the origin, can also be used to find the actual location of
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FIG. 4. Dependence of E. on 8 for all three solids tested. Dashed
lines are the linear regression for each data set. The change in 8 is
given with reference to the correct effective zero point for each
sample, respectively (i.e., for the correct delta, AS = 0). Arrows
indicate the corresponding y-axis for data.

the effective zero point instead of, or in addition to, the
method outlined herein.

VI. SUMMARY AND CONCLUSIONS

The results above demonstrate the method on three
different materials, including metal and ceramic, and
with two spherical indenter sizes. The importance and
sensitivity of correctly identifying the effective zero
point is highlighted in the stress-versus-strain curves. For
example, in Fig. 3(b), a difference of only 2 nm results in
large variations in the indentation stress—strain curves,
which previously were left unexplained.

The effective zero-point resolution for our setup is
estimated to be =2 nm, but this could vary, depending on
the hardware and loading schemes. We hope that this
work will inspire further research to make instrumented
indentation an ever more valuable characterization tool.
We suggest, for future investigation, the expansion of
this method to other tip geometries, phenomena such as
those seen for Fe, full comparison with other methods,
and applications of the method.
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