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ABSTRACT
The fractional Fourier transform (FT) is a powerful tool with relevant applications in optical and digital inform-
ation processing. Such applications demand a programmable and versatile optical system able to perform the
fractional FT almost at real time. We have recently developed an optical setup satisfying these requirements.
In contrast with other proposed setups, it offers the following advantages: the operation is achieved without
additional scaling and/or phase factors and a minimal number of lenses, located at fixed position, are utilized.1
In this work we present the main design features of the fractional FT processor and discuss its performance for
some relevant applications.
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1. INTRODUCTION
During the last decades, the fractional FT has demonstrated to play an important role in optics. The fractional
FT is a generalization of the Fourier transform resulting very useful in many applications. It produces rotations
of the Wigner distribution (WD), which describes the signal in phase space (time-frequency or space-frequency).
In particular, it is a promising and versatile tool for beam characterization, phase retrieval, filtering, encryption,
pattern recognition, etc.2, 3

It was first introduced by Kober4 in 1939 and then used in quantum mechanics by Namias5 in 1980. This
fractionalization of the FT was applied in optics almost two decades ago opening new perspectives in optical
information processing.6–8 Specifically, it was first studied by Mendlovic and Ozaktas when they analyzed
gradient index (GRIN) fiber.6 In the same year, Lohmann demonstrated that the fractional FT can be realized
by using conventional lens-based systems.9 A general treatment of optical systems performing the fractional FT
was realized by Sahin et al. in 1998.8 Other fractional transformations have been also studied in optics, see for
example10 and references therein.

The main applications of the fractional FT in optics require the fast modification of the fractional orders.
Several optical systems performing the fractional FT have been proposed in the last years.11, 12 All these systems
permit relatively easy to modify the fractional order but the resulting field amplitude is affected by an additional
scaling that depends on the fractional order (also known as transformation angle), which in many cases is not
desirable. Recently we have developed a fractional FT optical system that does not produce additional scaling
and/or phase modulation of the transformed field.1 This optical setup permits the change of the transformation
parameters by means of power variation of the lenses, where the distance between them and input−output planes
are fixed. These facts lead to a flexible optical setup able to perform the fractional FT by using a minimal number
of lenses making easier its experimental implementation. Since each lens can be implemented by a spatial light
modulator (SLM), to the advantages mentioned before one can also add the fast modification of the fractional
orders reached almost at real time. Therefore this fractional FT optical setup can be considered as a promising
tool for the above mentioned applications.

Our goal is to present the main setup features concerning to its experimental implementation. We also discuss
its performance and feasibility considering some applications: beam characteization, optical mode conversion and
phase retrieval.
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2. OPTICAL SYSTEM DESIGN AND EXPERIMENTAL IMPLEMENTATION
The fractional FT setup is constructed by using three generalized lenses with fixed distance z between them, see
Fig. 1, where the last lens and first one are identical (L3 = L1). Each generalized lens L1 and L2 is an assembled
set of two cylindrical lenses operating in orthogonal directions x and y axis, with variable lens power given as a
function of the transformation angles γx and γy:

g(1)
x,y = z−1 (1 − cot (γx,y/2) /2) ,

g(2)
x,y = 2z−1 (1 − sin γx,y) , (1)

respectively. Notice that the phase modulation function associated with each generalized lens Lj (j = 1, 2) takes
the form:
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This optical configuration corresponds to the fractional FT operation defined as
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where λ is the wavelength, ri,o = (xi,o, yi,o) are the input and output spatial coordinates while f(ri) is a complex
amplitude of monochromatic input field.1 Notice that s2 = 2λz is a coordinate normalization. The fractional
FT setup allows the modification of the transformation angles inside a π−interval: γx,y ∈ [π/2, 3π/2], see Fig. 2.
It is sufficient for the most of applications, however since the relation F γx+π,γy+π (ri, ro) = F γx,γy (ri,−ro) holds
then the interval γx,y ∈ (0, 2π) can be also reached.
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Fig. 1. Fractional FT optical setup. Each generalized lens is an assembled set of two cylindrical lenses crossed at angle
π/2. Their lens power are functions of the transformation angles, as it is described by Eq. (1). The distance z between
consecutive lenses is fixed. Notice that the input and output plane of the setup coincide with the plane containing first
and last lenses.
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For angles γx = γy = 0 the fractional FT reduces to identity transformation whereas for γx = 0 and γy = π
image reflection is obtained. Meanwhile for γx = γy = π/2 the Fourier transform holds. The case γx = γy = γ
and γx = −γy = γ correspond to the symmetric and antisymmetric fractional FT up to a constant phase
shift, respectively. It is usual to define the transformation angle as γ = qπ/2, where q is the fractional order.
For instance, order q = 4 leads to the self-imaging case meanwhile q = −1 corresponds to the inverse Fourier
transform. We also mention that the fractional FT is an additive operation with respect the transformation
angles. The fractional FT kernel is given as a product of plane and elliptic waves. Properties and applications
of the fractional FT operation are discussed in detail for example in Ref. 2 .

