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Abstract--Algorithms are identified which are best suited for an automatic fingerprint recognition system 
operating on low quality images. New preprocessing algorithms for noise removal and binarization are 
described. Three approaches to classification are investigated: a correlation classifier, and two feature-based 
classification schemes. The best results on a database of 80 fingerprints are obtained with spatial-frequency 
features. Three classifiers (neural net, linear classifier and nearest neighbour) using these features are 
successful in identifying an independent test set. Details of the results are shown. In conclusion suggestions 
are made concerning the most suitable algorithms in each of the processing steps. 

Fingerprint recognition Image recognition Access control Low quality image recognition 

1. I N T R O D U C T I O N  

Fingerprint comparison is a fundamental method of 
identifying a person. The reason for this is well known. 
The human fingerprint is one of the most reliable ways 
to identify a person, as no two fingerprints from dif- 
ferent persons are the same. 

Through the years the police were known as the 
major user of fingerprints in their quest to identify 
criminals. Due to the large volume of fingerprints and 
recent advances in computer technology, there has 
been increasing interest in automatic classification of 
fingerprints. An example of an application which is 
ideally suited for automatic fingerprint recognition is 
access control. 

Various approaches for preprocessing and finger- 
print recognition have been investigated, e.g. prepro- 
cessing for fingerprint classification was implemented 
by Ch and Rao; tl) Moayer and Fu t2) developed a syn- 
tactic tree system approach to represent and classify 
fingerprint images and a method for ridge detection in 
a fingerprint was investigated by Verma et al. (3) 

One major problem in the automatic recognition of 
fingerprints is the quality of the original print. If the 
quality is not of an acceptable standard, automatic 
fingerprint identification becomes extremely difficult. 
The reason for this is that normal methods of finger- 
print recognition use the small unique features (known 
as minutiae) in the fingerprint pattern to identify the 
fingerprint. ~41 However, it is extremely difficult to ex- 
tract these minutiae from the fingerprint image if the 
quality of the print is not perfect. Problems also exist 
in extracting these minutiae from the fingers of elderly 
people as well as manual labourers. The problem with 
elderly people's prints is that the prominence of the 
ridges diminishes, with the result that the fingerprint 
pattern is not very clear. Manual workers have the 
problem that the skin on the hands is subject to severe 
punishment, with the result that false minutiae are 

created by cuts in the skin and in some cases the ridges 
are worn away. 

We developed preprocessing algorithms and classifi- 
cation schemes to implement in an automatic fingerprint 
system using low quality images. We investigated a 
system for low quality images as we feel that a reliable 
recognition system must be applicable throughout the 
population spectrum. Due to the above-mentioned 
problems that exist with the fingerprint images of el- 
derly people and manual workers and the fact that good 
quality prints are difficult to obtain, minutiae are not 
a suitable basis for our system. Other classification 
methods have to be employed. These include recog- 
nition using a directional image of the fingerprint, the 
Fourier transform of the fingerprint and a direct com- 
parison technique known as correlation. Preprocessing 
algorithms ideally suited for low quality images were 
developed, These algorithms improve the quality of 
the image so that better classification performance can 
be obtained. The system has one class per person and 
is thus suitable for applications where few people have 
to be recognized. 

In the next section (Section 2) we describe two data 
generation methods that can be used to provide the 
input to our recognition system. This is followed in 
Section 3 by preprocessing algorithms ideally suited 
for images obtained from the optical data generation 
method as described in Section 2. In Sections 4-6 we 
describe the various approaches that were investigated 
for implementation in our recognition system. In Sec- 
tion 7 the results obtained from experiments conducted 
using these approaches are presented. In conclusion 
suggestions are made concerning the algorithms which 
are to be used in each of the processing steps (Section 8), 

2. DATA G E N E R A T I O N  

In an automatic fingerprint recognition system, the 
fingerprint image must be available for processing in 
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a digital format. In our system fingerprint images are 
digitized by means of a video camera and a framegrab- 
ber. The video camera's output is an analogue signal 
of the fingerprint image. This analogue signal is then 
quantized into 256 discrete levels by means of the 
framegrabber. The framegrabber stores this quantized 
image as a two-dimensional array of bytes which can 
be used for subsequent processing. 

We investigated two methods of data generation. 
The first method is the well-known ink-and-paper 
method that is commonly used by the police. The 
finger is rolled in ink and then rolled on paper to 
transform the three-dimensional finger into a two- 
dimensional print that can be photographed by the 
video camera and quantized by the framegrabber. 

This method is not very reliable because the ink 
can smear and blur the whole image or part of the 
image. Plastic distortion plays a role as well, because 
the finger being rolled on the paper is not pressed 
equally hard each time the print is taken. Perhaps 
the most important disadvantage is that this technique 
is time consuming. This makes it unsuitable for appli- 
cation in any automatic  fingerprint classification 
system, and inconvenient for our experimental pur- 
poses. 

The second method is a more efficient and reliable 
optical data generation system. The system is shown 

in Fig. 1. It consists of a prism and a uniform light 
beam that transforms the three-dimensional data into 
two-dimensional data which can be photographed and 
quantized. This system makes use of the total internal 
reflection obtained in a 90 ° prism. The uniform light 
beam is shone into the prism. Normally all this light 
is reflected out of the prism by the 45 ° surface of the 
prism. However, when a finger is pressed on this surface, 
the refraction index of that surface is changed at the 
places where the ridges of the finger touch the prism's 
surface. At the places where the refraction index is 
changed, no light is reflected. This means that the 
ridges of the print appear dark in the image, while the 
background is of a high intensity. This reflected image 
of the fingerprint is photographed by the video camera 
and quantized by the framegrabber. 

The optical method of data generation is not perfect 
either because the contrast and focus of the image 
obtained are sometimes poor. Most images have a 
continuous slope in greyscale values superimposed on 
the finer detail, which means that binarization tech- 
niques based on a global threshold are unsuitable. 
However, the advantages outweigh the disadvantages. 
The method is clean and very fast and most of the 
problems can be overcome by good preprocessing 
techniques such as greyscale-to-binary conversion as 
described in the next section. 

