1486 NOTES AND

Both of the authors believe ¢ eourses to have been
quite successiul as taught this w BA, There are a variety
of eriteria by which they came to this o nelusion,

1. Material learned by students: As judged by fre*
quent discussions with students, their lectures, (md
the case of the uudcxgmdunto cowrse, the final, Lho
students seemed to have absorbed as much material as
they might have in a comparable conventional course.

Student motivation: In contrast to the usual
motivation of exams and grades, the students here
studied to understand the material so that they, in
turn, could explain it. This not ouly produced a healthier
atmwb phere, but resulted in a sizeable fraction of the
students in each class taking on additional work, on
their own initintion, in the form of caleulations, addi-
tional study, or I&b()l Mor\ problems. \homb under-
graduates continued working on p"ou .0ts bevond the end
of the course, and into the following semester. ) & Students
i conventional courses often (*omphmk that they have
insufficient time for even thelr required work.

3. Student evaluation: The students generally felt

that they learned at least as much ag ina conventional
course, that the breadth of the material they learned
was :1doqu:1te that they worked harder, and that they
enjoved it more. They felt a deeper involvement in and
understanding of the material, and generally found the
course to be more inspiring and interesting. They
appreciated the independent learning aspects as well as
the teaching experience. They all muwl much more
give awd take among the students, and the undergrad-
uates found a more desirable student-teacher rvelation-
ship. They genu%ll\ appreciated the specific format of
the course, in particular many found the pre-talk

conferences extremely valuable.

There were, of course, drawbacks, The talks were
generally adequaw to bdd with only an oceasional good
one. Although this is \mvl\ undesirable, it i« far less
significant here, where everyone reeoghizes that the
major learning t dke~ place outxldot 1e jecture, thanina
couventional course. Bven so, the situation may be
alleviated somewhat as the teacher gains experience in
stimilating the intellectual give and take in class
between students. This is somewhat difficult as the
students are afraid of embarassing one another in front
of the teacher, and requires a certain amount of delicacy
on the t,efu.hcx s part.

In addition, the undergraduates felt the need for
assigned pm Slems and worked out examples, They alxo

felt that lectures should avoid tedious wmathematical
derivations if they could be feft to noles, as in the
eraduale course, The teacher felt that the groups should
meet with hin twiee, onee fairly o:ul\ to diseuss prob-
fenis of content, and onee shortly before the talks for
problems of presentation,

This type of course s apparently quife sueressiul
within the two contexts in which it has been tried. s
ceneral viability is still not elear. This, both courses i
which it was tried were advanced courses in special
fields and not the prevequisite for any other course. In
addition, they were both small elasses, numbering o

dozen students i each case. Within this context, the
suceess of this fermat in setting a more desirable mﬁtn A
tion for learning with onlv minimal drawbacks seems to
make it an extremely valuable tool Lower level cour ses,
which treat material requived to meet the needs 0&
sithsequent courses, may present greater problems, byt
as long as sufficiently small sections are available, we
teel that exploration of the application of this format,
appropriately modified, to even these courses; may ygé
prove to be extremely fruitful.

The questionnaire submitted to students follows,
(uestions marked with au asteriak were omitted for the
undergraduates,

(1) How did the total amount of material you
learned compm’c with that learned in other
courses?

(2) Do you think you learned enough general
material or is vour kn(mled% too restricted to
the material of vour group’s talks?

(3) Did vou find this course more or less enjovable
than leeture courses you have taken?

{4) Diw you work har der or less hard in this course
than in others?

(5) Did you find this an effective and/or efficient
way to learn?

(8) What specifie virtues did this course have com-

pared to others?

(7) What specific drawbacks did this course have
compared to others?

