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for the mean free path a quantity of order

[~b2g?[(Ab)?,
where b is the mean distance between centres, Ab the root mean square
fluctuation and ¢=n/k as before.

A particularly interesting application of these ideas is to the ‘tight
binding’ case, which of course is applicable to impurity-band conduction.
The overlap integral between two hydrogen-like centres, of Bohr radius «,
distance § apart, is

§=2W4(1+b/a)exp (—bfa).
Elementary considerations based on a deformation potential suggest that,
for a mean displacement Ab from positions in a periodic lattice, the mean
free path will be of order

Aj\? ._0j
b/(—j—), aj=L .

The mean free path I will be of order b when Aj ~ 4 and if b >« this will occur
when Ab~a, and thus for Abfb<1. It is possible—and the experimental
evidence reviewed in § 12 suggests that this is the case—that [ may become
less than b before bound states occur—that is to say, in the three-dimensional
case. If so, we shall want to know what happens to formula (22) in this
case. No detailed calculations have been given, but we should expect a
random fluctuation of the amplitude of the wave function on each centre by
exp (— Abfa). Since the normalization of the wave function will be deter-
mined by the larger amplitudes, typical terms in the integral for D,,,. will
be reduced by just this factor. We thus expect the mean free path { to be
of order I~bexp (—2Abja).

6.2. Bound States in the One-dimensional Model

The above analysis assumes that the wave functions extend through the
lattice (the states are not bound). Actually in one dimension this may
not be the case, but the analysis is of some interest on account of its
possible extension to three dimensions,

The simplest model for which this may be seen is that in which we take
for V a potential of Kronig-Penney type, as shown in fig. 15, namely a
series of potential barriers, a mean distance b apart, but such that the root
mean square of bis Ab. We supposed that Abis greater than or comparable
with the wave length of i in the range AB. We suppose that the two solu-
tions, which increase or decrease exponentially in the range BC, increase
or decrease by p or 1/p, and that p is large.

Consider an oscillating solution in the range AB of form ¢y = cos (kx + ).
Then for all phases {(—7<{<n), except those in a range of order 1/p,
i will increase in the range BC. If ¢ has increased in the range BC, then,
whatever the phase in AB, ¢ will in general increase again by the factor p
in DE.  Thus the solution with arbitrary phase in AB increases exponenti-
ally as z increases, and by the same argument will increase exponentially as
z diminishes. Such a solution is shown in fig. 15 and obviously has no
physical significance,
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As we have seen, for all phases { in AB except those in a range A{~1/p,
¢ increases in BC; and for these solutions { varies only by 1/p in CD, by
1/p*in EF and so on. Thus our typical solution, obtained by starting with
arbitrary energy and phase in an interval such as AB, will increase ex-
ponentially in both directions, the phase becoming more closely defined as
the distance from AB increases. 1t is of course possible to choose the phase
in AB so as to give an exponential solution which increases or decreases
over any relevant range of x.

The stationary solution may be found as follows. Take any gap in the
potential energy, for instance CD. For any energy W, one can set up
solutions from both sides which increase as one comes towards CD. In
general these solutions will not fit in the middle (fig. 16), but one can
choose values of the energy such that they do. These are the quantized
energy values of the problem.
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Wave funetion in a one-dimensional disordered lattice.
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Wave functions for a forbidden value of the energy.
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Our conclusion that the stationary solutions of the problem correspond
to bound states thus holds unless there is an accidental degeneracy.
Although for a one-dimensional space of length I the energy levels are
spaced very closely, such that

AW ~Wb|/L,

two localized wave functions distant in space na apart must have the
same energy to any accuracy of order W (1/p)™ to give a resonance, and this
will be unlikely.

We have assumed that kAb~ 1. If kAbis small and the energy is chosen
in the allowed band-width, it is clear that the average increase of i in
going through each barrier is not

p=exp [b{2m(H - E)/#*}?],
where H is the height of a barrier, but of order
exp [Ab{2m(H — E)/%%}].

For a periodic field (Ab=0) the states are of course not localized. We have
not been able to extend the proof to a more general case.

§ 7. Tue INTERACTION OF LOCALIZED CARRIERS WITH LATTICE
VIBRATIONS

In this section we shall be dealing throughout with a three-dimensional
lattice. Our problem is to discuss the movement of an electron from centre
to centre under conditions in which the states are localized, so that lattice
vibrations are essential in making the transitions possible. We have to
distinguish between strong coupling, appropriate to ionic lattices, and
weak coupling, appropriate to silicon and germanium. In the former case,
we have to show how the concept of a polaron arises.

In the strong coupling case we may consider the compound Li_ Ni,_,O.
Here a small fraction of Ni%* ions have been replaced by Lit ions, with the
formation of Ni%** ions to preserve electrical neutrality. ISach of these
can be regarded as a positive hole bound to a Ni?+ site. We discuss the
motion of this hole through the lattice of Ni*+ ions; the potential that
hole experiences is not perfectly periodic, due to the random arrangement
of Litions. This problem has been treated by Yamashita and Kurosawa
(1958, 1960) and Sewell (1958). Since the carrier-lattice coupling is
strong it cannot be treated as a perturbation, as is done in the usual theory
of conduction by Bloch electrons. In a more exact treatment of the lattice
coupling, we find that the hole bound to a given Ni** ion moves in the poten-
tial of that ion and of the polarization field produced by the displacement of
the surrounding ions from their equilibrium positions. Thermal vibrations
of the lattice ions are about the displaced positions. Thus the bound hole
can be represented by the wave function

¢i(r—R)IT X, {&R)}, . . . . . . (23

P.M.5. M
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which includes explicitly the interaction between lattice and hole. Here
R, is the position of the ith nickel ion, r the coordinate of the hole, @, a
phonon coordinate and »n, the number of phonons in the mode o. The
Hamiltonian of the hole can be written

H =+ Hint+ Hy,
where

H 1, =32 (P2 +wQ,0)

so that 5#°; describes the lattice vibrations and @, is the displacement of
the vibration o. The term

Hp=p?2m+ Z U(r—R;)+ AU(r),

describes the hole, with momentum p, moving in the field of the potential
energy U(r— R;) due to nickel ions at points R;. The sum is over all lattice
sitesj. AU describes the corrections to the periodic potential due to other
positive holes and Li+ ions. The lattice-hole interaction is of the form