CAMERA 

UNIFORM LIGHT 

REFI.,F_L'T~ 

2-D PRINT 

DIGITIZED PRINT 

t 
FRAMEGRABBER 

FINGER PRESSED 
AGAI NST PRISM 

Fig. 1. Optical data generation. 
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3. PREPROCESSING 

Preprocessing plays an integral part in any classifi- 
cation system. Good preprocessing techniques reduce 
the effect of poor quality data and this usually results 
in improved classification performance. The effect of 
such preprocessing is demonstrated in Section 7. In 
this section we describe an algorithm for the conversion 
of the greyscale image into a binary image, followed 
by an algorithm used for smoothing the binary image. 
We present results obtained from the application of 
these algorithms. 

In our fingerprint recognition system we implemen- 
ted the optical data generation method described in 
Section 2. This method is fast and is well suited to any 
automatic system. However, the data obtained from 
this system is not perfect. One of the major problems 
is a continuous slope in greyscale values superimposed 
on the finer detail. This means that binarization by 
means of a global threshold technique will be unsuitable 
for further processing. To combat this problem we 
developed a recursive binarization algorithm which is 
described next, which uses local thresholding to bi- 
narize the image. 

3.1. Binarization 

The edges of the greyscale fingerprint are extracted 
using the Marr-Hildreth  algorithm. 15) This algorithm 
extracts the binary outlines (the edges) of the ridges 
from the original greyscale image. These edges in the 
edge image are one pixel wide. This "edge image" is 
then used in conjunction with the greyscale image to 
extract the binary image from the original greyscale 
image. 

Two adaptive windows are used in each step of a 
recursion process to perform the binarization. These 
are the edge window, built in the edge image, and the 
greyscale window, built in the greyscale image. 

The algorithm is based on the following six steps: 

(1) Determine a suitable starting point. The current 
lowest greyscale value (assume it is X) in the greyscale 
image is used as the reference point around which the 
greyscale and edge windows are built. 

(2) Build the greyscale and edge windows, using X 
(Step 1) or the location determined in Step 6 as the 
reference point. A 2d* 2d window is formed, centred on 
X. Figure 2 shows the greyscale window superimposed 
on part of the greyscale image. 

(3) Determine transition regions on the boundary 
of a window. The calculation of the transition regions 
is explained later. Figure 3 shows a window with two 
transition regions. 

(4) Evaluate the number of transition regions in 
both windows: 

• if the number of transition regions is equal in 
both windows, choose the greyscale window; 

• if the number is not equal, choose the window 
with the smallest number; 

• if either number is zero, choose the other win- 
dow and; 

• if both zero, the recursion ends, i.e. choose 
neither. 

(5) Binarize the greyscale image using the current 
windows as will be described subsequently. 

(6) Determine the location of the windows for the 
next step in recursion. The endpoints of a transition 
region of the chosen window (Step 4) are used as the 
reference points (X and Y) for the construction of the 
windows. The window is formed by using a buffer ofd 
pixels on each side of X and Y, as shown in Fig. 4. (A 
value of 2 was used for d in our experiments.) The 
algorithm then returns to Step 2 to continue the recur- 
sion process. Consecutive steps are shown in Fig. 5. 
Recursion continues for each transition region in the 
chosen window. In this way all ridges connected to 
each other are followed to their respective ends. 

Window 

Greyscale 
values 

Fig. 2. Oreyscale image with window: pixel X is current low- 
est greyscale value in image. Window centred on X. 

Fig. 3. Window with two transition regions superimposed on 
fingerprint ridge. 
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Next wlndo~v X 
\ 

Fig. 4. Window with d pixel buffer. 

In order to determine the transition regions for a 
greyscale window, the boundary of the window is 
searched for the minimum and maximum greyscale 
values. If the difference between the two values is larger 
than a threshold (we used 0.6 of the maximum) the 
window is situated on a ridge. All greyscale values less 
than this threshold on the boundary form the transition 
regions of that window. Figure 3 shows the window 
with two transition regions on the boundary of the 
window. 

The process of determining transition regions for 
an edge window is based on a blobcolouring routine (6) 
which colours between the edges of the ridges in the 
edge window. Figure 6(a) illustrates the edge window 

Fig. 5. Consecutive window positions during recursive bi- 
narization algorithm. 

for the corresponding greyscale window (Fig. 6(b)). The 
algorithm uses the smallest greyscale value in the grey- 
scale window which corresponds to an edge pixel in 
the edge window as an upper threshold in the blob- 
colouring routine (point X in Figs 6(a) and (b)). This 
value is assumed to be the largest greyscale value that 
could be part of a ridge. The routine colours all pixels 
with greyscale values lower than the threshold, as long 
as they lie within the edges of the edge window. This 
procedure prevents the blobcolouring routine from 
colouring outside an edge if the edge is not a solid line. 

X ~ 

Bmcr~xmod ~ound 

F<xcground Flusa~rim ridp 

(.) (b) (c) 

Fig. 6. Determining transition regions for edge window: (a) edge window; (b) corresponding greyscale 
window; (c) biobcoloured binary window. 
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The coloured ridge in the binary window is shown 
in Fig. 6(c). The number of transition regions is then 
determined by counting the areas in which the blob- 
colouring colour occurs on the boundary of the edge 
window. 

The binary image for a set of greyscale and edge 
windows is formed by the logical "OR"ing of the binary 
image determined from the greyscale window and the 
binary image determined from the edge window. The 
binary image of the greyscale window contains all the 
elements which were lower than the threshold, while 
the binary elements of the edge window were all those 
which were blobcoloured. 

The algorithm described above works well for images 
with a continuous slope in greyscale values. Examples 
of the application of this algorithm are presented in 
Figs 10-12. One problem with this algorithm is that 
the binary image is not smooth. It leaves holes and 
gaps in the ridge part of the resulting images, which 
can be viewed as noise. One of the eventual goals is to 
extract the skeleton of the binary image, but the exist- 
ence of noise deforms the skeleton considerably and 
can severely handicap the extraction of meaningful 
features. An example of a deformed skeleton is shown 
in Fig. 13(a). To remove this noise, we developed an 
algorithm which is known as "smoothing", which we 
describe in the following subsection. 