(8) Please comment on each of the spe
of the course listed below:

(2) Conferences priov to talks
*(b) Method of selecting spenkers

{¢) Your tallc (or talks)

(d) Hveryone else’s talks

*(e) Notes (in both oviginal and
format, both yours and others)

ecific aspects

“appendix”

) \th(umv topies pursued by some students
(¢) Method of Asmggmed topies for each group

(e.g., Topies 1, 4, 7, ete.)
(h) General course org ‘ml/dtmn
(i) Actual elasses (in particular, my behavior)
(i} Lack of examinations
(9) Please carefully diseuss the over-all impact of
the comao, ineluding any strong or weak points,
any changes (up to and including annihilation)
that vou \wuid like to seec made, whether you
think this aprroach s best suited to an advanced
(elementary) course like this, or lower (upper)
cte, Plense feel free to mnmmlt
innovations you
Alzo mention any-
haven't

level courses,

frankly and to suggest any

think might be worth tryving.

thing  worth mentioning  that  you

covered elsewhere in this questionnaive.

The tests wsed for these conrses were: P, . deGenue

Superconductivity of Metals and Afloys (W, A Benjamit,

New York, 1966); J. R. Schrieffer, Theory of Superconduc

fieily (W, AL Benjamin, New York, 1964); and L. R B.

haw, Tntroduetory Nouclear Theory (Smmd(ws, Philadel-
phia, 19661,
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Boundary Conditions in Electrodynamics

Har: Praxasy axp Naresy CHANDRA
Department of Physics, University of Allohabad,
Allahabad, ITndia

(Received 26 January 1970}

It is well known! that boundary conditions for the
electromagnetic fields at the surface of discontinuity
between two media, say, 1 and 1, are

ne (Dyp— Dy ) =4mp,,
nx (:H;l—*};{}f: (47!’/0)55,

%X (Ep—E) =0,
ne (Bp—By=0, (1)

where 1 is the unit vector perpendicular to the surface
of discontinuity and in the direction I to I, subscripts I
and II denote the values of the fields close to the bound-
ary in the media T and 11, respectively, and p, and j,
¢ the surface densities of charge and current at the
})Ounda?y. Equations (1) are usually derived from
Maxwell's equations,

V°D=4ﬂ‘p,
TxH—!

¥ x B¢ B=0,
= {4r/c}i, T:B=0, (23

them over an elementary volume around,

Mazwell’s Equations in a Rotating
Reference Frame

G. E. Moprsirr*
The Rand Corporation, .
1700 Main Sireet, Santa Monica, California 90406
{Received 23 March 1970)

Schiff* has derived the wvector form of Maxwell’s
equations in a rotating coordinate system by the
methods of general relativity. In this note it is shown
how these eguations may be derived classically.

In a rest systemn Maxwell's equations are

V-B=0, VxnE=-—0B/d,
V-E=p,  VxB=(9E/3)+] (0

The foree on a point charge ¢ moving with velocity v is

F=q(E+vxB). (2)

In the presence of distributed charges and currents,
the force deﬂ.wtv is

f=pE+jix B. 3)

Aceording $o an observer moving with veloecity v,
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or an elementary surface over, the surface of discon-
nuity. In this note, we give an easy derivation of
{i},
H We use super acmp ts (1) and (2) to de
in the media I and 11, the fields “hww the fo

et

)

ote fields

(D, E, B, H]=[D®, E®, B® HDO§(—x)

+[D®, E®, BO HO W {x), ()
where z=n-x and {2} is the unit step function which is
unity for >0 and zero for a<{0. lf ps and j; are the
surface charge density and the surfacs current density
at the houndary, we can write p=p +pd(2), j= i+
45 (x), where &(z) is the Dirac delta function, and p’
and j are finite at the boundary. Then, on substituting
Fgs. (3) in Egs. (2) and on equating the terms involv-
ing #(z) on both the sides of the ecuations thus ob-
tained, we get the conditions (1) since DW§(x)=
Dyd (z), ete. '
The authors are thankful to Professor Vachaspati for
his interest in this work. One of the authors (N.C.)
gratefully acknowiedgei the financial support of the
National Instituts of Sciences of India, New Delhi.