Hint=2C,exp(izn)@,, . . . . . . (24)
where t_ is the wave vector of mode ¢, and €' includes the coupling constant.
A variational technique (see, for example, Frohlich 1954) is used to find
an eigenfunction in the form ¢, (r — R)X (@) to the Hamiltonian

HO=H O Hin+ H
where

HpO=p?2m -+ U(r—R)+ AU(r).
Then ¢, is required to be a solution of

(p*2m + U(r —R) + AU(r) + (X* | # int| X )}b(r — R) = (r—Ry).  (25)
The term (X*|3# | X) describes the polarization field of the surrounding

ions. We see that ¢, is predominantly just the wave function of a hole
localised in the potential U(r—R;). Similarly, X (Q%) must satisfy

{32(P2+ w2 Q)+ (r) | Hint [ ) )} X = €u Xy . . (26)
From (24),

(b* | # e di) =20, (b |exp (iz,r) | $) Q.= 2 4,9€,. . (27)
By a change of coordinates, namely

Q=Q0-C0 CO=40wp . . . . (28)
(26) becomes
IS(Pr+wz2Q%) X, 0=¢, X0,
Thus X, is a product of single mode oscillator functions,
X'ﬂr{u = H Xﬂu [Qu(i)]s

each having the displaced coordinate @ ®. The energy corresponding to
the state ¢,X,, is ¢, where

en=¢€+ €=+ 2(n,+ tWw,— 3 | 4922w, . -« (29)
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We can now treat the potential (2, — #1,%) due to the other lattice sites
as the perturbation which causes the hole to move. This is analogous to the
usual Bloch tight-binding approach. In the Bloch case, however, one
starts with a product of an atomic orbital (» — ;) and phonon functions
X, (@Q). X, being independent of the site B;. A hole (or electron) with wave
vector kis the described by

= {gexz.} (ikR;) s (r—R)} X, ()
and has energy, for example, for a simple cubic lattice with spacing «,

€= €9+ 2M  (coska).

Here

My={p(r—R)[H — A0 ¢; (r —R)dr}(X, | X,.), . (290)
where sites ¢ and § are nearest neighbours. We note that the bandwidth
12M 5 and the effective mass m* of the hole (im* =#2/(0%¢,/0k?) are indepen-
dent of temperature, since (X, [X,) in the Bloch scheme. In a similar
way, we can use the functions ¢; X, @ to describe a polaron with wave vector
k ’

b= 2 ¢ (r—R;) X, Pexp (ikR;),

€= €5+ 2M cos(ka),

and energy

where now
M =My (X,0]X,0).

The polaron bandwidth and effective mass are temperature dependent,
since the overlap (X ,9| X, @) of the phonon functions is not equal to unity
but is a function of the number n of phonons present. We may estimate
the magnitude of this overlap at a temperature 7' by taking an averaget

value:
(X?&U'J I X_Ji)) = { H <X'n., {Qu(i))l Xn“ (Qo{.‘f)) >}ave
= T1{2sinh (hw,/2kT)} 3 exp {— (n, + })lio [ETHX, (Q9)| X, (@%))

Tig

=g, voE fow s ow o ow oW & % owoa ¥ u (80)

where
S & }z (Oo(".)_ CUU‘J)2 wo (2ﬁo + 1 )/ﬁ’

and 7 is the mean number of phonons in mode o at temperature 7. The
polaron effective mass m* is therefore larger by a factor ¢5 than that
calculated from the Bloch tight-binding model, and increases with tem-
perature. This is because the moving hole must carry with it the polarisa-
tion of the surrounding lattice. Yamashita and Kurosawa (1958) have
quoted values of S at 7'=0 (appropriate to Li, Ni, _, O ranging from 15 for
the smallest value of @ to 4-5 for the larger. Thus the mobility of a hole
propagating as a wave may be very small.

T The averaging above can be performed by a method due to O’Rourke (1953).

M2
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The magnitude of S is a suitable criterion for giving meaning to the terms
‘weak’ or ‘strong’ eoupling. The carrier-lattice coupling is strong if
S3 1, and conversely when S < 1 the coupling is weak. Thisis a reasonable
definition, for from (28, 30).

S~ 3 {(AL/L)),

where Al _~C @/MY2 is the shift in the centre of oscillation of mode o,
I, =(i|/Mw ) is the mean amplitude of oscillation of mode o at 7'=0 and
the averaging is over all modes o. Thus, for example, the polaron energy
spectrum ¢, tends to that of an electron in the usual Bloch tight-binding
approximation as S0, as would be expected for small coupling.

In the following paragraphs we shall indicate how the hole mobility
is calculated when the states are localized, so that the conduction
mechanism is that of a hole jumping to neighbouring sites with the emission
or absorption of phonons. The probability per unit time that a hole jumps
from site ¢ to j, with a change in the phonon state from » to »’, is

Wins jur= @) | My, jue P8 (€~ €j),  + « . . (31)
where the energies ¢, are given by (29), and
M, jue= {p(r = R)X, 0| #n— 19 | $(r — R X, D).
To obtain the total transition rate W; of the hole from ¢ to j, W, ;,  must
be summed over final phonon states »” and averaged over n. Thus
W= (2n[f)| My |2 ﬂzn' Py (XK LO X2 8[Ae+ D (ng—mg ) hwp].  (32)

Here My is as in (29a), p,, is the probability that the state n is occupied at
temperature 7', and for the energy difference ¢, —¢;,- the value (29) has
been substituted, and

Ae=— ;= ($;|AU(r)|[ ;) — ($; | AU(r)| ¢;)-
The evaluation of the summation in W has been performed by several
authors (references are given by Yamashita and Kurosawa 1960). Wehave

W= ?&1—2 | My |2exp [—S(T)] J‘j ; exp [tAet/i+G(T,t)]dt, . (33)
where
G(T,t)=4> {(27,+ 1) cos w t +isin w,t} w, (CO—C PCOCH)2/E (34)
and S(T) is as derived earlier (30). We note that an expansion
exp [T, t)]=1+G+3G*+ ..., . . . . . (35)

and a term by term integration over ¢ gives essentially the contributions to
W;; due to zero, one, two . . . phonon transitions (since @ is proportional,
through C @, to the phonon-hole coupling constant squared). @(7, ) can
be seen to have a magnitude comparable to S for a range of ¢ values around
t=0. If¢is outside this range, G(7',¢) tends rapidly to zero. As we have
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seen, S can be as large as 15 for Li,Ni;_, O. Hence if S is large enough the
transitions in which phonons are emitted or absorbed will dominate the
zero phonon rate, and as discussed in § 5 the electron will be ‘ self-trapped’
at site i. Similarly, the higher terms in the expansion (35) (multiphonon
transitions) will dominate the term linear in @ (single phonon transitions).