3.2. Improvement of binary image ("smoothing") 

The algorithm for the improvement of the binary 
image is also based on an adaptive window concept. 
The first part of the algorithm locates possible isolated 
holes or gaps. In the next step the isolated holes or 
gaps in the edge part of the fingerprint are removed, 
using an adaptive window and a recursive blobcolour- 
ing routine. 

The binary image is first scanned for isolated holes 
or gaps. An isolated hole is any island of background 
colour completely surrounded by foreground colour. 
Gaps are those regions of background colour, not 

Window Background 

Hole / Foreground 

Fig. 7. Isolated hole surrounded by a window. 

Border 
translllon 

i 
Gap 

~i ckg round 

Foreground 

Fig. 8. Gap surrounded by a window. 

completely surrounded by foreground and which are 
not part of merge or branch points. Examples of these 
are presented in Figs 7 and 8. 

To find a possible occurrence of a hole or gap, the 
image is searched for a transition from foreground 
to background colour (marked as X), followed directly 
by a transition from background to foreground col- 
our (marked as Y). If the distance between X and Y is 
smaller than a chosen length, the algorithm continues 
removing holes, otherwise a new pair of transitions is 
sought. 

To remove holes, a window is built as described 
earlier using X and Y as reference points. This window 
contains the possible isolated hole or gap as well as the 
surrounding data. 

A four-connected blobcolouring routine (with starting 
point between X and Y) then seeks the background 
colour and colours its path in colour A. If the colour 
A is not present on the boundary of the window we 
know it is an isolated hole and it is filled with the fore- 
ground colour in the original binary image. If colour 
A is presented on the boundary the algorithm continues 
with removing gaps. 

To remove a gap, the number and size of transition 
regions in the window are first determined (connected 
boundary elements ofcolour A form a transition region). 
A gap is bridged using a few heuristic rules: 

• If the window only has one transition region and 
if the size is smaller than a certain threshold, it is a gap. 
This. gap is then bridged by connecting the two end- 
points of the transition region and filling it with the 
foreground colour. 

• If the size of the transition region is less than the 
threshold or if more than one transition region is 
present a larger window is built around the original 
window (Fig. 9) and the blobcolouring process is re- 
peated. 

The transition regions are counted again: 

• If the number of transition regions is two or less 
and if the distance (D in Fig. 9) between the regions is 
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Fig. 9. Large and small window super imposed on gap. 
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(a) (b) 

( c )  ( d )  

Fig. 10. First  example  of binarizat ion algorithm: (a) greyscale image; (b) binary image through global 
threshold;  (c) unsmoothed  binary from algori thm in Section 3.1; (d) smoothed  binary extracted from 

unsmoo thed  image in (c). 
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greater than another threshold, the gap (X and Y of 
the original window) is bridged as described previously. 

• If three or more transition regions exist, the "gap" 
is considered to be noise and no gaps are filled. 

The result of the application of this algorithm is a 
smoothed binary image which is more suitable for 
reliable feature extraction. 

3.3. Thinning the binary image 

For some of the subsequent feature extraction pro- 
cedures, the skeleton of the fingerprint is needed. The 
skeleton is a thinned binary image in which the ridges 
are only one pixel wide. We implemented an adaptive 
line thinning by line following algorithm t7) to extract 
the skeleton from the binary image. 

~:~y . :z~ : : . ~ : . f 9  :~:. .  . : . , , : ~ . : , - .  : '6 : -"  : ~ 6 ~ " -  ."-': 
•" i : :  " /~: . . ,  ' ' . . . .  ' 

~L(i~ : / :  
f?Y :! 

3.4. Preprocessing results 

To evaluate the performance of our preprocessing 
algorithms, we tested them on various images of finger- 
prints. Typical results are shown in Figs 10-12. All 
these results were obtained from the greyscale images 
shown in Figs 10{a), 1 l(a) and 12(a), which were pro- 
duced by means of the optical data generation method 
as described in Section 2. 

Figures 10(b), 1 l(b) and 12(b) show the binary images 
of the three greyscale images as obtained from a global 
correlation threshold technique, iS} As can be seen, this 
method is quite inadequate for our appl icat ion--vari-  
ous regions in the binary images are washed out com- 
pletely. The reason for this is the continuous slope in 
greyscale values superimposed on the greyscale image 
due to the lighting during data generation. In compar- 

(a) (b) 

(c) (d) 

Fig. 1 I. Second example of binarization algorithm: (a) greyscale image; (b) binary image through global 
threshold; (c) unsmoothed binary from algorithm in Section 3.1; (d) smoothed binary extracted from 

unsmoothed image in (c). 
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Fig. 12. Third example of binarization algorithm: (a) greyscale image; (b) binary image through global 
threshold; (c) unsmoothed binary from algorithm in Section 3.1; (d) smoothed binary extracted from 

unsmoothed image in (c), 
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(b) 
Fig. 13. Examples of results of thinning algorithm: (a) unsmoothed binary image's skeleton; (b) smoothed 

binary image's skeleton. 
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ison, the binary images as generated by our recursive 
binarization algorithm, shown in Figs 10(c), 1 l(c) and 
12(c), have no completely spoilt regions and improved 
ridge continuity has resulted. 

Figures 10(d), 1 l(d) and 12(d) show the binary im- 
ages after the application of our smoothing algorithm. 

Figure 13(b) shows the skeletons obtained from the 
smoothed binary images. (The smoothing algorithm 
described earlier was first applied to the binary images 
of Figs 10(c)-12(c) before the skeletons were extracted, 
and is shown in Figs 10(d)-12(d).) Figure 13(a) shows 
the skeletons obtained from the unsmoothed binary 
images of Figs 10(c), 1 l(c) and 12(c). Comparison of 
these images clearly demonstrates the improvement in 
the quality of the skeletons of the images which were 
smoothed. The unsmoothed images in Fig. 13(a) are 
disrupted by noise and no reliable features can be 
extracted from such images. On the other hand, reliable 
features can probably be extracted from the skeletons 
in Fig. 13(b). 

The preprocessing algorithms described in this section 
are well-suited for implementation in an automatic 
fingerprint recognition system. However, the extent to 
which these algorithms are applied depends on the 
type of approach followed during classification. Some 
classification schemes require no preprocessing, while 
others require binarization or skeleton extraction. We 
investigated three approaches for classification, as de- 
scribed in the following section. 