1 See, for example, M. Born and E. Woll, Principles of
Opiics (Pergamon, New York, 1963), p. 4.

the sources and fields are

p'=p, i'=i-pv,

B’ =B, E'=E-+vxB. {4)
These transformations are Newtonian (f'={) but not
necessarily Galilean (the v need not be constant),
The invariance of p follows from the general invariance
of pdV, the amount of charge in an element of volume
4V, and the Newtonian invarance of dV; the trans-
fonm‘ciun for i then follows from charge conservation.
In Newtonian physies, force is invariant, aux‘ the trans-
formation for Emhows immediately fram the invariance
of Fand g0 Eq. (2). Similatly, the invanance of B i3
readily obtained from the invariance of f¢V {and henee
£) and the transformation propertics of p, j, and E,
With

V= RT @)

the expressions in Fq. () represend the relations he-
tween the sources and fields in a rolating system and
those in the rest system.

The time rate of change of a vector A may be ex-
pressed in terms of its rate of change i the rvotating
system as®

dA/dt= (dA/dt) +wo % A. ()

If the terms in Hg. (6) refer to a point fixed in the
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rotating frame, that is, if
(dA/di) = (9A/at), (73

then the point moves with velocity v in the rest frame
and

dA/di= (0A/0t)-Fv-VA. (83
From Eqgs. (8)-(8),
98/0t= (34/9t) +wx A—v-VA. ©)

For uniform rotation, « is constant, and wx A=A-Vy
with Vev=0, and Eq. (9) may be expressed in the
form
(DA (V-A)v=(3A/81)'+Vx (vx A). (10)
In particular, since V- B=0,
IB/Ot= (aB/0t)+V=% (vx B), (i
and, since V> E=p,
(OE/dt)+pv=(0E/81)'+V % (v E). (12)

Since E=E'—v = B, Fq. (12) may be expressed in the
form

(0E/8i)+pv=(8E'/at)+1, (13)
where

f'=—vx (9B/3t)+Vx[vx (E~-v=xB)] (14)

Equations (11) and (13), together with the expres-
sions for §’ and B given in Eq. (4), complete the trans-
formations needed to determine Maxwell’s equations
i the rotating frame; all other terms (p, B, 1, v, 0,7, V)
are the same in both systems.

Thus, V- B'=V-B'=V-B, and sinee V: B=0,
v B =0, (15

Ry

That is, in the rotating system, the divergence of the
magnetic field vanishes, Similarly, since E/'=E4vx B,

VB =V-E+7- (vx B)
and since V-E=p (=p},

Ve E'=pg'4q’, (18}
where
¢'=V:(v%B) =20 B—v- (VxB) an
Also,

VxE=VXE+VX (vxB)
=— (§B/01)+Vx (vx B),
and henee, according to Eq. (11),
V% E = (dB/dt). (18)

L4

Finally,
V' x B =VxB=(9E/t)+}
= (9B/30)+'+pv,
and hence, according to Eq. (18),

V' % B'= (9E//at)+j+i". (19)
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The relations given in Egs. (16), (18), (18), and am
are expressed completely in terms of primed and in-
variant terms and hence represent Maxwell's equationg
in the rotating frame. With the primes dropped, they
are

V- B=0,
V% E=—a8B/4t, 20)
VeE=pt0,

YV B= (dE/01)+]i+i.
where the “extra’ terms o and i are given by
o=V (% B)=20-B—v- (Vx B),
i=yx (VxE}-Vx[vx (E—~vx B}l 2N

These expressions agree with those of Sehiff.
In the rest system potentials A and ¢ exist such that

B=VxA,
=—JA/Bt— Ve, (22)

In this seetion it is shown that the fields in the rotating
system, given by

E=FE+vxB 23)
may be derived from potentials A” and ¢’ given by

A=A

o =e—v- A (24)

The invariance of B follows mmediately from the
invariance of A, whereas

B'=— (947/31) — V¢
= (3A/01) -~ Vo+V (v-A),

s,
o
&Is

~

where
V(r-A=v-VASA-Vv-tvx (VxA)+FAx (Vxy)

