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§ 1. INTRODUCTION
TuE purpose of this article is to study one of the ways in which electricity
can flow in a semiconductor containing impurities, The current in an
impure semiconductor is due to two competing conduction processes which
act in parallel. The first process is responsible for the current usually
observed which (in for example n-type material) is carried by electrons in
the conduction band in thermal equilibrium with electrons on donor
impurities. The second process arises as follows: An electron occupying an
isolated donor has a wave function localized about the impurity and an
energy slightly below the conduction band minimum. Because there is a
small but finite overlap of the wave function of an electron on one donor
with neighbouring donors, a conduction process is possible in certain cir-
cumstances in which the electron moves between centres by tunnel effect
without activation into the conduction band. This we call impurity
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conduction. The electrons of high mobility in the conduction band com-
pletely dominate the conductivity at higher temperatures. However,
although the mobility of an electron moving in the impurity levels is very
small since it depends on interaction between widely spaced impurities, at
low temperatures impurity conduction will dominate due to the absence of
electrons in the conduction band.

The circumstance in which impurity conduction is possible is the presence
of ‘compensation’, by which we mean the presence of some minority
centres, acceptors in an n-type conductor. These accept electrons from a
certain proportion of the donors, thus allowing the movement of electrons
from an occupied donor into an occupied one (fig. 1). Without compensa-
tion impurity conduction is not possible, unless the overlap between the
centres is very large ; when this is large enough, corresponding to a critical
concentration N, another form of conductivity sets in, in which the
electrons behave like a degenerate electron gas. This we shall treat in part 11
of this report and shall describe as metallic impurity conduction.

Fig. 1
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Energy diagram of an n-type semiconductor containing donors and acceptors.
The horizontal lines represent centres, the circles electrons in them.

Impurity conductiont was first observed by Busch and Labhart (1946)
in silicon carbide, and has since been observed in a large number of both
n- and p-type semiconductors; references are givenin§4. The concept of
an electron bound to a donor centre is complementary to that of a hole
bound to an acceptor. Hence our discussion, which for convenience is
based on n-type, can readily be carried over to p-type material. Most
experimental work has been done on the valence semiconductors, german-
ium and silicon, and this article is mainly about these.

A feature of impurity conduction, which distinguishes it from the usual
semiconduction, is its extreme sensitivity to impurity concentration. For
example, a change by a factor of 30 in the density of impuritiesin germanium
can alter the conductivity by the impurity process by a factor of 107
(fig. 4), while the corresponding change in the conductivity in the conduction
band in the exhaustion range of temperatures (i.e. at those when the
electrons are nearly all in the conduction band) is only of order 28. Another

+ The possibility of impurity conduction was suggested on theoretical grounds
by Schottky in 1935 (see Gudden and Schottky 1935).
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feature is that, when the impurity concentration is small, the curves
plotting In p against 1/7" exhibit a finite slope in the temperature range where
impurity conduction predominates, suggesting that the charge transfer
between impurity centres must itself be thermally activated. Above the
critical concentration N, mentioned above, the resistivity becomes
independent of temperature; the conductivity is then apparently metallic
and carriers move freely without thermal activation. There is a small
transition region (a factor of order 4 in the impurity concentration in
germanium) just below N, in which the conductivity is non-metallic but
the slopes of the curves (Inp vs. 1/7") decrease and finally vanish at the
critical concentration. A complicated temperature dependence of the
Hall effect is also observed in this region (fig. 5).

The theoretical interest of these phenomena is two-fold. First they
give the opportunity of studying the transition from metallic to non-
metallic conduction which occurs as the concentration of carriers is
decreased. It hasbeen postulated by one of us in a number of papers (Mott
1949, 1952, 1956, 1957, 1961) that as the lattice spacing of an ordered array
of atoms is increased there should be a sharp transition from a metallic to a
non-metallic state of the valence electrons. The theoretical treatment of
this transition is a many-body problem, involving the interactions between
the electrons. No way is known, except possibly the use of high pressures,
of changing the interatomic distance of a crystalline array of atoms over a
large enough range, so that to test this hypothesis we are driven back to a
study of a disordered array of centres such as occurs in doped germanium
or silicon.

The second point of interest is the mobility of an electron in a disordered
lattice, considered as a one-body problem. For high concentrations giving
metallic conductivity, we have a problem like that of a liquid metal, but
with a greater degree of disorder. For low concentrations, it appears that
the electron moves by a hopping process from one centre to another, inter-
action with phonons being essential and the concept of a mean free path not
appropriate.

The article therefore divides naturally into two parts. In the first we
shall be concerned with the experimental observation and calculation of
impurity conductivity in the region of low concentration. We discuss in
§ 5 the reasons for using localized states and a phonon-activated hopping
process in this low concentration region. The effect of compensating
impurities and disorder is considered, and the theory of the interaction of
localized carriers with lattice vibrations is traced through from the limits
of strong coupling (polar semiconductors) to weak coupling (valence semi-
conductors). Although we deseribe this process as a one-body problem, we
must in our applications of Fermi statistics introduce the interaction
between electronsin the sense that an electron cannot move into an impurity
centre that is already occupied. The second part of this article will have
as its theme the interaction between carriers in the impurity centres when
this becomes large enough to lead to a transition to a metallic form of

K2
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conductivity. This second section will start from an assumption of what is
to be expected from a crystalline arrangement of centres and then discuss
the effect of disorder and compensation.

Parr 1
§ 2. Tue MoDEL AND GENERAL DiscussioN oF IMPURITY CONDUCTION

If we neglect the dependence on direction of the effective mass, an
electron occupying an isolated donor can be taken to move in a hydrogen-
like orbit in the Coulomb field of the donor ion, with a Bohr radius

=k (mjm*) ay

where m* is the effective mass and ay is the radius of a hydrogen atom
(0-544). Because of the large dielectric constant x and small effective
mass ratio m*/m, the orbit may extend over several hundred of the host
lattice sites. The energy of this state lies slightly below the lowest state
of the conduction band. A similar deseription applies to a hole bound to a
negative acceptor impurity; in this case the energy of the vacant state
lies slightly above the top of the valence band. A more exact description
of the impurity states is given in § 3, taking into account the dependence of
m* on direction.

