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The thermodynamics of two types of isostructural phase transitions (IPT) is investigated in the 
framework of the Mitsui model using the molecular field approximation. The first type of IPT is 
obtained including four-particle interaction members into the Hamiltonian. The consideration 
dealing with the temperature dependence of the asymmetry parameter explains IPT of the second 
type. It is shown that the maximum of dielectric constant may appear either in the point of IPT 
or above it. The investigation carried out gives a qualitative explanation of the experimental 
facts in numerous crystals undergoing IPT. 

B paMIcax MOAeJIH MkiUYEf B 11pH6JIMzfteHmi MOJIeKyJIRpHOrO IIOJIFI MCCJIeAyeTCII TepMO- 
jpiHaMEfKa AByX TMIIOB Ef30CTPYKTYPHbIX $a30BbIX IIepeXOnOB. &II BO3HMHHOBeHHR 
O n H O r O  Ef3 HLlX He06XOnHMO IIpMCyTCTBMe B raMHJIbTOHHaHe YeTbIpeX9aCTM9HbIX B3aH- 
MOxetiCTBRfi, XJIR npYfOI'0 HajIH9Me TeMIIepaTypHOB 3aBMCMMOCTM IIapaMeTpa BCMM- 
MeTpRM. nOKa3aH0, 9 T O  MaKCMMYM aM3JIeKTpH9eCKOB IIPOHH~aeMOCTLl M O X e T  IIOIIBLlTbCR 

BaHHe II03BOJIReT KaqeCTBeHHO O6%RCHIITb 3KCnepMMeHTaJIbHbIe HaHHbIe B Bonbruoill 
KjfaCCe KpHCTaJIJIOB, MCnbITbIBaIO~MX M30CTPYKTYPHbIe IIepeXOnbI. 

KaK B caivoti Towe ~ l 3 o c ~ p y ~ ~ y p ~ 0 1 - 0  nepexoaa, Tax H Bbme ee. IIposeAeHHoe Mccneao- 

1. Introduction 
Phase transitions occurring without any change in the symmetry of the crystalline 
lattice are called isostructural phase transitions (IPT; see, e.g. Barma et al. [l]). Now 
a rather large quantity of crystals showing IPT are known, e.g. some superionic con- 
ductors [ 2 ] ,  (NH4)3H(S04)2 [3], Ca,Pb(C,H,COO), and Ca.&3r(C2H,COO), [4], SnCl, - 
. 2 H,O [5]. Near the 1PT point Ti various thermodynamic properties - specific heat, 
dielectric constant, etc. - show an anomalous behaviour. However, the appearance 
of these anomalies may be different going from crystal to crystal. So in (NH,),H(SO,), 
during IPT from the V I  to  the VII  phase the dielectric constant shows a weak bend [3] 
only. But in SnCl, . 2 HzO near Ti E increases by three orders [6]. The character of 
the behaviour of the order parameter P near Ti is one of the main reasons leading to 
the qualitative difference of one IPT from another. 

It is well known that during the usual second-order phase transition P = 0 a t  
temperatures T > T, and P =j= 0 at T < T, and when T -.. 0, P -.. 1 [7]. 
I n  IPT case we may distinguish two essentially different kinds of P ( T )  behaviour. 

First, a t  Ti the parameter P performs a jump from the value 0 < PI < 1 to 
PI < Pz 5 1 - (Fig. l a ) .  The jump value AP = P2 - PI may be AP 5 1 and 
AP < 1 as well. AP = 0 is also possible but then the P ( T )  dependence shows a bend 
at  the Ti point. These transitions are called isostructural phase transitions of the first 
type - IPT-1. They are specific to the largest part of the crystals mentioned above 
[ Z  to 51. 

l) 52 K, Pozhelos. Vilnius 232600. USSR. 
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Fig. 1. Schematic representation of two types of P(T) dependences undergoing IPT. Ti is the 
IPT point, T, is the point of the usual phase transition 

Second, it may occur that P a t  T = Ti performs a jump from the value Pl > 0 
to P, < 0 - Fig. 1 b. The best example, showing such P ( T )  behaviour is the crystal 
SnCl, - 2 H,O [5]. This type of isostructural transitions will be called IPT-2. 