4. CLASSIFICATION BASED ON THE DIRECTIONAL IMAGE 

The directional image is calculated from the greyscale 
image. We describe the manner in which a directional 
image is calculated, as well as feature extraction from 
the directional image. The features can be classified 
employing a nearest-neighbour, linear or neural-net 
classifier. 

In order to calculate the directional image, the image 
is subdivided into small blocks. (We chose blocks of 
16 x 16 pixels in our 256 x 256 images.) The directional 
image consists of the dominant directions of each of 
the small blocks. The dominant direction of a block is 
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Fig. 14. Block quantized into 4 subdirections. 

calculated in the following manner, The possible direc- 
tions are quantized and each of these is called a sub- 
direction. Refer to Fig. 14 where a quantization of four 
is illustrated. The four directions are labelled 0-3. 
Numerical values for each of the subdirections are 
calculated from the pixel intensities, after which the 
dominant direction is chosen from these. The value 
of a subdirection is equal to the sum of the absolute 
differences between the average value and the grey- 
scale values along the subdirection. The subdirection 
with the smallest value (i.e. smallest variation) is the 
dominant ridge direction. 

Refer to Fig. 14 for an example of this calculation. 
The small block shown is of dimension 5 x 5. Sub- 
direction 0 consists of greyscale values 5, 6, 7, 8, 9 with 
an average of 7, subdirection 1 of 10, 20, 7, 40 and 50 
(average of 25.4), subdirection 2 of 10, 15, 7, 25 and 30 
(average of 17.4) and subdirection 3 of 10, 20, 7, 40 and 
50 (average of 25.4). Consider subdirection 2: the aver- 
age value is (10 + 15 + 7 + 25 + 30)/5 = 17.4. The ab- 
solute values of the differences are: I 1 0 -  17.41 = 7.4, 
115 - 17.41 = 2.4,17 - 17.41 = 10.4,125 - 17.41 = 7.6 and 
130 - 17.41 = 12.6. The sum of these values is 40.4. In a 
similar fashion the sum of differences is computed for 
subdirection 0 (resulting in a value of 6), 1 (78.4) and 3 
(also 78.4). For  this example subdirection 0 is the domi- 
nant direction as it has the smallest sum of absolute 
differences value (6 compared to 78.4 and 40.4). 

As the directional image is a numerical description 
of the fingerprint pattern, different feature vectors can 
be extracted from the numerical values. In the follow- 
ing subsections we describe the types of features we 
implemented in our experiments. 

4.1. Feature vectors 

4.1.1. Histooram feature vectors. Our first type of 
feature vector is based on the histogram of the domi- 
nant ridge directions. Each bin in the histogram is used 
as an element of the feature vector. 

We demonstrate this with an example. In Figs 15 
and 16 a small portion of a fingerprint pattern which 
has been divided into small blocks is shown. There is 
a total of 25 blocks in this portion of the print: 5 rows 
and 5 columns. Each block is quantized into four sub- 
directions for the calculation of the dominant ridge 
direction. This means the dominant direction can be 
any direction from 0 through to 3. Figure 15 shows the 
dominant direction for each small block while Fig. 16 
shows the numerical value assigned to that dominant 
direction in a small block. Because the original small 
blocks were quantized into four subdirections the histo- 
gram consists of four bins, one bin for each quantized 
subdirection. The feature vector for the directional 
image in Fig. 15 is the same as the values in the bins 
(the histogram values), i.e. (6, 4, 9, 6). 

Variations on this type of feature vector can be ob- 
tained by excluding some of the small blocks from con- 
tributing to the histogram. We define two types of fea- 
ture vectors: a large feature vector where all the small 
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Fig. 15. Directional image. 
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Fig. 16. Numerical values of directional image. 

blocks of the directional image contribute to the 
histogram and a small feature vector where the outer 
ring of small blocks does not contribute to the histo- 
gram. The idea with the small type of feature vector 
being that noise on the edge of the image is ignored in 
the calculation of the feature vector. The small feature 
vector for our example is constructed when rows 1 and 
5 as well as columns 1 and 5 are ignored in the calcu- 
lation of the histogram. The small feature vector in this 
case is (1, 2, 4, 2). 

4.1.2. Feature vectors for direct comparison. In this 
type of feature vector the value of each element cor- 
responds to the dominant ridge direction in each small 
block of the directional image. Thus the feature vector's 
dimension is equal to the number of blocks. For the 
directional image of Fig. 15 the corresponding feature 
vector is (3,3,2,3,3, 2,2,3,3,2, 2,2,2,2,2, 0,0,1,1,1, 0,0,0,0,1). 
This type of feature vector is defined as a large type of 
feature vector. 

The small feature vector is again constructed by 
ignoring the outer ring of numerical values. That means 
all the elements that correspond to a block situated on 
the outer ring are assigned the value 0. The small 
feature vector for Fig. 15 is (0,0,0,0,0, 0,2,3,3,0, 0,2,2,2,0, 
0 , 0 , 1 , 1 , 0 ,  0 , 0 , 0 , 0 , 0 ) .  

4.1.3. Feature vector with variance bins. When a 
direction for a small block is calculated, a certain 
amount of uncertainty about this direction exists. This 
uncertainty can be utilized in classification by calculat- 
ing the variance from the dominant direction for each 
block. The variance is computed perpendicular to the 
dominant direction for each block and in a similar 
manner to the sum of differences value which is used 
to determine the dominant direction from the sub- 
directions. The calculation of the variance is illustrated 
in Fig. 17. For each position in the dominant direction, 
the sum of differences is calculated along a line perpen- 
dicular to the dominant direction. In Fig. 17 the domi- 
nant direction is represented by the thick line and each 
of the seven thin lines represents the area where each 
calculation of the sum of differences is performed. These 
seven values are then summed to form the variance for 
that block. 

The feature vector is constructed by using the vari- 
ance as a means to increase the number of bins in the 
histogram of directions. For instance: each direction 
has three bins associated with it, a low, medium and 
high variance. When the dominant direction is calcu- 
lated for a block, the variance determines which bin of 

Variance calculated 
peq~mdlcular to 
dominant dlectk)n 

Fig. 17. Calculation of the variance for a block. 