The evaluation of W;; from (33), which has been treated in the previous
reference, is difficult and will not be discussed further here, since we are
primarily interested in impurity conduction in valance semiconductors.
We note that, assuming the Einstein relationship, a hole mobility p may be
calculated,

= (ea®/kT)W ;,

where « is the spacing of the ‘\T12+ ions (the mean jump distance of the holes).

We now discuss the case of weak coupling, appropriate to impurity
conduction in valence semiconductors. We consider the motion of a hole
bound to a donor atom (in n-type germanium with a small degree of com-
pensation, say) surrounded by randomly placed charged donor and acceptor
centres. By the same methods as in previous paragraphs we find that the
strength of the interaction of the hole with the lattice depends on S, which
can be estimated through the deformation potential constant ¥, (Bardeen
and Shockley 1950). The ‘displacement’ O © occurring in § is, from
(25-28),

Ga(i} ﬂfﬁ wa <¢(‘r T I)I exp {?’.'Ta(r =k RE)}I ¢(r = RI) >
41 Te
=i Byr M w21+ (Layr,)?} 3, o ow ow o oa 436)

assuming that ¢(r — R;) describes a donor electron in an s level, with effective
Bohr radius @,. 1f the phonons are in phase at site i, the phases at site j
will be random ; thus C ¥ can be neglected. The sum over ¢ can be re-
placed by an intergration, using a Debye spectrum (cf. Lax and Burstein
1955).
B [ e s E212 .
S= w_mifo Z|(;“U| widw= JmWftoz{k(-)D)a’ & & (37T

where o, = kO h

and @y is the Debye temperature. Using constants appropriate to n-type
germanium, B, =15ev, ;=44 4, Op=2362°k and M = 2-46 x 107> g (twice
the mass of the lattice atom since there are two atoms per unit cell), we
find S=0-10. At. finite temperatures,

"T 2dm~8(0){l+3(§)2} . (38)

when 7'/A is small. Here, if v is the velocity of sound in the crystal,
kA =1vfa, is the energy of a phonon with wavelength comparable to a,;
these phonons interact most effectively with the localized electrons. For
germanium, using v=>5-3 x 10°cmsec™, we find A~9°«. Hence S(T')
is small throughout the temperature region in which impurity conduction is
important (7' < 5°K) in germanium.,

S(T) = w_

nt
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The transition probability W;; can be calculated in a similar manner to
that for the strong coupling case. We study the motion of a single electron
in a random lattice of N+ 1 positive and N negative centres. This is
equivalent to n-type impurity conduction, in which all except one electron
are assumed to be stationary. The electron Hamiltonian is

‘#u=p2»{2m* a z”(r - Ry) = Zﬂ(r . Ri)s
where ’ '
v(r—R)=e?/x|r—R|

and R, is the coordinate of a negatively charged centre, R; that of a positive
one. The overlap between electron wave functions centred on adjacent
positive centres must be treated carefully, since the conductivity will vanish
in the absence of overlap. Let

w=u(r—R;)
be the wave function of an electron on an isolated donor, and
Cug|uyy =084 (#0)
be the overlap integral. Then (Lowdin 1956), the funtions
$ilr) = g A2 u(r) C w2 @ 3 o= (89)

form an orthogonal set. The sum is over all positive centres. Matrix
elements of 5% in terms of the ¢; are

(il #elds)=e8; Vi,
where € is the energy of an isolated donor electron, and

V:‘F?g A‘_k—!fz Vklo AU—”Z- e e . (40)

V. is the matrix element of the electrostatic potential of all centres except
the Ith positive one; so that

V2= (ug(r) | Zo(r—R,)— Y v(r—Ry)|u(r)). .. (41)
v i+l
Thus the ¢; describe electrons with energy e,
=€+ Vy

the energy ¢; arising from the potential of the surrounding randomly
placed charged centres. Since the overlap A;; is small,

Gilr) 2 auy(r) — Ay, (r).
Thus ¢;is mainly localized about the ith positive centre, and the off-diagonal
elements V; lead to transitions of the electron from i to j.

The electron-lattice interaction can now be treated in exactly the same
way as for the strong coupling case. We find that associated with the
state ¢,(r) is a set of lattice vibrations described by the oscillator functions
X,, (Q.9) ; m, is the number of phonons in mode 0. The displaced coordin-
ates. @ © are by (28)

Q9=Q,+C0,
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where C @ is given by (36) to the lowest order in the overlap. The expres-
sion for the transition probability W, is therefore of the same form as (33),
with V; replacing M ;

Wiy= 2| Vy Pexp{~ S(D)} f exp{G(T, 1) +i (e— e UR}dt, . (42)

where G(T,t) is given by (34) and
—€;=Vy— V> (u; |v(r— R) ;) — Ay (u; [ v(r — Rp)ug)

to the lowest order in the overlap and neglecting all but the nearest-
neighbour centre j. Since S(7') and therefore G(7',t) is small, the single
phonon contributions to W, dominate, and thus in (42) exp@ can be
replaced by 1+G.

Assuming a Debye spectrum of lattice vibrations and performing the
sum over modes ¢ as previously indicated for S(T},

W~ ﬁzl Vi |2f dtexp {i(e;— )t/ ﬁ,} f‘jwdwexp (twt)

L

T ]2
|(’ % I( ?IcT)
EE E—EJ
=8| Tl M7iv¥kOp)® [1+{(e;— €;)aq/20h%2 ]
x{ 2kT}..............(43)

We have used the value of € calculated in (36).