In an n-type semiconductor (one in which the donor concentration Ny,
exceeds the accept or concentration NV, ), at the absolute zero of temperature
all the acceptors will be occupied and consequently negatively charged.
The number of donors occupied and therefore neutral is Np,— N, (fig. 1).
Overlap between wave functions corresponding to neighbouring sites allows
movement from an occupied to an empty donor without activation into the
conduction band. Our study of impurity conduction will therefore be a
study of transport of electrons in a random lattice from one positively
charged donor to another and in the field of fixed negatively charged
acceptors. The host crystal is regarded as a dielectric medium in which
this random impurity lattice is imbedded; thermal energy is supplied by
vibrations of the host crystal.

As already emphasized in the introduction, at high concentrations of
impurity the resistivity and Hall coefficient become independent of
temperature at low temperatures, the electrons behaving like a degenerate
electron gas. This behaviour, illustrated in figs. 4 and 5, is discussed in part
II. Inthissection we consider low concentrations. Therearetwo particu-
larly simple cases which we may dicuss. If Ny, is the concentration of
majority centres (say domors) and N, the concentration of minority
centres (acceptors), these are:

Case(a). Np>Np—N,

There will then be a small number (N, —N,) of electrons in the donor
states, and, owing to the random arrangement of immobile positively
and negatively charged centres, a random fluctuation in the potential
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energy from one centre to another. The question then arises, as in all
these considerations (§5), whether in the absence of lattice vibrations the
characteristic wave functions (solutions of the Schrodinger equation for a
single electron) are localized or whether they spread through the lattice.
By a localized wave function we mean one that decays exponentially to
zero at large enough distances from a given point in space. Considerations
set out in§ 7 show that in a one-dimensional lattice they are always localized.
In a three-dimensional lattice they are localized if the degree of disorder,
or the ratio of the energy in the random field to the band width, are great
enough (§5). We believe this to be the case in the range of concentration for
which experimental measurements are made ; the electron can then jump
from one centre to another only with the help of phonons. The process by
which it does so is a main theme of this report. But it is possible that, as the
concentration of donors increases, there may be formed unbound states so
that the activation energy for motion would be zero. It is possible that a
‘erystallization’ of electrons, as envisaged by Wigner (1938) may occur, and
a transition to a metallic state (condensed electron gas) only for higher
concentrations of electrons. This is discussed in part II and by Mott
(1961).

Case (). Np>N,

In this case most of the donors are occupied and a small number vacant.
The donor states which are unoccupied are to be thought of as carriers; as
electrons jump from ocecupied to unoccupied donors, the positive vacancy
moves through the lattice. As in case (a¢) when the centres are still
localized, we think of this as a hopping process from centre to centre.

In case (b) it is possible to discuss the activation energy for charge transfer
in terms of a simple model first suggested by one of us (Mott 1956). The
carrier (the positive charge vacancy) will in its state of lowest energy lie as
closely as possible to a negatively charged acceptor. Before conduction
can occur the carrier must be thermally activated from this bound state.
An energy of order

E=(e*x) (1[ryp)=1-46 (e?/x) NP N 0 8]

will be required to remove the carrier from the neighbourhood of the
acceptor. Here r,y is the nearest neighbour separation between a donor
and an acceptor, and (1/r,) denotes an average, assuming a Poisson
distribution of centres. Price (1957) suggested as a better approximation
that E should be of order

E~(e2fk)(NpB—2N,B); . . . . . . (L)

he supposed that one should not consider removing the carrier to infinity
but to a distance at which it is effectively outside the field of the particular
acceptor concerned. The further movement of the *free’ carriers through
the lattice may well require further activation, but the energies will be
considerably smaller. Price has examined the statistics of this model.
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We give here a simple derivation of the number » of free carriers. Assum-
ing there is only one trap site associated with each acceptor, and a constant
trapping energy E, the free energy of the carriers is:

nB—ET [In{Np!/n!(Np—n)} —In{N !/n!(Ny—n)}}].
Minimizing this with respect to n, we obtain
or n2[(Np—n)(Ny—n)=exp(—E[kT) T
[ s (Nn NA)IM exp ( i E’QkT)
at low temperatures. Thus we expect the slope e, of the curve plotting

Inp against 1/£T to be approximately $ £ at low temperatures. Saturation
in the carrier concentration should set in at temperatures given by

exp (- BJ2kT)~ K", (K=N4Np). . . . . (3)

In, for example, p-type germanium containing 6-5x 10'> majority
impurities per cm? and a compensation ratio K =0-03, the observed activa-
tion energy at low temperatures is 1:6 x 10~2ev. Therefore the saturation
temperature 7's should be approximately 14°. A slight flattening of the
resistivity curve is observed at around 5°, the high temperature end of the
impurity conduction range (fig. 9, specimen (a)). However, this saturation
effect is prominent only in specimens in which both the compensation and
impurity concentration are small. Also, 7's does not follow in detail the
prediction of (3). For example, in specimen (b) of fig. 9 (for which K~ 0-4)
T should be 11°, lower than in specimen (@), whereas the observed slope is
practically constant. Thisis one example of the limitations of the trapping
model. We emphasize again that the model is valid only for very small K,
when the acceptors are separated in general by a large number of donors.

The theory of Miller and Abrahams (1960), outlined in §8, js not limited
to small K and thus cannot use the assumption of trap sites. Moreover it is
essential in their work to remember that some sites are occupied and some
not, so that the electron or ‘hole’ cannot move except where there is a
site ready forit. These authors find that the resistivity p is given by

p(I) ccexp (e/RT)
where
ea=({—135¢,
and
er = (€*/x) (4N 5 [3)'F
and { is the Fermi energy. This is defined, if
fi=1/[1 +exp{(ei—)/kT}]

and ¢ is the energy, due to the random field, of the donor site i, by

2[i=Np—N,.
The summation is approximated by an integration using a density of
states function p(e)de. This is obtained by assuming the energy spread
to arise from nearest neighbour negatively charged acceptors. The
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probability that an acceptor is at a distance » from a donor, and is the

nearest one, is
3r2 7\3
pteyir= e { = (7)o

where the meamn acceptor separation is given by
7o =(3[4mN 4)'P.
Then €= e?/kr, so we have
P(e)de=(3e,% ') exp { —(ex/€)%} de,
where
€= €fkry.
On performing the integration of f; over €, we find
1—K=exp{—(es/{)*{1 +exp (—{/kT)}]
which determines {. Unless K is extremely small or very close to unity,
{= —ex{in (1— K)}I%.

