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Glutaraldehyde in Protein Immobilization

A Versatile Reagent

Lorena Betancor, Fernando Lépez-Gallego, Noelia Alonso-Morales,
Gisella Dellamora, Cesar Mateo, Roberto Fernandez-Lafuente,
and Jose M. Guisan

Summary

The use of glutaraldehyde and supports containing primary amino groups is one of the
most frequently used techniques for enzyme immobilization. However, glutaraldehyde is
a very versatile reagent. Using low-ionic strength, the cationic nature of the surface per-
mits the rapid ionic immobilization of the proteins. There are two different possibilities:
(1) activate the support and immobilize the enzyme in a glutaraldehyde-activated support
(in this case the immobilization is promoted by ionic exchange) or (2) adsorb the proteins
on the aminated supports and treat the immobilized preparation with glutaraldehyde to
cross-link both the enzyme and the support. Both alternatives have advantages and draw-
backs that will be discussed on this chapter.

Key Words: Suppori—enzyme crosslinking; ionic adsorption; multipoint covalent attach-
ment; enzyme stabilization; multipoint covalent attachment,

1. Introdution

Covalent immobilization of enzymes by means of glutaraldehyde chemistry is
one of the most frequently used technologies for enzyme immobilization. There
are several ways of using glutaraldehyde for this purpose, such as the immobiliza-
tion of enzymes on supports previously activated with glutaraldehyde (see Fig. 1)
(I-8) or the treatment with glutaraldehyde of proteins adsorbed on supports hav-
ing primary amino groups (see Fig. 2) (9—1 0).
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fonic Adsorption Covalent reaction

Fig. 1. Protein immobilization on aminated supports pre-activated with glutaraldehyde.

lonic Adsorption Intermolecular Cross-linking

Fig. 2. Cross-linking with glutaraldehyde of proteins ionically adsorbed onto aminated
cationic supports.

1.1. Protein Immobilization on Aminated Supports Preactivated With
Glutaraldehyde

The immobilization of proteins on glutaraldehyde preactivated supports is quite
simple and efficient, and in some instances even permits the improvement of en-
zyme stability by multipoint or multisubunit immobilization (7,8).

These supports are made by derivatization with glutaraldehyde of a matrix that
originally must contain primary amino groups. This means that below each glut-
araldehyde molecule, there are one or two amino groups (e.g., in the case of epoxy
or aldehyde supports activated with ethylenediamine) (11} that can confer some
ionic exchanger features to the support. Such supports can be considered
heterofunctional matrixes in a manner similar to the recently described
heterofunctional epoxy supports (12-15). And they take advantage of the possibil-
ity that an ionic exchange of the proteins occurs on the support before the covalent
reaction is permitted (see Fig. 1) (16).

1.2. Cross-Linking With Glutaraldehyde of Proteins lonically Adsorbed
Onto Aminated Cationic Supports

Another strategy for immobilizing proteins using the glutaraldehyde chemistry
is to treat proteins previously adsorbed on cationic supports containing primary
amino groups with glutaraldehyde. The enzyme is first ionically adsorbed onto the
ionic exchanger support and then treated with glutaraldehyde under mild condi-
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tions. All the primary amino groups of the enzyme and support should be activated
with one molecule of glutaraldehyde; the support—enzyme cross-linking may then
occur. It has been shown that these glutaraldehyde groups (just one molecule per
amino group) may promote intense cross-linking under a broad range of reaction
conditions (17). It has also been shown that a similar result might be obtained
using the glutaraldehyde groups of the activated enzyme and those from the sup-
port (18).

2. Materials

1. Aminated supports: MANAE agarose (Hispanagar S.A., Burgos, Spain),
Aminopropil-CPG (Millipore billerica, MA), Aminoethyl agarose (Sigma-
Aldrich St. Luis, MO), Sepabeads® EC-EA (Resindion SRL, Milan, Italy).

2. Immobilization buffer: 25 mM sodium potassium, pH 7.0.

3. 25% (v/v) Glutaraldehyde solution (Fluka, Switzerland).

3. Methods
3.1. Activation of Aminated Supports Activated With Glutaraldehyde

1. Prepare a 15% glutaraldehyde solution in 200 mM phosphate buffer and adjust
the pH to 7.0 (see Note 1).

2. Suspend 10 mL of an aminated support in 20 mL of the glutaraidehyde solution
prepared in step 1 (see Note 1).

3. Gently stir the suspension for 15 h at 25°C (see Note 2). Filter and thoroughly
wash the suspension with 5 vol 25 mM sodium phosphate buffer. Rinse thor-
oughly with distilled water. Store the gel at 4°C and use within 24 h.

3.2. Immobilization of Enzymes on Glutaraldehyde-Activated Supports

1. Suspend 10 g of the of glutaraldehyde support in 20 mL of enzymatic solution in
immobilization buffer (see Note 5).

2. Gently stir at 25°C.

3. Withdraw aliquots from suspensions and supernatant and assay their catalytic
activity. The frequency of sampling must be established for each immobilization.

4. Vacuum filter the derivative and wash thoroughly with distilled water.

3.3. Adsorption of Enzymes Onto Aminated Supports

1. Suspend 10 g of an aminated support in 20 mL of enzymatic solution prepared in
immobilization buffer (see Note 3).

2. Gently stir at 25°C.

3. Withdraw aliquots from suspension and supernatant and assay their catalytic ac-
tivity until total adsorption of the enzyme.