The two phonon processes, which involve an integration over {G(T,1)}?
give a contribution ~10~2 times the single phonon transition rate (cf.
eqn. 35).

§ 8. CarcuraTIONS OF IMPURITY CONDUCTION

The theory of impurity conduction has been studied by a number of
authors: Aigrain (1954), Baltensperger (1953), Conwell (1956), Erginsoy
(1950, 1952), Mott (1956), and Kasuya and Koide (1958). In this section
we shall outline the recent work of Miller and Abrahams (1960) and Twose
(1959) on conduction in the low concentration region in germanium and
silicon. The former authors use the following method.

(a) The probability per unit time W;; that an electron jumps to a neigh-
bouring vacant site is calculated, as a function of the separation between
the two sites. A phonon is emitted or absorbed to conserve energy, as
explained in the previous section.

(b) Equations for the rate of change of the probability that an electron
ocecupies a given site and the net current flow, in an electric field, are written
down and shown to be equivalent to Kirchoffs’ Laws for charge flow in a
three-dimensional random resistance network. Hach link in the network
corresponds to two impurity centres; the link impedance is inversely
proportional to W;, the transition rate between the centres.
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(¢) The network resistivity is computed, assuming that it arises from
non-intersect chains of impedances taken in parallel, each link in the chain
being chosen in a suitable manner.

In evaluating W in the previoussection we assumed a simple hydrogenic
form for the donor electron wave function,

w(r) = (may®) "2 exp (—7/ag).
The correct effective mass wave functions have been described in § 3. Using

these wave functions, and averaging over the possible directions in the
crystal of the neighbouring vacant site, these authors found

E 2
(Wigdave= Ti—** U2A {coth (A[2kT) + 1},

VA

where
U? = (2¢%/3k0®)? (ma/4aR) V2 R?/nexp (— 2R/a).
Here p, is the density and v the velocity of sound in the crystal, and E,
the deformation potential constant. The coth describes the number of
phonons present with energy |A |, where A is the difference between the
energies of the two centres. R is the distance between the two centres and
a=a*b*—1; a, b are the Bohr radii and »n the number of conduction
band minima (§3).
If f; is the probability that centre i is occupied by an electron,

"
This determines the equilibrium distribution. Asin §2,

fi=1/[1+exp{(g—0)/kT}],

where { is the Fermi energy. From considerations of detailed balancing,
we have

In the presence of a small electric field F in the z direction, a different
equilibrium distribution f; of electrons is formed, determined by a steady-
state condition of the form (44) but with f; replaced by f/, and the transition
probabilities which are altered by the field now obey

W exp {(e;—ex;F) [ kT = W exp {(¢— ex,vlf‘_)[kT}; . . (4b)
#; is here the » coordinate of the ith centre. f;/ can be written formally
(assuming local equilibrinm), in terms of a parameter £, as
£ =10 +exp {(B;— /RT}].
Substituting this form for ;' in the steady state condition, using the recipro-
cal relation (45) and taking terms linear in ¥ only, we find

(L/RT) 3 {(e— ex) — (¢ — ex; )} Wiy i (1—£) =O0.
J

This is of the form of Kirchhoffs’ first law for a network, with the term { }
corresponding to a potential drop across the ‘link’ #j, and the link im-

pedance,
Ziy e { Wy fi (L =f)} .
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The problem is thus reduced to determining the impedance of an equivalent
resistance network.

The solution of the network problem, in terms of chains of conducting
elements, the chains being taken in parallel, is described in detail by
Miller and Abrahams (1960). The final result for the resistivity can be
written

p(T)=C(T)(rp/a){1 +18-2(a[rp)¥?} exp {1:09(rp/a)*? + (e — €e) [k T} (46)

where
O(T) = 4-55 x 102 1o(T') (/)2 inpy v5Fidad |y
and
rp={(3/4nNp)'3, o= —1+a?/b

Here a and b are the radii of the effective mass wave functions, » is the
number of conduction band minima, p, the density and » the velocity of
sound in the crystal. In the discussion above, the donor electron was
assumed to occupy the ground state. [, and e contain the effects of
excited states, which are shown to be unimportant (le=1, ¢,=1) except
in the case of antimony doped germanium (cf. §3). Thus p(7) is of the
form
P(T) =Po (N‘maj) exp (ESHL'T).

In this calculation the whole of the compensation dependence is included
in the activation energy e, which is given by

ea=0—1'35¢,, €4=_(ek)(4mN,[3)15.

The determination of the Fermi energy { (on the assumption that the
energy difference ¢;—¢; between sites is due to nearest neighbour charged
minority sites only) has been described in § 2.  If the compensation is small
(K 50-2)

€g=¢€p— 135 €, = (e%[x)(47 N p/3)"3 (1 — 1-35K113),

For higher values of K, values of ¢, are plotted in fig. 8. Although, as we
have seen in § 4, the magnitude of e, agrees well with experimental values,
the temperature dependence of p(7') is incorrect since it predicts that all
curves plotting p against 1/7" for the same concentration of majority
impurity eentres extrapolate to the same point at 7'= co.

Calculated: values of p from (46) for antimony-doped germanium are
compared with measured values in table 3. The agreement is satisfactory,
considering that errors of at least 309, are possible from uncertainties in
the effective Bohr radii and the deformation potential constant Z,.