As we shall see in § 4, the magnitude of the resulting activation energy ¢,
agrees well with experimental values (cf. fig. 6). For K< 0-2,

e3=€p—1:35 €, =1-61 (e/i)(Np¥3—1-35N,¥8), . . . (4)

which is similar in form to that predicted by Price (1957), formula (1.1).

Finally we may ask whether, in case (b), we may expect for holes a
phenomenon similar to that suggested in case (@) where the overlap becomes
large, namely a state of affairs when the states for the hole are not localized.
It is clear that, if K <1, the lowest state must be localized with an energy
given by (1), because a Coulomb field always leads to bound states. How-
ever, when the carrier has escaped from the field of the nearest charged
acceptor, then for a high concentration of centres a hopping process may
no longer be an appropriate description of the motion.

In the remainder of this section we shall suppose that K is less than }.
The temperatures at which impurity conduction can be observed is thus
determined by the following factors. The mobility of a carrier moving in
the impurity levels is much smaller than in the conduction band, since the
former is determined by interactions between widely spaced impurities.
On the other hand, the number of carriers in the conduction band is
determined by an activation energy e, (~10~2ev for germanium), while
the energy e, regulating impurity conduction is at least an order of magni-
tude smaller, varying from zero to 10—2ev, depending on the concentration
of centres. Thus at higher temperatures the conductivity is determined by
carriers in the conduction band, at low temperatures by those in the
impurity levels, and the transition between the two regions is quite sharp
(fig. 4). Inthewholeregion we may write formally

o ="1eu,+ neu
where n,, p, are the number of carriers and the drift mobility in the con-
duction band and », . the same quantities for the impurity carriers.
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The Hall coefficient R, in the same notation, should depend on these
quantities according to the expression

B = (optopgso + nptpig) [eC(Mopie + ),
where py,, py is the Hall mobility of the conduction band and impurity

electrons respectively. Neglecting any temperature variation in the
mobilities, this expression has a maximum when

N e, = NefL. Wi w @ mr % s o= DY
The Hall curves for high concentration (samples 14, 15, fig. 5) can be
qualitatively explained by assuming that a Hall effect exists for carriers in
impurity levels, with Hall mobility comparable to the drift mobility. At
high temperatures, for which nu > nu, so that the normal conduction band

Hall effect is observed,
R,= 1 (E}!E) 2.
ec\ e ) Mg

At temperatures below the Hall maximum, where nu, <nu

Rimp=1_(“_ﬂ)_'. N (1)

ec\p/n

The number of carriers is practically independent of temperature in this
range (n~Np—N,), giving a temperature-independent Hall curve, as
observed (fig. 5). The Hall coefficient Rexn in the exhaustion range
(temperatures between 77° to 300°K) is due to the same number (Np—N,)
of carriers, in the conduction band, but measured values of Rexn are about
eight times larger than Riyp. This suggests that py/p is anomalously low.
This is at present unexplained.

For the samples of low concentration it is not known whether a Hall
effect exists at the impurity conduction temperatures. The drop in the
Hall curves beyond the maximum can be attributed quantitatively to the
rapidly decreasing contribution of the conduction band current to the
total current. A flattening of the curves beyond the maximum (which
would indicate a finite Hall mobility) is not observed down to the lowest
temperatures at which it has been possible to make measurements (fig. 5).
It is not clear on theoretical grounds whether a Hall effect is to be expected
when the conduction process involves jumps of bound carriers to neighbour-
ing sites. The experimental evidence suggests that R may exist, but be too
small to be measured in the low concentration range. This is shown by the
concentration dependence of R/p (fig. 2), measured at 2°k for the p-type
samples of table 1. We see that R/p (which from (6) is proportional to j5)
becomes small as the concentration falls through the transition region.
This is discussed further in part 11.

When charge carriers are positive vacancies (in n-type material with
both impurity concentration and degree of compensation small), it might
be thought that if a Hall effect exists it should be of opposite sign to that due
to electrons in the conduction band. However, in a magnetic field H
the vacancies do not behave as true particles with positive effective mass
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and charge. For example, if a positive and a negative particle are initially
drifting in opposite directions, a magnetic field will deflect both particles in
the same direction. However, a charge vacancy always moves in the
opposite direction to an electron, even in a magnetic field (fig. 3). Hence
we expect no change in sign in the Hall effect when the conduction is by
charge transfery.

Fig. 2
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The Hall mobility R/p for p-type germanium with 40%, compensation plotted
against concentration of majority carriers (sample particulars in table 1).
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The motion in a crossed electric field & and magnetic field H of (a) an electron
and a hole, (b) an electron and a charge vacancy (in a weakly compen-
sated semiconductor).

T Yonemitsu et al. (1960) recently reported observing a change in sign of
the Hall effect in a p-type germanium specimen containing 2 x 101® gallium
impurities per cm? and 409, compensation. However, although the magnitudes
of their resistivity and Hall measurements agree well with those of Fritzsche
(figs. 4, 5), the latter author observed no sign change.
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In the band theory of periodic lattices the concept of a “hole’ which
behaves as a positive charge with positive effective mass depends in part on
the negative effective mass of electrons occupying states near the band
maximum. This latter is a consequence of the increasing importance of
Bragg reflection of electrons as their energies approach the band maximum.
It is unlikely that the phases of electrons scattered by a completely dis-
ordered lattice will match sufficiently well for electrons of any energy to show
a negative effective mass. Hence, in the metallic region of impurity
conduction in n-type material, we would not expect to observe hole
conduetion or a positive Hall effect, for any concentration on impurity
electrons. It is for this reason among others that we have avoided use of
the misleading term ‘impurity-band’ when speaking of the metallic
region.