4. Wash the adsorbed enzyme thoroughly with distilled water and filter to dryness.

3.4. Cross-Linking of Adsorbed Derivatives With Glutaraldehyde

1. Prepare a 0.5% (v/v) glutaraldehyde solution (in 25 mM sodium phosphate buffer,
pH 7.0.

2. Suspend 1 wet g of the adsorbed enzyme (see Subheading 3.3., step 3) in 4 mL
of the glutaraldehyde solution.

3. Gently stir for 1 h at 25°C.
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4. Filter and wash the modified immobilized enzyme thoroughly with 25 mM so-
dium phosphate buffer, pH 7.0, to remove the excess of glutaraldehyde. Filter to
eliminate inter-particle water.

5. Keep for 20 h at 25°C and then store at 4°C (see Note 4).

3.5. Desorption of Noncovalently Immobilized Proteins on the Support

1. To check if the cross-linking has been successful, resuspend 0.5 g of derivative in
2.5 mL of 1 M sodium phosphate buffer, pH 7.0. Gently stir for 30 min at 20°C.

2. Assay the activity from the suspension and supernatant after the desorption pro-
cess (see Note 6).

3.6. Immobilization-Stabilization of Glucose Oxidase Onto MANAF
Agarose Preactivated With Glutaraldehyde

1. Prepare an enzymatic solution containing 13 U/mL 25 mM sodium phosphate
buffer, pH 7.0.

2. Assay the catalytic activity of the enzymatic solution previously described. Add
10 g of MANAE agarose activated with glutaraldehyde to 20 mL of the glucose
oxidase (GOX) solution and assay the enzyme activity of both the suspension
and supernatant after 30 min at 25 C. If any activity remains in the supernatant
stir the suspension for an additional 30 min under the same conditions. Repeat
for the enzyme assays (see Fig. 3).

3. Filter and thoroughly wash the derivative with distilled water.

4. Evaluate the covalent immobilization as described previously (see Subheading 3.5.).

5. This preparation is more thermostable than the soluble enzyme (see Fig. 4).

3.7. Immobilization-Stabilization of p-Amino Acid Oxidase by Adsorption
on Sepabeads™ EA-EC Plus Further Glutaraldehyde Treatment

1. Prepare a solution of p-amino acid occidase (DAAO) in 25 mM sodium phos-
phate, pH 7.0.

2. Assay the catalytic activity of this solution. Add 10 g of EC-EA to 20 mL of the

previous DAAO solution. Measure the enzyme activity of both the suspension

and supernatant after 30 min at 25°C.

Filter the derivative.

4. Add 1 g of derivative to 4 mL of 0.5% glutaraldehyde solution, pH 7.0. Gently
stir for 1 h at 25°C.

5. Filter and wash suspension with the excess 25 mM sodium phosphate, pH 7.0.
Incubate for 18 h at 25°C.

6. This derivative is more thermostable than the soluble enzyme (see Fig. 5).

|98

3.8. Immobilization-Stabilization of Glutaryl Acylase by Adsorption
on Sepabeads EA-EC Plus Further Glutaraldehyde Treatment

1. Prepare an enzymatic solution by mixing 5 mL of a commercial glutaryl acylase
(GA) (Roche) with 20 mL of 25 mM potassium phosphate buffer, pH 7.0.

2. Assay the catalytic activity of the enzymatic solution previously described. Add
10 g of MANAE agarose to 20 mL of the GA solution and assay the enzyme
activity of both the suspension and supernatant for 30 min at 25°C.
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Fig. 3. Immobilization course of GOX on MANAE agarose activated with glutaralde-
hyde. Rhombus, control GOX solution; squares, supernatant, triangles, suspension. More
details are described in Subheading 3.6.
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Fig. 4. Thermal stability of different GOX preparations. Triangle, immobilized on
MANAE agarose activated with glutaraldehyde. Circle, soluble enzyme. Inactivation con-
ditions were 56°C, pH 7.0, and 0.4 U/mL.

3. Filter the derivative. Add 1 g of derivative to 4 mL of 0.5% glutaraldehyde solu-
tion, pH 7.0. Leave for 1 h at 25°C.

4. Filter and wash the suspension with the excess 25 mM sodium phosphate, pH 7.0.
Incubate for 18 h at 25°C.

5. Evaluate the covalent immobilization as described in Subheading 3.5.

6. This enzyme preparation is more thermostable than the soluble enzyme (see Fig. 6).
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Fig. 5. Effect of cross-linking with glutaraldehyde on the thermal stability of DAAO.
Circles, derivatives adsorbed onto Sepabeads EC-EA; squares, derivatives adsorbed onto
Sepabeads EC-EA and then cross-linked with 0.5% glutaraldehyde solution. The inactiva-
tion course was carried out by incubating 0.8 U/mL DAAO in 10 mM potassium phosphate
buffer, pH 7.0, at 50°C.
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Fig. 6. Effect of cross-linking with glutaraldehyde on the thermal stability of the GA.
Circles, derivatives adsorbed onto MANAE-agarose; squares, derivatives adsorbed onto
MANAE agarose and then cross-linked with 0.5% glutaraldehyde solution. The inactiva-
tion course was carried out by incubating 10 U/mL of GA in 10 mM potassium phosphate
buffer, pH 7.0, at 47°C.

4. Notes

1. The control of the pH is very important. If the pH is too high the glutaraldehyde
will polymerize and the support will not react with the enzyme.

2. The suspension color is an indicator of the state of the glutaraldehyde. If the
suspension is brownish in color the support cannot be used because glutaralde-
hyde reactivity is compromised.
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3.

4.

The Jow-ionic strength of the immobilization buffer is necessary for the ionic
adsorption between the protein and the support.

The additional incubation at 25°C is necessary to achieve a higher degree of cross-
linking.

. The low-ionic strength of the immobilization buffer permits the first ionic adsorp-

tion of the enzyme on the support. After this adsorption, the glutaraldehyde can
covalently react with the primary amino groups of the protein, leaving the
enzyme covalently attached to the support.

. This experiment allows for the evaluation of the covalent attachment between the

protein and the support.
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