Table 3. Resistivity p of germanium doped with antimony (Q em x 10°)

ND x 10715 ¢m—3 1-6 2-3 30 52
p (25 °K) 58x10% | 3-2x102 50 56
p (calculated) 1-1x10* | 5-2x10% 89 78
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Twose (1959) has also calculated the impurity resistivity in the low
concentration region by a somewhat different method. A density matrix
approach was used, similar to that of Luttinger and Kohn (1958), using as a
representation the product ¢,(r) X, (Q9) of electron and oscillator functions,
described earlier (§7). This leads to an average electron drift velocity (v)
which is a sum of ‘two centre’ contributions v;. Each v;; depends on the
charge amplitudes of the electron on sites ¢ and j, and hence (v) should
be found from a self-consistent treatment of charge diffusion onto and
away from a given centre. Instead of this self-consistent approach, the
electron was assumed to oceupy sites with a Boltzmann probability, leading
to a two centre conductivity for N, electrons of the form

oj=Ne F(By;) f (T, €;).
This must then be averaged in suitable way over the random separations
R,; of the impurity centres. Here
F(Ry) ={3ne*B,*1| May? (kOp)*}| (|| ;) %

where M is the mass of the atom, ®p, the Debye temperature, and ( ) is the
matrix element of the velocity between the localized electron wave functions
on centres ¢ and j. The temperature and energy dependence of o is con-
tained in the equation

_ (e;—€;)/2kA 1 €—€;)
Ve, 0= (i pha T oot S
exp (—g/kT) Y exp(—g/kT). . . . . . (47)

€; is here the energy of an electron on site i, kA=#v/u, is the energy of a
phonon of wave length comparable to the Bohr radius ¢, of the localized
electron, where v is the velocity of sound. Since ¢— ¢; is independent of
R;; except for very small separations, the dependence of o;; on separation
is almost entirely contained in the term |( ¢, |v|&;)|%

In the case of small compensation, f(7', E) can be approximated by use
of the trapping model (§2). The electron junips between the ‘free’ sites,
where €;~ ¢;, and the Boltzmann term in (47)

Neexp (—/kT)| 3 exp (— ¢;[kT),
leads to the number », of free carriers,
M= (N yin N o) 2 €Xp (— €4/ 2kT'),
where € is the energy difference between free and trap sites. Then
F(T, €)=n[kA.

min

The conductivity becomes
o= ?’Lf e .lLf,

py={3me B Mayv(k©p)*}|($: | v | $; ).
Thus the mohility is independent of temperature.

where
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Assuming hydrogen-like wave functions for the localized electrons in
evaluating the velocity matrix element, it was found that

el B2

1= i (kOp)

where v=R/a,. When averaging o, over the random centre distribution,
care must be taken not to over emphasize the contribution from pairs of
very close centres, since the electron will tend to be trapped on such a pair
rather than move on through the lattice. Onerough estimate of the average
conductivity & is obtained by assuming a constant impurity separation.
Figure 17 shows that the observed resistivity is best fitted by 1/ if

s V(v )? exp (—2v) (N Yi2exp (— e/2kT") (48)

maj ml n

Fig. 17

resistivity (ohm-cm)

L 1 1 1 1 L L ]

0] 12 14 16 8 20 22 24
I /(N"a,)

The resistivity for n-type germanium caleulated from (48) assuming a constant
average centre separation v of (&) N~1/3, (b) 0-7 N~/3 and (c) 0-62 N—1/3
The crosses are experimental points (Frltzsehe 1958).

v~ 0-7/N13q,, implying that conductivity takes place preferentially along
chains of impurities whose spacing is less than average. In evaluating &
in fig. 17 we have set }¢; for €5, the observed activation energy.

Another averaging procedure, suggested by Pippard, is the following.
Suppose that a pair of centres, separated by a distance R and with ¢ two
centre ’ conductivity o(R), can be replaced by a sphere of radius R and a
uniform conductivity o(R). Let this sphere be imbedded in a medium
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with the average conductivity & of the disordered lattice as a whole. When
a field # is applied, the field inside the sphere becomes
F(R)=3GF {26+ o(R)}.

The current density inside the sphere is F'(R)o(R). If the probability of
finding a sphere with radius between R and R+dR is P(R)dR, then the
average current density jis given by an integral equation

- 0 3Go(R)

=6k = ’(R) ————=-FdR.

J=i L P(R) 5 e Fd

For a random impurity distribution the probability function is
P(R)=47N . B*exp (—4m N, E3/3).

The equation was solved numerically.

Calculated values of the resistivity p are compared with measured
values pexp for antimony doped germanium (Fritzsche 1958), at a tempera-
ture of 2:5°K, in table 4. The observed activation energy e, has been used
to estimate e, through the relation e;=%4et given by the trapping model

(§2).

Table 4

Npem—3 K p (2. em) pexp(f2 . cm)
9-3 x 1014 0-012 6:5 x 1011 7-1x 101
1-6 x 1015 0-014 52 x10°? 6-3 % 10°
2:3 x 1015 0-010 7-4 % 108 3:2x108
301015 0-010 1-8x 108 71 %107
5-2x 1015 0-010 2:3x107 56 % 108
8:5x 1015 0-014 1-4 % 108 1-4 % 108
1-3 % 1016 0-08 6-6 % 104 2:2 % 103

Both the above calculations are based essentially on choosing an average
transition rate W; of the electron between two centres. The averaging
procedure is critical, since W increases exponentially with decreasing
centre separation. As mentioned earlier, the large transition rate between
two centres spaced closer than the average does not imply there is a
correspondingly large contribution to the average conductivity, since
the electron may have difficulty in proceeding from j to more distant
centres. The charge on j will then build up by an amount which depends
on the charge distribution on surrounding centres and on the applied
electric field, until the forward transition rate ¢ —j is balanced by the back
transition rate j— 1.

Another point is that if f; is the probability that centre ¢ is oceupied, the
probability that the nearest neighbour j is unoccupied will be larger than
(1—f;), due to Coulomb repulsion between the electrons. Miller (private
communication) points out that this neglect of correlations between
electrons may be the cause of the incorrect compensation dependence of his
results. To conclude, a rigorous calculation of the conductivity will
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involve setting up a transport equation in which the charge distribution in
the presence of an electric field is treated self-consistently, and with carrier—
carrier correlation taken into account. A part of this programme has been
completed by one of us (W.D.T.) in that the correct transport equation has
been derived in the approximation that correlations are neglected; as
might be expected the equation takes the form of a generalized Einstein
relationship. The inclusion of the important self-consistency and correla-
tion effects is being investigated.

Part II. TaHE TrRANSITION TO A METALLIC ForM oF CONDUCTIVITY

§ 9. INTRODUCTION

It is a property of silicon, germanium and of many other extrinsic
semiconductors that, as the concentration N of impurities increases, the
activation energy e, for conduction in the temperature range for impurity
conduction decreases and, at a critical value N, vanishes. For values of
N greater than IV the resistivity and Hall constant are roughly independent
of temperature down to the lowest temperatures for which measurements
have been made.