§ 3. Tue Inpurity WAvE FuNcrions
We have assumed in the last section a hydrogen atom model for an
isolated impurity centre. The departures from this model are briefly
outlined here. It has been shown by Kohn and Luttinger (see Kohn 1957)
that the donor electron wave functions in germanium and silicon have the
form

P=SeOFM0, - . . . . . . (D)
i=1

where ¢; is the Bloch wave function at one of the conduction band minimum
denoted by j, and the sum is over the N equivalent minima (N =4 for ger-
manium, N =6 for silicon). The «; are coefficients which are determined
by the symmetry of the state. F;(r) is an envelope function satisfying a
Schrodinger equation for the potential due to the impurity, but with the
free electron mass replaced by the effective mass appropriate to the jth
minimum :
fir o0* h® (o* o* 22N 1
{- o :ﬂa(aT, 2 é?) = ;} (1)=&, F(r).

The z-axis lies along the direction of the k-vector of the jth minimum, and
mi, m¢ are the longitudinal and transverse masses respectively. For the
ground state, F; has the hydrogen-like form

2% SE\12
Fj(r)=(1ra26)”1fzexp{— (“’—E;i £ z—z) ] } ... (8)
For germanium, a=64-54, b=22-TA. Corrections to this effective-mass
approximation partially lift the N-fold degeneracy of the ground state.
These corrections arise chiefly from departures from a simple Coulomb
potential in the immediate neighbourhood of the impurity ion, and because
the concept of a uniform dielectric constant breaks down in that region.
In germanium, the ground state splits into a non-degenerate lower level and
a 3-fold degenerate upper level (Price 1956); the coefficients of the wave
funetions (7) corresponding to these levels are:
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oP=21(1, 1, 1, 1) lower level ;
@=3(1, -1, 1,-1)
oP=3(1, 1,-1,-1) upper level.

W=1(1,-1,-1, 1)

The splitting is 0-57 x 10~3ev for antimony impurities, but is of order ten
times larger for arsenic and phosphorus donors (Fritzsche 1960 a); hence
the upper states can be neglected except in antimony.

The acceptor states can similarly be constructed from Bloch orbitals
at the valence band maximum. In this case the envelope functions ¥
satisfy a set of six coupled effective-mass equations (Kohn and Luttinger
1955, Kohn and Schechter 1959) ; the solution of these is difficult and hence
only approximate solutions of the acceptor wave functions are known.

§ 4. OBSERVATIONS OF IMPURITY CONDUCTION

Impurity conduction has been observed in many semiconductors at low
temperaturest. We do not attempt to give here an exhaustive review of
experimental results but confine ourselves to the case of germanium, which
has been studied most extensively. Results for other materials are
qualitatively similar,

Prior to 1960, measurements in germanium and silicon were made in
samples grown from melts doped with suitable impurities. For a quantita-
tive comparison of theory and experiment it is desirable to have a range of
measurements on samples where either («) the majority impurity concentra-
tion is varied, but the degree of compensation K is kept constant, or (b) K is
varied but the majority concentration is kept constant. It was practically
impossible to achieve these conditions in the early measurements. Conse-
quently, since the resistivity and Hall coefficient vary extremely rapidly
with impurity concentration, comparison of theory and experiment was
uncertain. Recently, however, Fritzsche and Cuevas (1960a) has pub-
lished measurements on p-type germanium samples in which the acceptor
concentration (gallium) ranges between 8x 10Mem—2 to 1:3x10'® cm—3
and the compensation ratio (arsenic and selenium) is kept fixed at K = 0-4.
The impurities were introduced into pure germanium by slow neutron
bombardment (Cleland ef al. 1950), causing transmutation of germanium
atoms. The proportion of different impurities produced is determined
by the cross sections for neutron capture and the decay schemes of the
various germanium isotopes ; therefore the compensation ratio is constant.
The magnitude of the impurity concentration can be varied by the neutron
flux and exposure times of different samples. Figures 4 and 5 show results
of measurements of the resistivity p and Hall coefficient R; table 1 gives
information about the specimens.

T SiC: Busch and Labhart (1946); Ge: Hung and Gliessman (1950, 1954);
CdS: Kroger ef al. (1954); Si: Morin and Maita (1954), Carlson (1955); p-InSb:
Fritzsche and Lark-Horovitz (1955); n-InSb: Sladek (1958); Te: Iukuroi
et al. (1954).
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Fig. 4
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Resistivity as a function of temperature of p-type germanium with compen-
sation K =0-4; particulars in table 1 (Fritzsche and Cuevas 1960 a).
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Fig. 5
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Table 1
Sample NA (em™3) p(T=2-5°g) Q cm pwlem?/volt sec)

1 75 x 1014 8-9x10° 4:3x10-5
2 1:4 x 1015 1:8 x 107 1:2x10-8
3 1-5 % 1015 1-:0x 107 2:3x108
4 2-66 x 1015 56 x 108 30x10-2
5 3:6 x 1015 1-0x 103 011
6 4-9 x 1015 25 x 104 0-53
7 7-2 x 1015 6-3x 103 2-4
8 9:0 x 1015 2:0x 103
9 1-4x 10 4-5x 102

10 2-4 x 1016 1-:0 x 102 16

11 3-5x10 28 40

12 73 x 1016 20

13 1:0 x 1017 0-50

14 1-5x 1017 0-18 180

15 50x 1017 3:2x10-2 250

16 1-35 % 1018 1-8x10-2

Estimated mobilities . are shown in column 4 of table 1.
For specimens (1-7) with low impurity content, p is obtained from values
of the resistivity at the temperature of the Hall maximum by making use of

eqn' (5) : w= My nc/n = (NAKGPQ)—'I'

Fig. 6
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The activation energy e; of impurity conduction for the samples in table 1.
The dashed curve represents the calculation of Miller and Abrahams
(1960).
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We have assumed the number of impurity carriers n to be N, (=KN,),
since K is less than §. At higher concentrations, we use simply

p=2Rlp.

This is really the Hall mobility, which as we have seen in § 2 may be appreci-
ably smaller than the drift mobility.