Table 1. Variance type of 
feature vector 

Bin 
number Variance 

Low 
0 Medium 

High 
Low 

1 Medium 
High 
Low 

2 Medium 
High 
Low 

3 Medium 
High 
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that direction (in the histogram of directions) is incre- 
mented. Table 1 shows this type of construction with 
the various variance bins for each quantized level. 

Different feature vectors can be constructed by ad- 
justing the number of bins for the variance and by 
adjusting the number of quantization levels for the 
dominant direction. Once again large and small feature 
vectors are defined. Large feature vectors correspond 
to the case where all the small blocks contribute to the 
histogram of variance bins, i.e. 256 small blocks in the 
256 x 256 images. Small feature vectors are vectors 
constructed similarly, but the outer ring of small blocks 
is ignored. 

In the next section we present another approach to 
the classification of fingerprint images. In this approach 
features are extracted from the spatial frequency domain 
of the fingerprint image. 

5. CLASSIFICATION USING THE FOURIER TRANSFORM 
AND WEDGE-RING DETECTOR 

In the previous approach features were extracted 
from the directional image calculated from the grey- 
scale image. In the following approach we transform 
the spatial greyscale image to the frequency domain 
and then extract "wedge-ring" features from the fre- 
quency domain image. 19) The frequency domain seems 
to be an appropriate feature space since although ridges 
in the spatial domain transform to a fairly constant 
frequency (in the spatial frequency domain), the dis- 
tinguishing characteristics of a fingerprint such as 
the specific ridge directions and the minutiae mani- 
fest themselves as small deviations from the dominant 
spatial frequency of the ridges. These deviations or 
high-frequency components will be unique for each 
fingerprint. A "wedge-ring detector" is a way of parti- 
tioning the spatial frequency image. A wedge-ring, as 
shown in Fig. 18 is overlayed on the frequency image 
and the pixel values in each of the individual areas are 
added to form an element of the wedge-ring detector 
feature vector. These feature vectors can be used with 
the same classifiers as the features that were extracted 
from the directional image. The "wedge-ring detector" 

Fig. 18. W e d g e - r i n g  de tec tor .  

provides some invariance with regard to 

• rotational variations (since the rings integrate 
along an angular variable) and 

• scale variations (since the wedges integrate along 
a radial variable). 

The wedge-ring features are translation invariant 
because the magnitude of the Fourier transform is 
used. 

5.1. Description of features 

The image is transformed from the spatial domain 
into the frequency domain by the application of a 
two-dimensional Fourier transform. The image is cen- 
tred around the origin in the frequency domain by the 
addition of phase terms in the spatial domain. The 
mathematical operation for this is 

e{J.t) f (t).-. F(w _ ~). 

Features are extracted from the frequency domain 
by using a wedge-ring detector I~°) whose centre cor- 
responds to the origin. An example of a wedge-ring 
detector with 4 rings (labelled 1, 2, 3 and 4) and 4 wedges 
(labelled A,B,C and D) was shown in Fig. 18. The 
summation of the elements (integration of the energy) 
in each ring or each wedge forms one element of the 
feature vector. Therefore, the feature vector constructed 
from the wedge-ring detector in Fig. 18 is 

( z z z z z 
\ A B C D 1 

z3 ) 
with ~, F(wi) the summation of all the elements in the 

x 
frequency domain for wedge or ring X. By varying the 
number of rings and wedges the dimension of the 
feature vector is adjusted. 

In this, as well as the previous section, we described 
various methods of extracting features from the finger- 
print image. These features can be used with a number 
of classifiers to obtain a positive classification. In the 
next section we describe another approach to the clas- 
sification of fingerprint images. This approach uses a 
classifier not based on features, namely the correlation 
classifier. No features are extracted from the fingerprint 
image, but the prints are matched directly. 

6. CLASSIFICATION USING THE CORRELATION CLASSIFIER 

Classification using the correlation classifier does 
not require any type of special feature vectors. With 
this class,tier the prints are compared directly. An 
unknown fingerprint image is classified in the following 
manner. The correlation between the unknown test 
print and one of the prints in a database is computed. 
This process is repeated for all the prints in the database. 
The test print is labelled as belonging to the class of 
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the training image that resulted in the largest correl- 
ation value. The correlation classifier is investigated as 
a "worst-case" classifier in our comparative study, since 
it does not provide any meaningful mechanism for 
scale or rotation invariance. To accommodate scale 
and rotational variations, the correlation classifier must 
be explicitly trained with scaled and rotated images of 
the object. 

For  good classification by means of a correlation 
classifier extensive preprocessing is needed to transform 
the greyscale image into a usable binary image. The 
preprocessing implemented consisted of the three stages 
described in Section 3: binarization of the greyscale 
image using the recursive greyscale edge follower, 
smoothing of the binary image using an adaptive 
window concept, and thinning of the smoothed image 
into its skeleton. The images obtained by the appli- 
cation of these preprocessing algorithms are noiseless 
binary skeletons of the original images. Examples of 
the various stages of preprocessing were shown in 
Section 3. 

Correlation in the spatial domain is very time con- 
suming, especially for large images. For this reason the 
correlation classifer was implemented in the frequency 
domain. Correlation in the spatial domain is equivalent 
to the inverse Fourier transform of the product of the 
Fourier transforms of the images being correlated. For  
two images f~ and f2, this can be mathematically 
expressed as follows: 

fl(x,y)®f2(x,y)*--~Fl(U,V) x F*(u,v) 

where ® denotes the correlation in the spatial domain, 
* denotes the complex conjugate and F~ and F 2 are 
the Fourier transforms of f l  and f2, respectively. 

In the correlation classifier as implemented in the 
frequency domain, an unknown test image is classified 
in the following manner. The Fourier transform is 
computed for the unknown test image. This Fourier 
transform is multiplied with each of the known "train- 
ing" images' Fourier transforms (which are calculated 
and stored beforehand). The inverse Fourier transform 
is computed for this product, resulting in a two-dimen- 
sional correlation function. The correlation image is 
then searched for its largest value. This value is norm- 
alized with the number of binary "ones" in the unknown 
test image. This normalized value is known as the 
correlation value. The process of multiplying, taking 
the inverse Fourier transform, searching and normal- 
izing is repeated for all the "training" images. Finally 
the largest correlation value between the test image 
and all the training images is found and the test image 
is labelled as belonging to that class for which the 
correlation value was the largest. This procedure was 
first suggested for optical implementation. (11) 

We normalize the largest value of the inverse Fourier 
transform with the number of binary ones in the test 
image so that the maximum correlation between two 
images cannot be more than 1. 