Further we shall show that the behaviour of the thermodynamic properties for these 
two types of IPT is quite different. 

A change of P(T) sign was observed, e.g. in (NHJJ30, [S] and in a number of fer- 
rites [S]. However, the appearance of P( Tk)  = 0, where 'r, is the so-called compensa- 
tion point, is not related with IPT. Around Tk  no singularities in the behaviour of the 
macroscopic properties occur, while in SnC1,. 2 H,O specific heat and dielectric con- 
stant show great anomalies [6, 101. 

In this paper the thermodynamics of both types of IPT will be studied in t.he frame- 
work of Mitsui's [ll] model using the molecular field approximation (MFA) quite suf- 
ficient for the qualitative explanation of IPT. 

There are several papers (see [3 ,4 ,  12, 131) devoted to the IPT problem. However, 
in these works the analysis was made on the basis of a phenomenological free energy 
expansion [7] with addition of some new members. But i t  appeared rather difficult to 
understand the nature of IPT on the phenomenological level. More consecutive would 
he the addition of extra interactions to the microscopic Hamiltonian and the calcula- 
tion of the particle function with this energy. This would allow to describe the variety 
of IPT to a rather full extent. 

2. The Model Hamiltonian 

We consider the Hamiltonian of a two-sublattice model, 

X = J e , + 3 e , ,  
3, = - f c JtJ(StS7 + W j )  - c KJWj - 

23 . 

where the variables si = I f l ,  a% = 5 1  are related to  two different sublattices, J,ij and 
k'ij are the potentials of pair interactions among the spins in the same and different sub- 
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lattices, respectively, A is a parameter characterizing the asymmetry of the two- 
minima potential, H the external field, & and w$l are the potentials of four-particle 
interactions. The Hamiltonian (1 a) was proposed by Mitsui [ll] to characterize the 
phase transition in Rochelle salt and later was often used in the investigations of 
transitions in various ferroelectrics [14 to  161. The Hamiltonian ( l a )  may be also 
used to describe ordering in superionic conductors [2]. If one assumes ni = f (1 + ai), 
pi = f(1 + si), then the Hamiltonian of a superionic conductor of type [17] 

X, = - 2 [Jii)nin, + J$;)pip, + J!;’n,p,] - E~ ni - e2 C pt 

In MFA the free energy F = -T In Sp exp (-3t?/T) may be written 

ij i a 

obtains the form (1 a). 

- T (ln 2 ch Hl/T  + In 2 ch H 2 / T )  , 
HI = J S  + KIS + 2v19 + 2 ~ ~ 8 0 ~  + A + H , 
H2 = JIS + Ks + 2w1a3 + 2v&’a - A + H , 

where IS 3 (IS$), s 

Vl = 2 Vijk l ,  W 2  

( s ~ )  are the average values of spins, J = C Jjj, K = Kij, 
ij i j  

(1) (2) 2 vijkl. Convenient for further analysis the notations 
ijkl ijkl 

transform expression (2) into 

F = 6’ - a$ + 3g1(t4 + 7*) + 6g26V2 - 
- t(ln 2 ch ,!?Hi + ln 2 ch BHi) , (3) 

Hi = 6 - a7 + 2g1(E3 + q3) + 2gz67(6 + 7) + Y + h * 

Hi = 5 + a7 + 2gl(E2 - q3) - 29&(t - 7) - y + h .  