Values of the activation energy e; in the low temperature region are
plotted in fig. 6, against the average acceptor separation. The magnitude
of e; agrees well with the values calculated from the theory of Miller and
Abrahams (1960), shown by the dotted line, in the region of low con-
centration.

Measurements of the conductivities 1/p of n-type samples can be fitted
by a sum of three exponentials (see, for example, Fritzsche 1958),

1/p=c,exp (— &,/kT)+co0xp (= &/kT') + ¢y 0xp (— €5/kT).

Here ¢, is-the activation energy for exciting an electron into the conduction
band, and ¢; that for impurity conduction. The role of e,, which occurs
only for samples in the transition region (2 x 106 <N <8 x 10'6), is not
clear. ¢, is observed in weakly compensated n-type and p-type samples,
not however in p-type samples having K=0-4. A fourth activation
energy was observed at temperatures below 1°k (Zaravstikaya 1956), in
low concentration specimens. This however has since been shown to be
due to stray light quanta exciting electrons into the conduction band. The
resistivity is so large at these temperatures (of order 10'°(Q).cm) that a
very small fraction of excited electrons can lower the resistance appreciably.

Some measurements of the resistivity have recently been reported on
germanium samples of constant acceptor concentration (2-:66 x 10> em =) in
which the degree of compensation was varied from 0-4 to 0-9 (Fritzsche
and Cuevas 1960Db). These are shown in fig. 7.

The samples were produced by bombarding specimens of n-type ger-
manium with slow neutrons. The same neutron flux and exposure time
was used, so that the same acceptor (gallium) concentration was produced
in each specimen. The degree of compensation however depends on the
initial donor concentration. Figure 8 shows the observed activation
energy as a function of K. The solid line is that predicted by Miller and
Abrahams (1960) and is in good agreement, except at very high values of K.

The variation of the resistivity with the degree of compensaton should
depend on whether the specimen shows metallic or non-metallic conduction.
Measurements (in addition to those above) in which K is varied but the
majority concentration is kept constant, have been made by Fritzsche
(1955), Fritzsche and Lark-Horovitz (1959), in n- and p-type germanium,
and by Ray and Longo (1959) in n- and p-type silicon. The results can be
summarized as follows.

(i) In specimens showing metallic conductivity when K ~0, both the
resistivity and Hall coefficient increase with K, the activation energy e,
remaining zero provided K is not too large. In p-type germanium samples
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with N, =2-5x 107 em=3, Fritzsche and Lark-Horovitz (1959) observed
that the conductivity becomes non-metallic as K increased between 0:4
and 0-7, the Hall and resistivity curves showing behaviour types of the
transition region (figs. 9, 10).

(ii) In specimens showing non-metallic conductivity when weakly
compensated, the resistivity at a constant temperature decreases to a
minimum as K is increased to about 0-4, and thereafter increases.

Writing

p=poexp (— &/kT),

po is found to increase with K (fig. 11). However, in samples with
Np=10%em=3, p, remains approximately constant in the range
10~ < K <1072 (Fritzsche 1960, private communication); these samples
have a non-vanishing Hall coefficient and are in the transition range.

These results can be understood in part by considering the effect of
compensation on the carrier concentration. In the metallic range the
number 7 of carriersis N maj (1 — K). Inthenon-metallicrangen=Nmaj K
when K <} (the carriers are vacancies on impurity sites) and n=N yga;
(1-K) when K>%. Hence, since

p=1/neu,

P.M.S, L
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if the conduction is metallic p should always increase with K, assuming
the carrier mobility p to depend only weakly on K. If the conduction is
non-metallic, p should decrease as K increases to §, and increase as K goes
~from % to 1.

The dependence of p on K in the non-metallic range has not however
been adequately explained. Since the term exp (e;/kT) dominates p at low
temperatures, and ¢; is observed to have a minimum value for K ~0-4

L2
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(rather than K =0-5), a minimum is also observed in p at K=0-4. Al-
though Miller and Abrahams (1960) have been able to calculate the observed
dependence of ¢; on K (fig. 8), in their theory the pre-exponential factor p,
isindependent of K. This independence is observed only for K < 102, and
then for specimens in the transition range, to which their theory does not
apply. On the basis of the trapping model (§ 2), p,(K) is again predicted
incorrectly. Forin this model the number of free carriersis proportional to
K12 (eqn.(2)). When K is very small we can assume that the mobility
of free carriers between sites at large distances from compensating
centres is independent of K. Hence p, should be proportional to K-12,
whereas p, is observed to increase with K (fig. 11).

Fig. 11

(a)

)

(b)

Variation of the pre-exponential factor p, (in the equation p=p, exp (— es/k7))
with compensation K; (a) experimental variation, (b) calculated by
Miller and Abrahams (1960) and (¢) calculated on the trap model.

We have seen that the magnitude of the impurity conduction depends
sensitively on the impurity concentration and degree of compensation. A
further variable is the type of impurity. For example, when corrections
to the effective-mass formalism (§ 3) are taken into account, it is found that a
donor electron is localized in a smaller volume around an arsenic impurity
atom than around antimony. Hence the resistivity is larger for arsenic
than for antimony impurities, if the same number of both are present, due
to the smaller overlap of the arsenic wave functions with neighbouring
states.

The Bohr radius of the impurity wave functions in silicon is of order %
that in germanium. Hence the impurity conductivity in silicon is always
very much smaller than in germanium, for comparableimpurity concentra-
tions. Also, the energy ¢, required to activate electrons into the conduction
band is of order 5 x 10~2ev insilicon and 1 x 10~2ev in germanium. There-
fore the onset of impurity conduction is observed at higher temperatures
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in silicon than in germanium (again for comparable impurity concentra-
tions) due the faster freeze-out of electrons from the conduction band of
silicon.

The impurity concentration at which the transition from non-metallic
to metallic conduction is observed depends on the overlap of neighbouring
donor states, and on the degree of compensation. Beccuse the impurity
states are more localized in silicon than in germanium, the transition is
observed at higher impurity concentrations in silicon. Similarly, because
the impurity Bohr radius is different for different impurities, the transition
concentration is also a function of the type of impurity. Fritzsche
and Cuevas (1960 b) finds that the activation energy e, in p-type (gallium
doped) germanium disappears at N, = 1-09 x 1017 em~3 when K~ 0-04, and
at Ny=1-80x10"7cm™ when K=04. When N,=2:5x10"cm™3, the
activation energy disappears at a value of K in the range 0-4 to 0-7
(Fritzsche and Lark-Horovitz 1959). These results are discussed in more
detailin § 11.