In the next section we describe experiments conduc- 
ted using the three different classification approaches 

described in the previous sections. The aim is to identify 
the best classification scheme for use in our recognition 
system. 

7. R E S U L T S  

The features described in Sections 4 and 5 were used 
in conjunction with three classifiers: the neural-net 
classifier, the linear classifier "zl and the nearest-neigh- 
bour classifier." 2) 

The neural-net classifier used in our experiments is 
a three-layer Perceptron-type trained with the conju- 
gate-gradient algorithm." 3) 

A three-layer neural-net classifier is shown in Fig. 19. 
The first layer is the input layer whose outputs are the 
values of the elements in the feature vector to be classi- 
fied. Thus the number of input neurons is equal to the 
dimension of the feature vector plus one. The second 
layer is the hidden layer while the third layer is known 
as the output layer. Each neuron in the second layer 
computes the sum of all its inputs. This sum is then 
used in conjunction with a transfer function to deter- 
mine that neuron's output. The number of hidden 
neurons is problem specific and must be determined 
by means of repeated experiments with different num- 
bers of hidden neurons. The output layer has one 
neuron for each class. Each output neuron performs 
the same calculation as the hidden layer neurons. We 
used a sigmoidal transfer function for both hidden and 
output neurons. Ifa specific neuron in the output layer 
has a high output value for an input feature vector, the 
feature vector is labelled as belonging to that class for 
which the output neuron is high. 

Each connection between the input layer and hidden 
layer, as well as each connection between the hidden 
layer and the output layer has a certain numerical 
value associated with it. All these numerical values are 
contained in the weight matrix W. The training of 
the neural net consists of determining the best weight 
matrix W for that specific problem. The initial values 
of the weight matrix are determined randomly but 
must adhere to specific rules. These rules state that the 
values must not be too large or too small and that they 
must be distributed randomly. "41 

llta~m 

Fig. 19. Three-layer neural-network classifier. 
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The training procedure for the linear classifier was 
a gradient descent method using a minimum squared- 
error criterion function. For  the nearest-neighbour 
classifier we used the euclidian distance E computed 
with the following equation: 

D 

d = l  

with D the dimension of the feature vectors, T i the ith 
test vector and U j the j th training vector as distance 
measure. 

We used the same data set in all our experiments, 
generated optically as described in Section 2. The data 
set consisted of 60 training images and 20 test images 
from 20 classes. That is, each class consisted of three 
training images and one test image. The resolution of 
each image was 256 x 256 pixels. 

The results of our experiments are shown in Figs 20- 
25 as well as Table 4. We show average values obtained 
from repeated experiments starting from 10 different 
initial sets of weights in the training of the linear and 
neural-net classifiers. 
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Fig. 20. Neural-net classifier performance--directional image• 
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Fig. 21. Linear classifier performance--directional image. 
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Fig. 22. Nearest-neighbour classifier performance--directional image. 
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Fig. 23. Neural-net classifier performance--wedges and rings. 

7.1. Results of directional image 

The first group of experiments was conducted 
on features extracted from the directional image of 
the fingerprint. The experiments were conducted using 
three classifiers, i.e. the neural-net, linear and nearest- 
neighbour classifiers. 

We used the features as described in Section 4 for 
these experiments. Each type of feature vector used in 
our directional experiments is labelled with a number 
to facilitate graphical representation. This association 

between the type and its label is shown in Table 2. The 
average performance of the different classifiers for dif- 
ferent feature vectors based on the directional image 
can be seen in Figs 20 22. The performance of a speci- 
fic type of feature vector can be determined by reading 
its label from the figure and cross referencing it with 
Table 2. 

7.1.1. Neural-netelassifierperformance. Each exper- 
iment with a specific type of feature vector was repeated 
with l0 different randomly chosen initial sets of weight 
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Fig. 24, Linear classifier performance--wedges and rings. 
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Fig. 25. Nearest-neighbour classifier performance--wedges and rings. 

Table 2. Label associated with each type of feature vector directional 
image 

Label Type of feature vector Dimension of feature vector 

0 Large histogram Number of quantized levels 
1 Small histogram Number of quantized levels 
2 Large direct Number of blocks 
3 Small direct Number of blocks 
4 4 variance bins, large Number of quantized levels x 4 
5 4 variance bins, small Number of quantized levels x 4 
6 8 variance bins, large Number of quantized levels x 8 
7 8 variance bins, small Number of quantized levels x 8 
8 12 variance bins, large Number of quantized levels x 12 
9 12 variance bins, small Number of quantized levels × 12 

10 16 variance bins, large Number of quantized levels x 16 
11 16 variance bins, small Number of quantized levels x 16 
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values to obtain statistical results. The greyscale images 
were divided into small blocks of dimension 16 x 16 
pixels, i.e. 256 small blocks in the 256 x 256 images. 
No preprocessing was done on any of the images prior 
to the extraction of the directional image. 

Figure 20 shows the average test classifier perform- 0 
ance for each of the quantized levels. The best average 1 

2 
test performance was achieved with type 5 (four vari- 3 
ance bins, small feature vector). The average test classi- 4 
fication values all start near 60To before dropping very 5 
low for the direct comparison feature vectors. It then 6 
climbs to 70Vo where it stays close to 70Vo for all 7 8 
subsequent feature vector types. From Fig. 20 it is 9 
clear that the direct type of comparison feature vector 10 
is not suited for use with a neural-net classifier. It I1 
is also clear that the variance type of feature vector 12 

13 
performs better than any of the other types of fea- 14 
ture vectors. The variation of the number of quantized 15 
levels does not greatly affect the average classification 
performance, although the best performance was ob- 
tained from the lowest quantization level. The maximum 
performance obtained was 90~o for a quantization level 
of 8 for 9 hidden neurons in the neural net. 