The equilibrium values of 6 and 7 can be obtained from the condition aFla6 = 
= aapq = 0, 

5 = f (th/9H; + th,!?Hi ), = + (th@H; - th,!?H;). (4) 

The thermodynamics of transitions (3), (4) in the case gl = 9% = 0 and A = const 
is well known [18]. There are several regions (depending on the ratio between the par- 
ameters a and y )  where the phase transition to  the state with t =/= 0 can occur [ l l ,  141. 
However, the influence of the members g,, g2 on transition thermodynamics was never 
consecutively investigated. It is interesting. to  mention that four-particle interaction 
terms in (3) may have deformation origin as we11.2) We may assume that the inter- 
action potentials Jtj and K,j in (1 a) depend on distance and, correspondingly, on de- 
formation (in MFA, only on homogeneous deformation), 

Jij = J + J’u,, , Kij = K + K‘u,, , (5) 

2, For this remark we are thankful to  Dr. E. V. Kholopov. 
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where the dash means differentiation with respect to the coordinate, u,, is the volume 
deformation tensor. Putting ( 5 )  into (1 a) and finding the free energy in NFd as in [19] 
we obtain the former free energy expression (3), with g, M (J' - K')2.  

The influence of g,, g, on the thermodynamic properties of IPT-1 is presented in 
Section 3. The temperature dependence of d qualitatively explaining IPT-2 is shown 
in Section 4. 

3. The First Type of Isostructural Phase Transition (IPT-1) 

For simplicity we limit our investigation to the region a + 1 > 2y ,  la1 < 1, and take 
h = 0. When gl = g2 = 0 a second-order phase transition to the state [ + 0 occurs. 
Our aim is to show how the four-particle interactions lead to IPT. The necessary 
condition for IPT-1 to occur is 

J'2(62 -.+ 1 9 7 2  4 0,  Ti) = Fl(E1 =t. 0,  v,+ 0, Ti) 9 (6) 
where F,, Fo, are the free energies determined by (3)) fl, 7,  the equilibrium values of 
the order parameters a t  T = Ti + 0,  E2, v2 a t  T = Ti  - 0. With the aim of investigat- 
ing the temperature dependence of E near T ,  ( T ,  2 Ti)  we expand equation (4) with 
respect to  6' = 6 + 2gJ3 while neglecting the constant g2 which makes no contribution 
to  the present consideration. The /$$' value can be obtained from (4) 

(7) 

We can also expand the free energy Fl from (6) near T ,  with respect to the par- 
ameter 86'. Limiting ourselves to the second-order term in is[' we obtain 

On the other hand, F, a t  T = Ti - 0, when Ti  is sufficiently low, can be written as 

(9) P, w -1 - g,. 

The comparison of (8) and (9) yields that a t  

PT is possible. Thus, gl < 0, because considering (lo), theassumptions (A(t) /B([))  < 1 
and A(<) < 1 were made. 

Some tendencies of the f (  T) behaviour were established solving the exact equations 
(4) with a computer. 

The dependence of order parameter E on t = ( T ,  - T ) / T ,  for various values g, 
and fixed cc = 0.5, y = 0.1, and g2 = 0 is shown in Fig. 2. IPT-1 is not observed a t  
low IgJ, but beginning from g1 w -0.17 a small jump & on the [(t) dependence 
appears. It indicates the occurrence of IPT-1. A further increase of Ig,] causes the 
decrease of the difference ( T ,  - Ti ) /T ,  and the increase of the jump value &. 
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- cT;-n/r, 
Fig. 2 Fig. 3 

Fig. 2. The behaviour of the order parameter E on ( T ,  - T) /Tc  for various values of gl. - 

Fig. 3. The dependence of the dielectric constant e on ( T ,  - T) /Tc  for g1 = -0.24 

g1 = -0.16, - - - -  -0.2, - * -  -0.24, --- -0.27 

Beginning from g, w -0.265 IPT-1 vanishes (Ti + TJ and the system jumpsab- 
ruptly from the state [ = 0 to the fully ordered one [ = 1. It resembles the analogous 
[ (T )  behaviour in the Slater model [20] for KDP. A further advance of lgJ gives no 
account on the transition order. It should be noted that the variation of other par- 
ameters a, y, and g, (in permissible limits) qualitatively does not change IPT-1. 

Therefore, four-particle interactions or deformation effects mentioned in (5) are 
the main parameters responsible for IPT-1 occurrence. 