Most of applications such as beam characterization, phase retrieval, chirp detection, etc., demand only the
acquisition of the fractional FT squared moduli |F γx,γy(ro)|2 (power spectra) for various angles, associated with
intensity distributions. These intensity distributions are projections of the Wigner distribution Wf (r,p), where
p = (px, py) corresponds to the spatial frequencies. In other words it takes the form:

|F γx,γy(r)|2 =
ˆ

Wf

(
x cos γx − spx sin γx, y cos γy − spy sinγy,

s−1x sin γx + px cos γx, s−1y sin γy + py cos γy

)
dpxdpy, (4)

see for example13 and references therein. Therefore the implementation of the third generalized lens (L3 = L1)
is not required in such case.

The fast modification of the transformation angles, directly related to the generalized lens powers [Eq. (1)],
can be achieved by using a SLM for the lens implementation. In conclusion, at least two SLMs have to be used
simultaneously. In our case we use two reflection SLMs operating in phase-only modulation with 256 gray levels
and pixel size of 19 μm (Holoeye LCR-2500). The corresponding setup is depicted in Fig. 3, where two cube
beam splitter are set for beam redirecting.
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Fig. 2. Normalized lens power variation zgx,y depicted as a function of the transformation angles γx,y [see Eq. (1)] for
the the first (a) and second (b) generalized lens.

This programmable optical setup performs the fractional FT operation almost at real time and its result can
be also stored as a video by using a CCD camera. Indeed, this fact has been demonstrated achieving a speed
operation of 3 deg·s−1, which is limited by the SLM refresh rate.1 Alignment between the SLMs (lenses L1 and
L2) can be reached digitally as well. It makes easier its implementation and reduces cost because a high-accuracy
positioning X-Y stage for each SLM is not required.
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In order to reduce the noise arising from the SLM structure several relevant facts have to be considered. First
we mention that both SLM are slightly tilted (2-3 degrees) in such way that first diffraction and zeroth orders
do not overlap. Notice that the zeroth order carries unmodulated light which is mainly caused by the limited fill
factor of the SLM. Meanwhile the nonlinear response of the SLM and the deviation from flatness of its reflective
surface lead to distortions in phase modulation that could be reduced applying wavefront correction techniques
as it is discussed in.14 Besides we mention that the input beam, modulated by the displayed phase pattern, is
diffracted into the first diffraction order with an efficiency close to 45%. Since two cube beam splitters (50:50
splitting) are utilized, see Fig. 3, the power ratio between input and output beams is significantly reduced as
well. In spite of these issues, mainly caused by the SLM, the transformation is achieved without considerable
quality reduction as it will be demonstrated in the next Section.
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L1

BS

L2 SLM 1

SLM 2

CCD

Output beam

Fig. 3. Scheme corresponding to the proposed fractional FT setup. Phase-only spatial light modulator SLM1 and SLM2
implement generalized lens L1 and L2, respectively. Optical path between lenses and CCD camera is fixed at z = 50 cm.
Both SLMs share the same DVI interface: display data channel red and green.

The input signal can be generated for example by modulating a collimated laser beam. In general any complex
2D input signal f(ri) can be implemented into a SLM by means of a phase-only hologram, which in our case can
be addressed together with the generalized lens L1. In such kind of hologram, H(xi, yi), the phase distribution
arg[f(xi, yi)] is spatially modulated by the amplitude distribution |f(xi, yi)| associated to the input signal15, 16
as following:

H(xi, yi) = exp {i |f(xi, yi)| (arg[f(xi, yi)] + 2πxi/Λ)} , (5)

where Λ is the grating period whereas the phase and amplitude range are [−π, π] and 0 < |f(xi, yi)| < 1
respectively. We underline that the input signal f(ri) is fully recovered into the first diffraction order only under
certain conditions which are discussed in detail in.15

Alternatively, the amplitude distribution can be addressed into a transmissive SLM operating in amplitude-
only modulation and then projected (by using a 4-f lens system or telescope) into a phase-only SLM, where its
corresponding phase distribution is displayed.1 In our case we have chosen this approach because it permits
an accurate input signal generation. It is also highly recommended for setup testing. Figure 4 shows the
corresponding experimental setup.
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Fig. 4. Programmable fractional FT processor. In this case the input signal is generated as following: its amplitude dis-
tribution is addressed onto SLM and then projected (by using a telescope) into SLM1 which displays its phase distribution
together with the generalized lens L1. A λ/2 wave-plate (WP) is set in order to achieve phase-only modulation.

3. EXAMPLES AND MAIN APPLICATIONS

Since the transformation of Hermite−Gaussian (HG) and Laguerre−Gaussian (LG) beams under the fractional
FT is well-established, its study serves as a calibration approach of the proposed setup. Therefore in order to
test the experimental setup we can choose as an input signal the Hermite−Gaussian
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or Laguerre−Gaussian
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beams, where: r2 = x2 + y2, Hm is the Hermite polynomial, w is the beam waist, and Ll
p is the Laguerre

polynomial with radial index p and azimuthal index l. For instance a LG mode under antisymmetric fractional
FT at angle γ = (2k+1)π/4 (with k integer) is transformed into a HG mode and vice versa, where p = min(m, n)
and l = |m − n|. For the rest of transformation angles an intermediate HG−LG mode is obtained. As an example,
in Fig. 5 we present the experimental results corresponding to this transformation at angles γ = 225o, 248o and
259o with input signal LG+

4,1. As it is demonstrated in Fig. 5, the experimental results are in good agreement
with the theoretical predictions. We underline that the wavefront distortion mainly arising from SLM structure
does not produce considerable quality reduction.