7.1.2. Linear classifier performance. Figure 21 shows 
the average test classifier performance for the features 
of Table 2 using a linear classifier. Once again the 
direct comparison type of feature vector fails. It is also 
clear that the variance type of feature vector performs 
better than the histogram type of feature vector. The 
best average test classification performance was ob- 
tained for type 8 (12 variance bins, large) with a quant- 
ization level of 8. The average test classification varies 
more for the different number of quantization levels. 

Once again the maximum test classification perform- 
ance was 90~o on the variance type of feature vector 
with 8 quantization levels. 

7.1.3. Nearest-neighbour classifier performance. We 
repeated the experiments using the features as in 
Table 2, using the nearest-neighbour classifier. The re- 
sults are shown in Fig. 22. 

It can be seen in Fig. 22 that the best classification 
was 85~o for 24 quantized levels using the small histo- 
gram feature vector (type 1). The worst classification 
was again on the direct-comparison type of feature vec- 
tor. In general, classifier performance was centred around 
the 70~o mark with variations to either side. The best 
classification performance was on features using the 
small type of construction but no definite trend can 
be seen. 

7.2. Results from Fourier transform and wedge-ring 
detector 

Experiments on this feature set were performed with 
a varying number of wedges and rings. Each of these 
feature vectors with a different number of wedges and 
rings is labelled. The relationships between the different 

Table 3. Labels associated with variations in wedges and 
rings 

Number of Number of Dimension of 
Label wedges rings feature vector 

2 6 8 
2 12 14 
2 18 20 
2 24 26 
4 6 10 
4 12 16 
4 18 22 
4 24 28 
6 6 12 
6 12 18 
6 18 24 
6 24 30 
8 6 14 
8 12 20 
8 18 26 
8 24 32 

feature vectors and their respective labels are given in 
Table 3. 

Experiments were performed on features extrac- 
ted from greyscale images, unsmoothed binary images, 
smoothed binary images and thinned, smoothed binary 
images. 

7.2.1. Neural-net classifier performance. The same 
experimental setup was used in these experiments as 
in the experiments using the directional image and the 
neural-net classifier. Each experiment was repeated 
with 10 different initial sets of weight values. Once 
again the number of hidden neurons was varied. We 
show the average classification performance in Fig. 23 
for the greyscale images, unsmoothed binary images, 
smoothed binary images and the skeleton of the 
smoothed binary images. We see from Fig. 23 that 
the best classifier performance is obtained from the 
smoothed binary image, followed by the unsmoothed 
binary images, the smoothed binary images' skeletons 
and then the greyscale images. One would expect the 
best performance from the skeletons of the smoothed 
binary images, but apparently meaningful information 
is lost by the skeleton extraction. The effect of good 
preprocessing in the form of the smoothing algorithm 
described in this paper is evident in the better per- 
formance obtained from the smoothed binary images 
compared to those obtained from the unsmoothed 
binary images. It does appear that the optimum number 
of wedges and rings for this data set and the neural-net 
classifier is 6 wedges and either 12 or 18 rings. 

The best test classification performance obtained 
on features extracted from the frequency domain was 
95~o for the greyscale as well as the unsmoothed bi- 
nary images. The best test classification performance 
obtained from the smoothed binary images improved 
to 100~o. Classification performance dropped to 95~o 
for the skeletons of the smoothed binary images. 
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7.2.2. Linear classifier performance. The average 
classifier performance obtained on the features of 
Table 3 extracted from the Fourier transform of the 
greyscale, unsmoothed binary, smoothed binary and 
thinned binary images and by using the linear classifier 
is shown in Fig. 24. The best average classification 
performance is 93% for type 14 using features extracted 
from the smoothed binary images. Once again features 
extracted from smoothed binary images perform the 
best, followed by the unsmoothed binary images and 
thinned binary images. In general the worst perform- 
ance was obtained from features extracted from the 
greyscale images. 

The same best performance was obtained for classifi- 
cation using the linear classifier as when the neural- 
net classifier was used. For greyscale images and un- 
smoothed binary images 95% was obtained. The per- 
formance improved to 100% when features were ex- 
tracted from the frequency domain of the smoothed 
binary images. Once again the best performance drop- 
ped to 95% for the skeletons of the smoothed binary 
images. We assume that this drop in classifier perform- 
ance can be attributed to a decreased generalization 
when using a thinned image. 

7.2.3. Nearest-neighbour classifier performance. In 
this experiment the nearest-neighbour classifier was 
used with the features in Table 3. 

Figure 25 shows that the best classifier performance 
of 100% was obtained with features extracted from the 
smoothed binary image. The feature types for which 
this excellent classification performance was obtained 
are 9,10, 13 and 14. The worst classification performance 

was on the smoothed and thinned binary images. The 
classification performance obtained from the smoothed 
binary images increases as the number of wedges and 
rings increases, but an upper limit exists where after 
performance drops if the dimension of the feature vec- 
tor increases further. 

In all our experiments the best performance on the 
test set was obtained from features extracted from the 
frequency domain of the smoothed binary images. All 
three classifiers (neural-net, linear and nearest-neigh- 
bour) were able to classify the test set correctly (100%). 
The general trend in classifier performance suggests 
that more than 6 rings perform better for any number 
of wedges, but that an upper limit exists for the dimen- 
sion of the feature vector, as classifier performance drops 
for feature vector types with higher dimensions. 

7.3. Correlation classifier results 

We also performed experiments with the correlation 
classifier on binary images at different stages in the pre- 
processing as described in Section 3. The first exper- 
iment was performed on unsmoothed binary images. 
This was followed by an experiment on the smoothed 
binary images. The last two experiments were conduc- 
ted on thinned and on smoothed and thinned binary 
images. Table 4 shows the labels assigned to each class 
for each experiment. The correlation classifier was able 
to correctly classify 75% of the classes (classes 8, 9, 12, 13 
and 19 incorrectly labelled) of unsmoothed binary im- 
ages. The classifier performance did not improve for 
the smoothed binary images (the same classes were 
incorrectly labelled), but the average correlation value 

Table 4. Correlation classifier performance 

Unsmoothed Smoothed Skeleton Skeleton 
binary binary (unsmoothed) (smoothed) 

Correct class Labelled as 

1 1 1 1 1 
2 2 2 2 2 
3 3 3 3 3 
4 4 4 4 4 
5 5 5 5 5 
6 6 6 6 6 
7 7 7 7 7 
8 1 1 8 8 
9 5 5 9 9 

10 10 10 10 I0 
11 11 11 11 11 
12 10 10 12 12 
13 5 5 5 13 
14 14 14 14 14 
15 15 15 15 15 
16 16 16 16 16 
17 17 17 17 17 
18 18 18 18 18 
19 5 5 5 5 
20 20 20 20 20 

Performance 75~o 75~o 90~ 95~ 
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did improve from 0.51 to 0.54, which means that a 
marginally better certainty was obtained. The per- 
formance improved to 90~ with the skeleton of the un- 
smoothed binary images (13 and 19 incorrectly label- 
led). A classification performance of 95~o was obtained 
for the skeletons extracted from the smoothed binary 
images; the only class incorrectly labelled was class 19. 