The analysis of the temperature dependence of the dielectric constant E = (df/dh)h=o 
and specific heat C = -T (a2F/aT2) shows thatthe behaviour of C ( T )  and E ( T )  near 
Ti  qualitatively differs. In  Fig. 3 the dependence E(T)  for gl = -0.24 is presented. 
When t ----L 0 ,  the Curie-Weiss law E ( T )  ~ t - 1  is valid. At T --L Ti the E ( T )  dependence 
shows a small bend. A similar E(T)  behaviour was observed in (NH,),H(SO,), at  the 
pressure p w 5.2 to 5.4 kbar [3]. In Table 1 the ratios of specific heat jumps AC a t  
T, and Ti points due to gl at a = 0.5, y = 0.1, g, = 0 are presented. The values 
AT = ( T ,  - Ti) /T ,  and A[ = &Ti + 0) - [(Ti - 0) are also presented there. 
Table 1 shows that the jump (AC) at T = Ti can be both of the same order as (AC) 
a t  T = T ,  and considerably exceed it, contrary to E (  T) where E( T,) > E (  Ti) for all gl. 

The above results qualitatively describe the experimental facts in several crystals. 
E.g. in superionic conductor RbAg41, two transitions were observed. One of them (at 
low temperature) is an isostructural phase transition of first type [2]. The experi- 
mental value AT w 0.42 in RbAg,I,. Then according to our theory (AC),, NN 1 . 5 ( A c ) ~ ,  

Table 1 

91 -0.2 - 0.22 - 0.24 - 0.26 

(T, - Ti)/Tc 0.41 0.27 0.14 0.02 

A t  0.25 0.43 0.61 0.88 

37 physiea ( b )  l l l j 2  
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and the jump of the order parameter U NN 0.25 in the Ti point. According to Johnston 
et al. (4C)Ti 2 (AC)T, in RbAgJ, [21]. However, the value of & at  Ti is unknown 
to us. I n  ferroelectric (NH,),H(SO,), a t  pressure p = 5.2 kbar, AT w 0.11. Our 
theory a t  AT N 0.11 gives & w 0.6. According to Gesi [3] & = (Ps  - Pi) /Ps  m 
w 0.64, where P is the polarization, Pi = P(T,  - 0 )  and Pi = P(Ti  + 0). For these 
AT and At the specific heat jump (AC),, must exceed (AC)., by approximately 
ten times. However, the experimental data on the specific heat in (NH,),H(SO,), a t  
p = 5.2 kbar are unknown. 

4. The Second Type of Isostruetural Phase Transition (IPT-2) 

Comparing the energies U = (X) of various ordered phases from (1) ( T  -. 0) we 
obtain 

I U F 1  = - - J - K - V , - V ~ , - ~ B ,  
U F ~  = - - J - K - v l - v v , + 2 H ,  
l7-4~1 = -J + K - V ,  - V Z  - 2 4 ,  
UA4F2 = -J + K - v, - v, + 2 A .  J 

I n  F1 phase (8) = (a) = 1, in F2 (8) = (a) = -1, in AF1 (8) = 1, (a) = -1, 
and in AF2 (8) = -1, (a) = 1;  (11) shows that when H = 0, K < 0, r ]  > 0, the 
AFl state is more favourable and when K < 0, A < 0, the AF2 state appears. The 
symmetry of AF1 and AF2 phases will coincide if not only si and a$ but also d simul- 
taneously change sign. 

Now it would be useful to  remember the six-vertex Baxter model in external 
staggered field S [23]. The field S acting on every one of six vertices changes the 
energy of only two “antiferroelectric~’ ones, while the action of direct fields does not 
change their energies. It can be seen from (l), (11) that the asymmetry parameter A 
influences only the energies of antiferroelectric states. Therefore, the asymmetry 
parameter A in Mitsui’s model (1) is analogous to Baxter’s stepped field S (if to make 
no difference between internal and external fields). 