Since A-Vv=wx A, and Ax (Vxv)=24 %, it follows
that (using Vx A=18)

Vv A)y=v-VA—ux A+vx B,
and hence, from Eg. (9),
V(v A)~ (JA/01) =— (BA/G)Fv % B.
Thus, from Eq. (25),
B=- (A/0)— Vv x B

or B/=E-+vx B, in agreement with Bq. (23).
Maxwell’s first two equations

V-B=0,
Vx E=dB/dt (26)

follow immediately from Hq. (22), that is, from the
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existence of the potentials. Since, as has been explieitly
demonstrated, potentials exist in the rotating system,
it follows that Maxwell’s first two equations have the
same form in both systems, as was found by semewhat
different methods in the preceding section.

The last two relations in Bq. (20) raply Immediately

(3/0t) lpto )+ V- (+1)=0.
From Eq. (21) it is readily seen that
(8o /0t)+V i=0

and that therelore, in the rotating frame,

(8p/06,+7-§=0

s
in agreement with the transformation given in Eq. (4).

There is no unique way to desoribe uniforn rotation
in general relativity. Schifi’s transformation

/

' =7 coswlt+y siwt,

Y= — g sinel-by coswt,
[—

2=z,

=t

may be used in a classical analysis; it was shown that
the results are the same.
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Classically, it was shown that Maxwells first two
equations [Ig. (26)] have the same form o all (uni-
formly) rotating systems. According to general rela-
tivity, these two equations have the same form i all
systems and for all coordinate transformations. This
general result follows from the assumption that the
vector components of the electric and magnetic fields
form an antisymmetric tensor 3, which satisfies

}

(OF 3/ 05) & (§Fy,/00%)+ (0F ;i/02") =0, (27)
Classically, the invariance of the first two equations
followed from the existence of scalar and vector poten-
tials in the rotating systems. Correspondingly, i
general relativity, their general variance is a con-
sequence of the existence of a four potential Ay such that

o= (8 A,/02")— (94 /AT
from which it follows that i satisfies Iig. (27).

* Any views expressed in this paper are those of the
author. They should not be interpreted as reflecting the
views of The Rand Corp. or the official opinion or policy
of any of its governmental or private research sponsors,

1L, I. Schiff, Proe. Natl. Acad. S¢i. U. 8. 28, 301 (1939).

2 H. (loldstein, Classical Mechanics {Addison-Wesley,
Reading, Mass., 1850), p. 133.
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LETTERS TO THE EDITOR

Note on Azimuthal Angle and Angular
Momentum in Quantum Mechanics

{Received 23 January 1970;
revision received 31 March 1976

Recently, a paper on angle and angular momentum
operators in quantum mechanics has been published in
this Journall The authors discuss some difficulties
connected with the commutation relation

Cls dl=—1 1)

for angle ¢ and angular momentum L, (i=1). By taking
matriz elements of (1) between eigenstates fn and f,
of L, with eigenvalues m aund =, respectively, one
arrives at

(m—n) { fu, $fn) = —18ma. 2)

Furthermors, according to most quantum mechanics

textbooks, a commutation relation like (1) implies an
uncertainty relation

varL,- vard=> 1. 3)

As pointed out in Ref. 1, however, the relations (2)
and (3) are simply wrong. This is inmediately obvious
for Bq. (2) (take, e.g., m=n). Likewise, the uncertainty
relation (3) is violated for eigenstates of L, since for
such states varL,=0 and varg=x%/3.

The authors of Ref. 1 attempt to resolve this ap-
parent paradox by the statement that the commutation
refation (1) is also wrong. In fact, they claim that the
domain of definition of the commutator [ L,, ¢ ] does not
contain any nontrivial state vector and that, therefore,
Eq. (1) makes no sense at all. This last assertion,
however, is not true, as 1 will now explain.

As is well known, observables have to be represented
by self-adjoint operators. The only candidate for ¢ is