In a number of papers one of us (Mott 1949, 1952, 1956, 1957, 1961)
has given arguments to suggest that a sharp transition from a metallic to
a non-metallic state must occur for a crystalline array of atoms as the
distance between them is increased. In the paper published in 1956 it was
suggested that the transition described in this paper for a random array of
centres is of this type, the sharpness being lost because of the disordered
arrangement. We consider that thisis the correct explanation. However,
another explanation is certainly possible, namely that the transition is one
due essentially to the disordered lattice and occurs at the concentration at
which the states for a single carrier become localized. We shall have to
examine the evidence that this is not so at any rate for low K.

We shall not repeat the arguments summarized by Mott (1961) that thig
transition occurs for a crystalline array, remarking only that, while an
exact calculation of the transition concentration has not proved possible,
it should occur at a constant value of about 3 of the constant

A= (3/477Nmaj)us/al] = rs/ao’

where a, is the Bohr radius of the centre.

We shall now summarise what we think happens in the disordered
lattice in the two limiting cases, X <1 and 1— K <1, where K is degree of
compensation.

(¢) Low compensation, K<1. In the region of low conecentration,
(N|N_,<1), the carriers are holes, bound to minority centres by a Coulomb
field e?/kr®. As N increases, therefore, the holes cannot become free,
because a Coulomb field always leads to bound states. The transition
concentration NV, should increase slightly with compensation K, because



152 N. F. Mott and W. D. Twose on the

some of the majority centres are empty and so the amount of overlap
between localized centres is decreased (see below).

(b) High compensation, 1— K<1. Here we have at present little experi-
mental evidence. The theoretical predictions are the following. As
the concentration N of majority carriersisincreased, a value will be reached
for which the electrons are no longer in bound states (§2). Thus n electrons
per unit volume (where n= (1 — K)N) move in the random field due to fixed
positive and negative charges; this random field is thus not strong enough
to give bound states, There is thus the possibility of a ‘ erystallization’ of
electrons ag predicted by Wigner (1938), This is discussed by Mott (1961).
We are convinced that, whether or not the electrons behave like a classical
liquid or a condensed electron gas, their conductivity will be high and that
in this case any transition which may be observed will be due to a transition
from bound to free states for a single electron.

The remainder of this paper will deal with the case of small or moderate
value of K, for which most of the experimental work has been done.

§ 10. DEPENDENCE OF THE TRANSITION CONCENTRATION OR DEGREE OF
CoMPENSATION

1f the transition were due essentially to the properties of the random
lattice, we should expect it to depend very sensitively on K, since K
determines the random field. If on the other hand the transition is due
simply to overlap between occupied centres, we should expect a variation of
A according to the formula

A=const (1 — K)2,

Some experimental support for this compensation-dependence of A is given
by measurements of the acceptor separation rs at which the activation
energy €; disappears in p-type gallium-doped germanium (Fritzsche and
Cuevas 1960 b). The results are summarized in table 5, and are shown in
fig. 18.

Table 5
re (3) 127 110 98
N 0-04 0-4 0-4< K <07

The critical separation decreases as K increases. We also note that the
ratio of the separations for K equal to 0-04 and 0-4 is 1-18, while that
calculated from (48) is 1-12.

The experimental value of A is not clear, since the gallium wave functions
are not accurately known. A variational calculation shows that at large
distances from the impurity the wave function is a sum of two exponentials.
One has a Bohr radius a,=35+74, the other ¢,=89+24 (Miller and
Abrahams 1960). Then for K =0-04,

A=7sla; =36, A=rsfa,=1-4,
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Since the relative amplitudes of the two exponentials are not known, we
can only deduce that 1-4<A<3-6. However, A is probably closer to 36
than 1-4. One reason for this is that in the alkali metals (where the
conductivity is of course ‘metallic’) the inter-electron separation in units
of the Bohr radius range from 3-22 (lithium) to 557 (caesium).

Fig. 18
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Activation energy e; of impurity conduction of transmutation-doped p-type
germanium as a function of average impurity separation for K =0-4
and K =0-04 (Fritzsche and Cuevas 1960 b).

§ 11. CONCENTRATION AT WHICH THE TRANSITION OCCURS
In fig. 19 we show the resistivity at 2-5°k of weakly compensated samples
of n- and p-type silicon and germanium. This is plotted against A, in
other words (3/4nN)¥3/a, or rs/a,, where rs is the mean distance between
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impurities. The Bohr radius @, used here is obtained by assuming the
hydrogen atom model for an impurity centre, and adjusting a, to fit the
observed ionization energy of the impurity centre. The activation energy
ez drops rapidly in the transition region (shown in fig. 19 between the
vertical dotted lines) and oceurs for all substances roughly when A3,
or Nldg,~0-2,

Roughly the same value is deduced by Dewald (1960) from the measure-
ments of Thomas (1959) for zine oxide.

Fig. 19
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Variation of resistivity with average impurity separation for weakly compen-
sated specimens of germanium and silicon. The fransition region is
enclosed by the dotted lines. The activation energy e; for impurity
conduction vanishes at the small separation end of the transition region.

Melrvine (1960), by examining a number of semiconductors, deduces an
empirical formula which relates N, to the static dielectric constant e.
However, for semiconductors that are not elements, it is not clear what
value of the dielectric constant one should take, the high frequency value,
the static value or some mean between them; this point needs further
investigation before an assessment of the meaning of Mclrvine’s formula
can be given.

What is happening in the transition region is not clear. We have seen
(fig. 2) that the ratio of the Hall constant to 1/N .. drops in this region.
This suggests that the material is inhomogeneous, due to fluctuations in the
density of centres, and that there are small metallic regions in series with
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non-metallic ones, whose relative volumes depend on temperature. If
the Hall effect in the non-metallic regions is small or non-existent, one
would expect, as the temperature is lowered and the volume of the non-
metallic regions increases, a drop in the observed Hall constant. Thisisa
possible explanation of the effect.

It should however be pointed out that Read and Katz (1960) have ob-
served a Hall effect for ionic conduction in KCl; the hopping process of a
point defect from one centre to another is not dissimilar to that described
here.