It is found that there is a large change in impurity resistivity when the
overlap of neighbouring impurity states is altered by straining the crystal.
We saw in§ 3 that the wave function ¢ of an isolated donor can be constructed
from Bloch orbitals taken from the degenerate conduction band minima.
Although the envelope functions F (eqn. (8)) are anisotropic, in an un-
strained crystal ¢ has the tetragonal symmetry of the lattice, and the
overlap of neighbouring donor states leads to an isotopic resistivity. Ina
germanium crystal strained along, for example, the [110] direction, two
conduction band minima are depressed in energy relative to the other two.
If the strain is large enough, the donor electron ground state will be a sum
of the F;¢; corresponding to the depressed minima only,

ps=2712(Fy i+ F; ;).

The overlap of such functions will vary strongly with the direction to the
neighbouring donor relative to the strain direction. Hence we expect that
in a strained single erystal the impurity resistivity will be anisotropie,
with a maximum value in the direction of least overlap. Fritzsche (1960 b)
has measured the change in impurity conduction in germanium containing
5-2 x 10'% antimony atoms per unit volume at 1-9°k as a function of uniaxial
tension and compression along the [110] direction. Figure 12 shows the
resistivity ratios of the strained to the unstrained sample for the three
principle directions of the resistivity tensor (labelled C, D and E). A
‘saturation’ is observed when strains are large enough for only the depressed
minima to contribute to the donor wave function. Therelative magnitudes
of pg, pp and pg are in agreement with predictions on the basis of the overlap
of these functions.

Additional evidence that there is a conduction process in the impurity
energy levels at low temperatures is provided by the work of Sladek (1956,
1958, 1959) on magnetically induced impurity banding in n-type indium
antimonide. Because of the small effective mass ratio (m*/m =0-013) and
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large dielectric constant («=16), the Bohr radius of a donor electron in
indium antimonide is large, about 144 &, and the jonisation energy of an
isolated donor is small (0-0067 ev). TFor all obtainable purities the overlap
of donor wave funtions is large and the levels are broadened and merge with
the bottom of the conduction band. A strong magnetic field will shrink
the donor wave funtions (Yafet et al. 1956), producing two effects.

Fig. 12
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Ratio of the resistivity of stressed and unstressed n-type germanium, for the
principle directions, as a function of stress (Fritzsche 1960 b).

(i) The donor ionization energy is increased due to the decrease in the
Coulomb energy of the electron. Thus for a large enough magnetic field
donor levels will be split off from the bottom of the conduction band.

(ii) The overlap of the donor wave functions is decreased. This effect
islarge because of the small effective mass.  Figure 13 shows measurements
of the Hall coefficient R as a function of temperature and magnetic field
strength, in a specimen containing 5-3 x 10 donors per unit volume
(Sladek 1958). For a small magnetic field B is approximately temperature-
independent since the specimen is degenerate. At fields greater than about
10k-gauss we see the onset of typical impurity conduction. R reaches a
maximum value at around 20°k due to a competing conduction process in
the split-off donor levels. The depression of the donor levels below the
conduction band increases with the magnetic field B, as shown by the
increasing slope of the Hall curve with B at temperatures above the Hall
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maximum. The Hall mobility pu, for the same specimen measured at a
temperature below the Hall peak, is plotted in fig. 14 against (¢o/a )®. The
Bohr radius @, is the zero field value, while a is the radius normal to the
field H, calculated from the theory of Yafet ef al. (1956). Thus as the
magnetic field shrinks the donor electron’s orbit and hence lowers the
overlap of neighbouring donor states, the electron’s mobility decreases, as
is to be expected on the impurity conduction model.

§ 5. MreTHODS OF CALCULATING THE ELECTRICAL CONDUCTIVITY AT Low
CONCENTRATIONS

By low concentrations we mean here concentrations such that the electron
gas is not ‘metallic’, so that the conductivity tends to zero with the
temperature. In thisrange of concentration we have to do essentially with
a ‘one-body’ problem, the movement of a single electron under circum-
stances in which the interaction between electrons is not important (except
in so far as an occupied centre blocks the passage of an electron from another
centre). However, even so, the problem is complicated, and far from a
complete solution.

If we take as our first problem the movement of an electron in a disordered
lattice in which the ions are assumed to be at rest, we have to ask whether
the states are localized or unbounded in space. By disordered, we mean
either in random positions or acted on by a random field (such as that from
the charged minority centres) or both. By a ‘localized’ state we mean
that each characteristic solution of the Schrodinger equation for an electron
in this field decays exponentially to zero at sufficiently large distances from
some point in space. The problem of the conditions under which states are
localized or not is by no means solved. In §7 we reach the conclusion that
all states in a one-dimensional lattice may be localized. This may corres-
pond to the theorem that in one dimension any potential hole, however
small, leads to a bound state. In three dimensions the work of Anderson
(1958) was the first to show that, if the separation between impurity centres
is large enough, all states would be localized, but at some higher concentra-
tion one would go over to unbound statest. Anderson was concerned with
spin diffusion; Twose (1959) extended his work to impurity conduction,
finding as the criterion for bound states

Ne<10%a® . . . . . . . . (9

where a, is the hydrogen radius of the centres (#%«/m*e%). Due to the
approximations that it was necessary to make in this work, the result
may be too smallf.

Suppose now that (9) is not satisfied, so that an electron has a wave
function extending through the lattice. We shall now consider the

+ This concentration has nothing to do with the concentration for metallic
conduction discussed in part II.
I See Appendix for detailed discussion,
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problem of its mobility, under conditions when the interaction with other
electrons is not important (i.e. 1 — K <1, or for a ‘metallic’ electron gas).