Other important issue to be considered concerns to the beam collimation quality as well as telescope perform-
ance, used for input signal generation. For instance if the telescope and/or beam collimation are not properly
set then an additional quadratic phase modulation is obtained. This additional wavefront distortion has to be
minimized in order to achieve fine-tuning of the fractional FT operation.
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We remind that the LG±
p,l mode is a vortex beam carrying an Orbital Angular Momentum (OAM): l� per

photon. Meanwhile an intermediate HG−LG modes carries fractional OAM: l� sin 2γ, see.17 In contrast to the
LG beams, which are widely used in different areas, the application of HG−LG one is still under development.
Therefore the proposed fractional FT setup results useful for applications involving mode conversion as well. For
example, the HG−LG modes could be also useful in quantum computing18 and optical trapping.

The fractional FT operation can be used for beam characterization based on measurements of the WD
moments. Notice that second-order moments of the WD are the basis of an International Organization for
Standardization standard, see.19 It permits to perform the phase-space tomography required for the reconstruc-
tion of the WD and therefore for phase or mutual intensity of coherence (or partially coherence) field.13 Therefore
the proposed setup can be considered as a promising tool for beam characterization. In addition, this optical
design may be suitable for other applications where the fractional FT operation has demonstrated its feasibility:
filtering, image denoising,20 correlation and pattern recognition,21–23 among others. Nevertheless it requires at
least a cascade of two fractional FT setups and therefore four SLMs (note that several lenses can be multiplexed
into a single SLM).

Here we consider as an example the phase retrieval of two-dimensional coherent signals demonstrating experi-
mentally its performance. There exist different phase retrieval procedures involving interferometric techniques or
iterative algorithms based on measurements of the intensity distribution. In particular, we consider an iterative
phase retrieval approach based on the well-known Gerchberg-Saxton algorithm.24 Notice that this algorithm is
often based on the Fourier power spectrum measurement. To retrieve the input phase distribution, up to constant,
we apply the approach reported in25 that requires several measurements of intensity distributions associated to
the power spectra of the fractional FT. These images play the role of constraint planes. As it is demonstrated
in25 the algorithm convergence speeds up with respect to common approaches based on the FT, in which one
intensity distribution is only utilized as an output constraint plane. In our case we consider the antisymmetric
fractional FT operation instead of the symmetric one studied in the latter work. The power spectra obtained for
this transformation at angles γ = 225o, 248o and 259o (constraint output planes) are displayed in Fig. 5(b)-(d),
where the input signal is a LG+

4,1 mode Fig. 5(a).

Fig. 5. (a) Input signal, LG+
4,1 mode. (b)-(d) Numerical and experimental results (first and second row respectively)

corresponding to power spectra of antisymmetric fractional FT at angles γ = 225o, 248o and 259o. The beam waist was
set at w = 0.73 mm and wavelength λ = 532 nm. Notice that for γ = 225o the LG input mode is transformed into a HG
one rotated at 45o. The experimental results were registered by using a CCD camera with pixel size of 4.6 μm. Units in
x and y axis are given in mm.
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Fig. 6. Retrieved phase distribution associated to the LG+

4,1 mode corresponding to numerical (after 30 iterations) and
experimental results (after 300 iterations), first and second row respectively. The phase distribution is fully retrieved
after 30 iterations with 3 constrain planes corresponding to γ = 225o, 248o and 259o, see Fig. 5(b)-(d). Meanwhile the
convergence for the experimental retrieved phase is reached with root mean squared error of 40%, caused by wavefront
distortions.

After enough number of iterations the convergence occurs, which is reduced by increasing the number of
constraint planes or images used. This fact is demonstrated in Fig. 6 by using numerical and experimental
results, first and second row respectively. Notice that the number of iterations remains fixed in each case. As
we have previously discussed, the experimental results displayed in Fig. 5(b)-(d) also includes the wavefront
distortion which is mainly caused by the SLM structure due to its fabrication.14 Therefore this phase retrieval
technique is also suitable for the fractional FT setup testing. Moreover the corresponding corrective phase
pattern can be calculated from the retrieved phase distribution Fig. 6(c), and then addressed into the SLM in
order to compensate such distortion. Nevertheless it requires a further analysis which exceeds the scope of this
work.

4. CONCLUSIONS

We have presented an optical system able to perform automatically the two-dimensional fractional FT operation
almost at real time. In contrast with other proposed setups, the transformation is achieved without additional
scaling and/or phase factors. By using SLMs for lens implementation as well as for input signal generation,
we demonstrate experimentally its performance and feasibility for applications such as mode conversion and
phase retrieval. The experimental results are in good agreement with theoretical predictions. Other relevant
applications for optical information processing based on the proposed setup are still under development.
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