§ 12. REsistrviTy IN THE REGION 0F METALLIC CONDUCTION

The conductivity of a metal may be written
o=Nel/m*», . . . . . . . . (49)

where [, » are the mean free path and velocity at the surface of the Fermi
distribution. Moreover, for a degenerate electron gas,

m*v[h = 2m(3N [8m)Li3,
Also it is convenient to write

=g/,

so that p is the number of interatomic distances on a mean free path. Then
(49) becomes

o= N e h(3}m)'R,
or in ohm~*em~1, if NV is in particles per cubic angstrom,

o=Tx103p N1,

For the specimens with highest conductivity shown in fig. 4, N is 10-¢
and the observed conductivity is 1'5 x 102, so p is about 2. This is shown
also in the following table (Fritzsche 1960, private communication) for
n-type germanium, in which v is deduced from (50) and hence the mean free
path from the observed resistivity p. It is of course assumed that each
centre contributes a free electron, so N=N,,. The last column shows the
mean distance between centres. The table also shows that [ tends to
remain constant as N decreases, so p apparently drops below unity.

Table 6.
p(obs, Q.em)| Np (em™3) | v (em/secx 1078) | I (cm x 108) 0-62 N—1/3
(em x 10%)
002 2x 1017 6 62 106
0-0095 6 x 1017 8-6 63 73
0-0067 1018 10 64 62
0-0033 3x 108 15 63 43
0-00157 101 22 59 29
0-001 2x101® 28 58 23
0-00066 4% 1010 35 55 18

P.M.S8, N



156 N. F. Mott and W. D. Twose on the

We should expect [ to be given by a formula of the form
1/£=Nj1(9)(1—0039)21731119018, )]
where I(6) is the differential cross section for scattering by each centre,

Fig. 20
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An impurity band for concentration near the transition point.

That, in the metallic region, the integral is of the order of N-23 is perhaps
not unexpected for a totally disordered lattice. The constancy of I,
however, means that the integral is proportional to 1/¥, and this is un-
expected. A crude application of Born’s approximation would suggest
that the scattering potential energy function of each centre was of order
e?/kR (4w R8[3=N) extending over a volume R3, so that
1 2m : 2
o 7E | %P {tk—k'.r} x.;d/r

1(0)= [
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the integral being over a sphere of radius R and |k —k’|=2ksin 0. Since
kR is independent of N this must be equal to a numerical factor multiplied
by R%/a,?, where a,is the hydrogen radius /i%c/m*e2. Thus I should vary as
R jie. as N3,

The observed constancy may perhaps be due to the non-Coulomb part of
the field near the impurity atom, the relative importance of which will
increase with V.

A point about the conductivity near the transition point may be pointed
out. The Hall constant plotted against 1/7" shows the behaviour sketched
in fig. 20 (cf. also fig. 4). This suggests that there is an ‘impurity band’,
formed from the impurity wave-functions, and not yet overlapping the
conduction band. If the impurity wave functions are hydrogen-like, it
is easy to estimate its width. This is, using the approximation of tight
binding (Mott and Jones 1936, Chap. I1I, Mott 1957)

B=6W,(1+A")exp(—AX")
where W, is the ionization energy of a centre. The assumption is made

that the centres are arranged in a simple cubic lattice of side b, and X’
isthusb/a,. Valuesoftheratioof Bto W,are

A BIW,
2 30
3 1-2
4 0:54
5 0-24

Only values less than unity have any meaning in this approximation. The
experimental value of A at the transition point is ¢. 3, and if we set

N =(4m[3)1PA=1/Na,,
a value of about 5 is appropriate for ’. Near the transition concentration,

then this rough estimate suggests, as do the experiments, that the impurity
band does not yet overlap the conduction band.
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APPENDIX

Tuee ExistexcE oF Bounp STAaTES IN THREE DIMENSIONS

We give here an outline of an extension due to one of us (W.D.T.) of the
work of Anderson (1958) showing that the single electron states are bound
in an impurity lattice when the average impurity separation greater than a
critical value ; the degree of compensation is assumed close to unity.
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We study the wave function of an electron in a lattice of positive and
negative fixed point charges which are distributed at random in a dielectric
medium. There is a density N of positive charges, and the total number of
positive charges exceeds the number of negative charges by one. Let
#,(r) be the wave function of the electron localised on the ith positive site.
For simplicity, we here assume that ¢; is a hydrogen-like s function of the
form

bi(r) = (mag®) 2 exp (—7/ay), o o wmo s om (A1)
and that ¢;, ¢; are orthogonal; we thus neglect the small overlap (¢s B5)-
(A more exact treatment can be given in terms of the orthogonalized
¢, of §7, (eqn. 39). The wave function of the electron at time ¢ can be
written
blt)= 3 a(0) i(r)-
We assume the electron Is initially localized on atom i, so that ¢;(0)=1
and a,(0) =0, and study the variation of a;(f) with ¢ using the Schrodinger
equation
ifi 0a;[0t = Byay+ D Vi 0. v % e s o» (D)
Here E; is the energy of the electron on site ¢ in the coulomb potential
of the surrounding positive and negative charges. V;is the matrix element
of the potential of all charged centres except the jth positive one:
o o2
Vi= <("6‘| Ev: xlr—R,| _t%‘“l'— R;| # > '
R,, R, are the positions of the positive and negative centres respectively.
It is convenient to study the Laplace transform of (A 2), defining

fils)=s J. : exp (—st) a; (t) dt.

Thus s is an inverse time, and
lim (1) =1lim fi(s).

t+oo 8->{)

Then, it follows from the work of Anderson (1958) that the behaviour of
at) at large times depends on the convergence of an infinite perturbation

series
Vc(s) ooy % Vik (]Jd'k){ Vki+ Z Vkm(lldm) me}’ S (A 3)

where
d,=1ihs - Ey,. T 0. ¥ 3

For, if t is large, Anderson shows that

a(t) ~ exp (—t/r) exp{ —i(H;— A)t/h},
where
lim V (s)= — A+ irih.
s->04
The imaginary part of V, corresponds to a decay time, and the real part to
an energy shift. Hence, if the Im (7 (s)) vanishes as Re (s) > 0%, the ampli-
tude of the electron on site i remains finite as ¢ > o, i.e. the electron is bound
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to that site and has energy E;— A,. If the imaginary part does not vanish,
then after a sufficiently long time the electron will have diffused completely
away from its initial position; bound states are in general not possible at
any centre <.
V,(s) should be evaluated when
Im (s)=(&,— A))/h.
Thus in (A 6)
dy=ifis+ (B;— A;— B;),

where sisreal. In the following we neglect the small energy correction A,
and write

Eij :‘Ei —'E?.
The quantities V;; and E; entering V', can be written
o2
V= <¢£|vﬁ(r}— klr—R|| ?S"> o« ow o (A8

By =vy; (By) — vy (RB)),

o) =3 |r—R,| = 3 etfe|r—Ry]|

v k#1,j

is the Coulomb potential at » of all the randomly placed positive and
negative centres except the ith and jth positive ones.