We shall have to calculate the time of relaxation = and mean free path [.
The question arises as to whether the usual transport theory can be used,
developed as it is for the case where the scattering processes are weak
compared with those interactions between lattice atoms which broaden
the sharp electronic levels of the isolated atom into a band in the solid.
If 75 is an average relaxation time for a carrier scattered between states
of different energy and momentum in the band, a suitable criterion that
the band approach be a good one is (Joffe 1956, Herring 1959, Yamashita
and Kurosawa 1960)

Ts,":ﬁ JuFW,

otherwise the uncertainty in energy of the scattered carrier would exceed
the bandwidth. This leads to a lower limit on the carrier mobility u below
which the band model will not be an adequate starting point for a con-
ductivity calculation. For
iy o, i N ea?
m* ~ m*W 6k’
where m* is the effective mass of the carrier and a the lattice spacing.
Here we have used the Bloch tight-binding model to estimate m*W ; this
should be a valid approximation in those substances for which the band
approach is questionable, for example, the narrow 3d ‘band’ in transition
metal oxides. With a~ 43, the mobility must be larger than of order

wy =05 em?fvolt sec. i oA ow ow Y

Similarly, the carrier mean free path I~ 745 (where 7 is the mean velocity)
must be larger than the order of the lattice spacing :

T ~afifm*a,

(10)

Im mhts o mh? a (12)

m*a ™ am*W " 6
The numerical factors are of course approximate. It is possible to define
the wave vector k of a Bloch electron only to within 1/I, on a similar argu-
ment,

In metals, these conditions are usually easily satisfied. Electrons in
copper, for example, have a mean free path of order 140 lattice spacings
and mobilities 30 cm?/volt sec at room temperature. In a large number of
semiconductors however, the carrier mobility may be of order p;, or lower.
Taking the transition metal oxides as examples, in L;iNiy, O carriers in
the 3d (Ni) levels have mobilities ranging from 10-2 to 7 x 10~2 cm?/volt sec
from room temperature to 1000°k (Morin 1958). In titanium oxide
(TiO) Morin estimates the ‘d band’ mobility as 0-4 em?/volt sec at room
temperature. In the case of impurity conduction in germanium or silicon,
the condition (10) for the mobility becomes

5 &of 3 AW 14 N'—2/3 oy
MR g\ ow =10¥ N-28e¢m?/voltem., . . . (13)
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Here we have assumed that the majority impurities, of concentration N,
lie on a lattice of average spacing (3/4nN)43. Table 2 compares experi-
mental estimates of the mobility, pexp, with p; for n-type germanium.
Thus a treatment of impurity conduction which assumes that the impurity
electrons can be described by modified Bloch-type functions would appear
to break down as N decreases into the transition region.

Table 2
N (em~3) 1015 1018 1017 101
pr, (em?/volt sec) 104 2x 10% 5x 102 102
Hexp (cm2/volt sec) 5x1076 1-0 4-102 108

Methods based on the density matrix have been developed to handle the
conductivity of solids under these conditions; we have thought it worth
while to include in the next section a simplified treatment, limited to one
dimension, to show what these methods mean.

We turn now to the case when the states are localized. Then in general a
finite amount of energy is necessary to move an electron from one localized
state to the next. This can only come from phonons. We have thus to
consider the interaction with phonons.

Phonons can act in two ways, which can be distinguished in the language
of field theory as strong and weak interactions. In polar lattices it has
been known for a long time that ‘self-trapping’ is a possibility (Landau
1933, Mott and Gurney 1940, p. 86). The electron or positive carrier
polarises the lattice round it and can only move by carrying this polarization
withit. A jump from one site to another is thus a multiphonon transition.
Thisis believed to oceur in nickel oxide, the carrier being a positive vacancy
on a Ni®* ion,

Single phonon transitions are probably of predominating importance in
valence semiconductors, and these are discussed in§7. We start here with
the concept of a localized state; an electron is localized in a given centre
and, receiving energy from a phonon, it makes a transition by tunnel effect
to another centre where the energy is different. This is common to the
treatment of Twose and of Miller and Abrahams: the latter are interested
in the case where K is not small and so all centres are not.available for any
one moving electron or hole.

§ 6. THE PROPERTIES OF A ONE-DIMENSIONAL DISORDERED
LarTicE
In this section we investigate some of the properties of a one-dimensional
lattice, not with a view to applying them to the actual problem, but as an
illustration of some of the principles involved.
We shall first (in § 6.1) investigate the mobility of an electron in a one-
dimensional lattice, assuming that the wave functions are extended
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throughout the lattice. The purpose of the investigation is to give a
method appropriate to the case when the mean free path is comparable with
the electron’s wavelength, so that the usual transport theory based on
Boltzmann’s equation is not applicable. The calculation for three dimen-
sions has been given by Edwards (1958), but that in one dimension is so
much simpler that it is worth reproducing.

In§ 6.2 we shall examine the nature of the wave functions in a one-dimen-
sional disordered lattice. There have been many investigations of the
density of states in this case (for refs see Frisch and Lloyd 1960) but as far
as we know none of the nature of the states. We shall show that in many
cases (perhaps in all) the states are bound.

6.1. The Conductivity of Electrons in a One-dimensional Disordered
Lattice

Throughout this section we discuss the conductivity of carriers on a
one-dimensional ‘wire’ of length L, on which they have a non-periodic
potentialenergy V(x). Wehave to develop a transport theory appropriate
to this case. Before doing this we shall set down the usual transport
theory based on Boltzmann’s equation in a form appropriate to a one-
dimensional model.

In this case, where the state of the carrier can be defined by a wave
number k and a time of relaxation r can be defined, the current j is given by

j=ef‘mN(k)f(k)udk v om s w5 A

where N(k)dk is the number of states in the range & to k+dk, f(k) the
probability that a state k is occupied and u the velocity (u =dE/fidk). Ifa
field F is applied, then in a steady state

J=Ffo+ (df|dk)eFz[h,
where f, is the form of f in the absence of a field. Thus from (14) we obtain

. eF df
= — | N(k)— ¥ 5 b8 v 3 4
f=m (k}dk'wrdk (15)
We may write ur =1, where [ is the mean free path, and
N(k)=L,
so that
. eFL [ df
_TJIE-EdE. : wow @ os o (18)

This formula gives the total current in the wire. The current C' at any
point is obtained by dividing by L, so that
e2F

= df
G—Tfl—dE. s e w2 om e o O

If we wish to derive a mobility from these formulae, we may suppose a
Boltzmann distribution of electrons and set

J=const.exp (— E/kT),
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so that, from (16)

2t if B
i f N (k) dj; o dk=eF f N () flaf%T . dk,

from which we see that the mobility u is given by
p=elu[kT ~ eljm*u ~ er/m*,

where m* is the effective mass.