The thermodynamics of the transition described by Hamiltonian (1 a) a t  d = const 
was investigated in various approximations [14,23,24]. It is interesting to consider 
the case A = d ( T )  assuming that near the temperature Ti A turns to zero in agree- 
ment with the simplest linear rule 

d == do(T - T i ) ,  (12) 

where do > 0,  A > 0 a t  T > Ti and A < 0 a t  T < Ti. The introduction of the T 
dependence of d permits to describe qualitatively the thermodynamic properties of 
IPT-2. It is noteworthy that a dependence analogous to (12) was assumed in Baxter’s 
staggered field S model when describing the transition in SnCl, . 2 H,O [5]. We con- 
sider the case K < 0 or la1 > 1.  Then t= 0, and (3) can be written 

F = a$ - 2t In 2 ch ,8(doti + av) , . (13) 

where T~ = t - ti. Here and further a will mean la\. Besides, in (3) we took g1 = 0, 
g2 = 0, because these terms have no influence on IPT-2. It follows from (13) that a t  
do= 0 the phase transition point t ,  = a. Equation (4) for the definition of the equilib- 
rium value q becomes 

v = th@(A,zi + aq) 5 thcx . (14) 
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Expressions (13), (14) are invariant with respect to a simultaneous change of 
signs 7 - -7, ti + -ti. Therefore, 

’(7, t i )  = F ( - 7 ,  - t i )  + 0 7 (15) 
and the symmetry of the system on both sides of ti = 0 is the same. At ti = 0 and 
t = t - a = 0, when 7 = 0, the symmetry of the system differs from (15). This may 
be easily noticed if one compares (15) and P(q = 0, ti = 0) = -2t In 2. From (13), 
(14) we obtain the values of specific heat C ,  dielectric constant E ,  and “staggered” 
susceptibility E = l/(aA/aq) 

2t(qd0 -&)2 C =  
t c h 2 a  - a ’  

- 
(16) 

1 
t ch2& - a ’ & =  

1 
t chza  - 1 ’ E =  

where q = 1 if ti > 0 and q = -1 if ti < 0. Expressions (13), (14), (16) determine 
the thermodynamics of IPT-2. However, before discussing the results which can be ob- 
tained from (13), (14), (16) with the help of a computer, we tried to solve the problem 
analytically in various limiting cases. 

4.1 The thermodynamics of the transition for low q 

I n  order to investigate analyticslly the singularities of IPT-2 thermodynamics we 
studied the case ti < 1 , t  < 1 andb = a - 1 < 1.  Then7 < 1 and we can expand (12) 
in a series with respect to 7. Leaving only linear terms in t and ti and the terms of 
fourth order in 7 ,  we obtain 

Then the equation describing q may be written 

q3 qt - AOti + - = 0 .  
3 

The specific heat C, = I/& and X = 11; are 

We shall investigate the dependences of 7 ,  C, x a t  different t, ti, do and for sim- 
plicity consider x w 2. We introduce ti = t + p, where lpl Q a. Then, depending on, 
the sign of p, three regions with qualitatively different behaviour of thermodynamic 
functions can appear. 

(i) ,LA = 0 
In  this case t = ti and ( lS) ,  (19) at  It1 - 0 and It1 Q A:, give 



572 V. E. SCHNEIDER and E. E. TORNAU 

Here the upper sign corresponds to the region t > 0, and the lower -t < 0. 
It may be seen that a t  the point of IPT-2 z, = 0 the order parameter r j  changes its sign 
and E and C become infinite in accordance with the rule t-2/3. This was noticed in 
[4, 12, 131. However, contrary to their results, i t  follows from (20) that even a t  t = ti 
the dependences r j ( t ) ,  C ( t ) ,  and x(t) are not fully symmetric with respect to the point 
t = 0. 