The dominant contributions to ¥, come from small values of E; and
large values of V;;. From (A1),

Vij~exp(—RByla,),

where E;; is the separation of i and j; thus V; is largest when 7 and j
are near-neighbour centres. In general, for two near neighbours, Z;; is
small when there are no close centres to ¢ andj. Then, it is a fair approxi-
mation to neglect v;;(r) in (A 5), taking

Vi~ (;6,- - ﬁl@-) = - %(% + 1) exp (By;/aq).

Also we note that in this approximation V;; and B, can be treated in-
dependently, since V;; depends on centres i and j only, while E; depends on
the potential of all other centres.

Let

where

V.= —A(s) +itis X(s), Boa o e e (AG)
where A, X and s are real. Then, in the limit s 0+,
XZ%(VEk/Eik){Vki/Ek‘i+zVicm Voil By Byt .0} o (A7)

We treat the V;; and E; as independent random variables, obtain a pro-
bability distribution for X and show that the probability that X diverges to
infinity is zero if the density N of charged centres is less than a critical
value N, Then (cf. A6),

limIm V (s)=0,

50
and the electron remains localized about site 7.
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The steps are the following:
(i) Anderson shows that the first term in (A 7),
X®= 2 I Vi |2/Eﬂa2,
E

is convergent in the above sense if V;(R;) falls off faster than 1/R,3+¢
(e<0). This condition is obviously satisfied for our case.

(ii)) We must now show that the complete series V is convergent when
N<N, Let
X=E(SL): S;,:z(iTL)
L

where S is the sum of all terms of length L ; the ‘length’ is the number of
times V/E appears in the term. The sign of both §, and 7', is random,
because of the random sign of the energy denominators E;;. The number
of terms of length L, with value 7', in the range 7', -7, +dT, is found
to be of the form

(1) dT = [f(N)IP LT ) dT T 2,

where f(IV) increases with N. If L(7') increases, or decreases no more
rapidly than 7-'2, then the probability distribution of S is of the form
P(S)dS,~[f(N)IEL(S ) dS,[S
for values of the sum S, greater than or of order the most probable value,
Since we are interested only in the convergence of X, we consider the case in
which L is large. Then N, is determined by
[f(VN)IEL(1)=1. g o3 w v o @ (8)

For, if N<N,, f(N)<f(N,) and the probability of obtaining §,=1 is
smaller by a factor of order e=2. The number of §, in<X increases as L,
and the probability is 1 —e—F that each term is less than unity. Hence X
must almost always converge when N < N .

The detailed derivation of n(7") will not be given here. It can be
obtained by the methods in Anderson’s paper, with the following assump-
tions.

. (@) The probability distribution of the energy differences E;; is of the
orm

=0 if IE;}I>%W, . - - . - . (Ag)
() Vij=Voexp(—Rylag), Vo=e*|xa,. . - . . (A10)
The number of terms V; with values in the range V' — V' +dV is obtained by
assuming that the number of positive sites j at distance I from ¢ is
Then we obtain

N(T)T = [16”£:;V] (1+1n (T/4L) - }In 2V, W)PT|T?;  (A11)
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W can be determined as follows. We write
Eﬁ i %: Zk

where

3/ 1 1
7Z =+i e
» _k(Rm R'),

J
and k is any one of the positive or negative centres. Treating Z,, as a step
in a random walk problem, the probability distribution of £ is
(Chandrasekhar 1943)

P(e)= LN & exp (ilr)exp | —4N | sin? ey L . 1 d3R.. |dr
27 ) 2k Rj Rjk ik
. (A12)

As discussed earlier, we are interested only in small values of E, when
R, or E;;,> R;. Hence we can approximate (A 16) using

1/B;;—1/R;;= R;; cos 0/ R®
where R is the mean distance from ¢ and j to %, and @ is the angle between
R and R. Then

P(B)= :TI;J'exp (iBr) exp { — 4N (weRy[2c)2 | = [#2)dr,

and

P(0) =2T'(5/3)rc[{m*(4N )3 2| R;;}. o o o s we e (AE3)
The appropriate value of W to use in the rectangular distribution (A 13) is
therefore

W =1/P(0) = 8-5¢*kayn,
where 47Na,®/3 = 1/n?, and » is the average separation in units of the Bohr
radius. We havereplaced E;in (A 17) by its average value,
Hence the critical value of n is determined from (A 12) and (A 15) by
(546 —Inn)/n2 < 0-32,
and thus on evaluation by n < n, where
n,=36.

Our model corresponds to n-type germanium or silicon at the absolute
zero of temperature, with degree of compensation K ~1. The variation of
n, (the separation of the donor impurities) with K is given by

{5-46 —In (n/KY3)} n 2 K13 =0-32,
since the energy spread W is determined by the number of acceptor sites,
while the jump distance of the electron depends on the separation of donor
sites. Thus n, increases as K decreases from unity.

A weakness of the above treatment is that V;; and Ej; are treated com-
pletely independently, whereas from(A 14) and (A 16, 17) it can be seen
that both are functions of B;;. Thus we should carry through the treatment
using the single quantity V/E as the random variable. Corrections to the
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above treatment are being investigated. We believe that the value n,=3-6
is an upper limit to the critical separation. Tor, we have allowed a finite
probability for £;; to have the value zero for all separations ;. However,
for two very close centres 7 and j there should be a term 2V; in the energy
difference E;; which prevents E; taking a zero value, and therefore the
series X (A7) should converge at smaller values of the average separations
between centres.
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