The results clearly show the improvement obtained 
in classifier performance by the application of the pre- 
processing algorithms. However, the computational 
burden of computing the Fourier transform for each 
test image and each training image, followed by an 
inverse Fourier transform calculation of the product 
of these two Fourier transforms makes the correlation 
classifier unsuitable for use in a fingerprint recognition 
system where speed is important. 

7.4. Comparison 

Overall, the results obtained from features extrac- 
ted from the frequency domain of the smoothed binary 
fingerprint image were extremely encouraging. All three 
classifiers (neural-net, linear and nearest-neighbour) 
were able to classify the test set correctly. This means 
that the classes are well separated in this feature space. 
The average performance of these classifiers was also 
better than any of the other methods investigated. 

Classification performance obtained from the cor- 
relation classifier was worse compared to the 100~ o test 
classification obtained from the features of the fre- 
quency space. The best classification performance 
using the correlation classifier was on the skeleton of 
smoothed binary images (95~o). The performance of 
this classifier on the smoothed binary images and un- 
smoothed binary images was similar (75~o), but not as 
good as its performance on the skeletons of images 
(smoothed binary skeleton 953/0 and unsmoothed bi- 
nary skeleton 90%). The classification obtained from 
the thinned binary images was good, but the compu- 
tational burden associated with the correlation classifier 
severely handicaps this approach compared to the 
feature extraction from the frequency domain approach. 

The best performance obtained from features ex- 
tracted from the directional image was that based on 
the variance-bins type of feature vector. The best classifi- 
cation performance was 90~o with the neural-net clas- 
sifier using a feature vector constructed from a di- 
rectional image which was quantized into 8 subdi- 
rections. The same classification performance was 
obtained with these features using the linear classifier. 
The best classification performance obtained with the 
nearest-neighbour classifier was 85°/O, where a histo- 
gram-type of feature vector was used, constructed from 
a directional image quantized into 24 subdirections. 

8. CONCLUSION 

In this paper subsystems for a possible automatic 
fingerprint recognition system for low quality images 
were described. These subsystems include data gener- 

ation, preprocessing and various classification schemes. 
The main purpose was to determine what results can 
be obtained with low-quality images, and to develop 
preprocessing algorithms to improve recognition. 

Low-quality images result from two widely used 
data generation methods namely, the (cumbersome) 
paper-and-ink method as well as a fast and clean op- 
tical data generation method. We introduced a new 
binarization algorithm as well as a new smoothing al- 
gorithm which greatly enhances classification per- 
formance. These algorithms were developed specifically 
for use on fingerprint data generated optically. Other 
approaches to fingerprint recognition are called for 
when high-quality inputs are available or when a large 
number of people have to be recognized. 

Three classification schemes were investigated with 
the purpose of identifying the scheme which is best 
suited for implementation in our automatic fingerprint 
recognition system which operates on low-quality im- 
ages. The three approaches investigated were classifi- 
cation using a directional image with the neural-net, 
linear and nearest-neighbour classifiers, classification 
using features extracted from the frequency domain of 
the fingerprint image with the same three classifiers 
and finally classification using a correlation classifier. 
No preprocessing was done on the data for the exper- 
iments using the directional image. Experiments were 
performed on greyscale, unsmoothed binary, smoothed 
binary and skeletons extracted from the smoothed 
binary images in the frequency domain approach. In 
experiments using the correlation classifier the images 
were tested (classified) at various stages of preprocessing. 
The images used were unsmoothed binary, smoothed 
binary, and the skeletons extracted from the smoothed 
and unsmoothed binary images. 

The best performance obtained from the directional 
image experiments was 90~o using either the neural-net 
or linear classifiers where the type of feature used was 
a variance-based feature vector. Only 85~o classification 
performance was obtained by using the nearest-neigh- 
bour classifier. The performance obtained from these 
experiments was not reliable enough to merit the use 
of this approach in our fingerprint recognition system. 
However, this approach might be useful in combination 
with other types of features such as minutiae to improve 
classifier performance. 

The best classification performance obtained from 
experiments using the correlation classifier was 95°/o. 
This is better than the performance obtained from the 
experiments using the directional image, but the exten- 
sive preprocessing needed to extract the skeleton from 
the smoothed binary images, as well as the amount of 
time spent in classifying a test image renders this ap- 
proach unsuitable for implementation in a fast classifi- 
cation system. 

The best overall approach to classifying low-quality 
fingerprint images is that of feature extraction from the 
frequency domain of the fingerprint and by using the 
linear classifier. The only preprocessing needed is that 
of binarization and smoothing. All three classifiers were 
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able to correctly classify our test set, but the speed 
advantage offered by the linear classifier makes it more 
suitable for implementation. 

Our  final suggestion for a system for automatic 
fingerprint recognition using low quality images based 
on the results of our comparat ive investigations and 
improved preprocessing algorithms uses: 

• an optical data generation method; 
• the preprocessing consisting of recursive binar- 

ization and smoothing; 
• a two-dimensional Four ier  transformation; 
• feature extraction using the wedge-ring detector 

and; 
• classification performed by means of the linear 

classifier. 

We believe that the quality of the input data plays 
a crucial role in the classification rates that can be 
obtained, and therefore a comparison with existing 
systems would not be meaningful. In order to improve 
the performance of our system, more robust features 
would have to be invented. 
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