‘We shall now derive by a simplified method a formula due to Greenwood
(1958) for the current C, valid even when a mean free path cannot be defined.
We assume as before that the electron moves on a circular wire of length L
on which its potential energy V(x) is that of some random (non-periodic)
field. Then the Schrédinger equation of such an electron is

d% Qm
P
The solutions are subject to the boundary conditions

@)=+ L), @)=¢@+L),
so that they are single-valued on the circular wire; they are real and in
general non-degenerate. We denote the stationary wave functions and
energy states by o, £,. Asin Greenwood’s paper we imagine an electro-
motive force induced in the circuit by a magnetic field, threading the circuit
and increasing uniformly with the time. The perturbing term in a time-
dependent Hamiltonian is

— (E—-V}=0.

(fieF|mi) ¢ 8|0z,

where I is the induced electric field and ¢ the time. 1f then an electron is
initially in the state n, at a time ¢ after the perturbation is switched on,
the wave function WV is given by

Y= ‘!‘n exp { = ’*‘Ent/ﬁ) + z a’m;'(c) lﬁu’(x) exp ( B iEn't/ﬁ’)’

where
(B}3) ty(8) = (heF Jmi) D, J. " texp (wyyt) dt.
1]
Here
B [t 2 i
nn' T fﬂ 'l(’n'é':;‘pn
and

Wyp = (E-n' _ En)/ﬁ

Integration by parts and neglect of oscillating terms as in Greenwood’s
paper gives
Q= (‘?'F/m) Dfm' {1 —exp (iwnn’t)}fwsnn
The current due to an electron initially in state n is

3
- f (P axq" ¥ 2 ¥ dir= (F ) 3| D810 oy e
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If f, is the occupation number of each state, the resultant current may be
written

23R fo=Tw sin{(E,—E,)t/h}
D 2 T kL T T . . . 18
Zzl ¥ I En_E'n’ En—En' : )
If N(E) is the denmt.y of states, then for large values of the time { this

becomes
mzfe,l'J'le B

where the bar gives an average over values of n’ near to n. This formula
is valid in general; it will be noted that m is the electronic mass, not the
effective mass. Also to obtain the current C' at any point we must divide
by L.

Formula (19) is the basic expression for conductivity in one dimension.
With any such formula, our first task is to show that for small perturbing
energy V it leads to the formula given by the Boltzmann equation. This
has been done, in the general three-dimensional case, by Edwards (1958).
His proof uses advanced methods, and we shall now give a simple discussion
to show how the Boltzmann expression (17) arises.

For any form of V(2) we can define a wave number k such that 1/k is the
mean distance between zeros of ¢,. Then as before

N(E)=L/(dE|dE).
If the disordered field is small perturbation on a periodic field in which the
electron has an effective mass m*
N(E)=Lm*[h?k. ¢ w05 o8 o5 @ ow (20)
We shall now estimate | D, |* for this case. First we note that, while
the diagonal element D,, vanishes, the off-diagonal element D, is not

small even if #n and »’ differ only by unity, since the phase of ¢, may differ
from that of - by a large amount. Thus the integral

j b (B[ B2) e,

integrated over one mean free path [, a distance in which the wave functions
are coherent, will be of order

DRdE, ... . (19)

Ikl < « o & % « w« o« w (21)
the quantity L in the denominator comes from the normalizing factor of the
functions ¢,,. There are L/l mean free paths in the length in the wire,
and the signs of the contribution of each to D will be random ; thus, to
obtain the root mean square of D, (21) should be multiplied by (L/[l)'2, and

IDrm‘ l i (E/L)uzmk/m*' e e (22)
Substituting for | D,,,. |* and for {N(&)}? in eqn. (19) and dividing as before
by L to get the curent at any point we find
af
=— B,
¢ f 124
apart from numerical factors, Wluch is identical with (17).
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It is of interest to show directly that the mean free path as usually
defined can be equated (apart from a numerical constant) with the distance
in which any given phase relationship between two functions, ,, i, of
very nearly the same energy is lost. For one dimension we shall treat
the problem by considering a row of scattering centres at points
Z,, @y, . . . ,, cach reflecting a small proportion of any incident wave. It is
convenient to use at each of these centres the delta-function used by Lax
and Phillips (1958) so that at each centre i is continuous and ¢’ changes by

Ays, where
AY' [fp=n
and 7 is small.

Suppose that such a centre is situated at 2 = 0 and we ask for the amplitude
of the wave reflected from it. We set for an incident and reflected wave
(xr<0)

=exp (ikx) + A exp (—ikx)
and for a transmitted wave (2 > 0)
Y= Bexp (ikx).
The boundary conditions give
1+ A=8, 1-A=B+q
where g =n/k. Hence
A=1q.
Thus the amplitude reflected by the first N of such centres is

N
-};qf{‘exp (2ikzy).

An estimate of the number N of centres in one mean free path would be
obtained by equating this to unity.

Now consider the phase of a real function  and let us ask how much
it changes at a scattering centre. Let us write for <0

= A, cos (kx+ ;)
and for x>0

Y=A,c08 (kx+Ly).
The boundary conditions give

A cosly=A,co8l,, tan{,—tanl,=n/k=gq,
and hence, since ¢ is small
A= —{,=qcos {,cosl,.

Since {; and {, are nearly equal, this may be written

Al=1q(cos2(—1).

The second term (— 1) in the bracket obviously makes no contribution
to the rate at which two waves get out of phase with each other. The
total shift in the phase of two waves initially 3 out of phase with each other
will be the difference between 1q cos 2kz, and }gsin 2kx,, which will be of
order unity in one mean free path as defined above. Either method gives
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