(ii) p > 0. 
We investigate first the temperature region It1 -. 0, but ti + 0 and suppose that 

ti > It1 or more strictly ti > 1t13/2 Then, solving equation (18) we obtain 

where the upper sign corresponds to the region t > 0 and the lower to t < 0. 
Now we consider ltil -. 0, but It[ + 0. Then a t  ltil < 1213/2 dr1 as in (21) we obtain 

where the upper sign notes ti > 0 and the lower zi < 0. 
It follows from (21)) (22) r j ( t  = 0) = (36 , ,~ )~ /3 .  When ti - 0 + 0, 7 - (3p)l12, 

and when ti -. 0 - 0,  r j  -+ - (3p)'l2. Thus, in the point of IPT-2 ti = 0 the order 
parameter r j  performs a jump drj = 2 ( 3 ~ ) l / ~ .  It is of interest to note that the maxima 
of the specific heat C,,, and dielectric constant E , , ~  may be reached a t  different tem- 
peratures. It follows from (21)) (22)) that C = Cm,, a t  ti = 0 only. Comparing 
xr = x(z = 0) = ( 3 ~ l , p ) ~ / ~  and xz = x(ti = 0) = 2p we obtain that a t  yo = $ ( 2 ~ ) ~ / ~  > 
> A,, x = xmin (or E = E,,,) when t - 0. If yo  < do, then x = near ti - 0. 
Moreover, the x minimum a t  yc  > do appears in the point t obtained from (18)) (19), 

(23) 
but a t  yo  < do, x = xmin is always a t  ti = 0. 

Thus, during IPT-2 x may become minimum not in the point of the isomorphic 
transition ti = 0, but in the region T > Ti, while C = C,,, a t  T = T i  only. This 
fact found experimentally in SnCI, . 2 H20 was discussed from another viewpoint in 
the work of Salinas and Nagle [25]. 

t FVN + (ti - + A;) > 0 

(iii) p < 0 
This case can be investigated similarly to  ,LL > 0. At (ti[ -. 0 and \ti\ < t 3 / 2 A c 1  we 

obtain 
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At It1 --t 0, It1 < (A, lti13/2), r j  and x are expressed as 

573 

x = ( 3 A , l t i l ) 2 / 3  T 7 . (25) 
I n  (24) the upper sign corresponds to the region ti > 0 and in (25) to t > 0. For 

simplicity we excluded the expressions of G in (24), (25). 
Contrary to the case ,u > 0, the order parameter r j  near ti = 0 approaches zero 

linearly r j  cv jzil. The behaviour of all thermodynamic functions is symmetric with 
respect to the point zi = 0. The maximum of specific heat as previously appears in 
the point ti = 0. However, x = Xmjn may occtir a t  ti + 0. If A, > & J ~ / ~ ,  then x = xmin 

at  ti = 0 ,  but if A, < $p1I2, then x = xmin only a t  ti < 0. 
Thus, the analytical investigation shows that the assumption (12) allows to  explain 

qualitatively the occurrence of IPT-2. Moreover, various temperature dependences 
r ] (  T ) ,  x( T ) ,  and C( T )  are described mainly by two parameters: “closeness” t ,  - ti = ,LL 
and A,. 

4.2 -Vumerical analysis 

Here we present the results of the numerical investigations of expression (13), (14), 
and (16) obtained with the help of a computer. 

In  Fig. 4 to 7 the calculated dependences of 7, E ,  C o n t  = t - a and ti = t - ti a t  
a = 1.2 and various values of p and A are shown. As seen from Fig. 4 the character 
of r( T) essentially depends on A, and p > 0. Thus, for low d,andp > 0 witht decrease, 
~ ( t )  increases till the IPT point (ti = 0), while a t  large A,, q( t )  (t decreasing) decreases 
itself. Here, the case is possible, when r j ( t )  = const in a broad enough temperature 
region ti > 0 (Fig. 4, curve 2). The value of the order parameter jump Aq (ti = 0) 
decreases while p decreases, but does not depend on A,. 

Fig. 5 shows that the maximum of specific heat for all values of the model par- 
ameters occurs in the point ti = 0 but E = emsx can be either a t  t > 0 or ti = 0 as  
well. 

, m i  2 

c 
03 

0 

- 

I 1 I 

-03 5 - 

-G6E -a22 -a 1 0 

Fig. 4 Fig. 5 

Fig. 4. The dependence of the order parameter 7 on t = t - a at p > 0 and a = 1.2. (1) p = 46, 
A ,  = 0.1; (2) a/6,  1.0; (3) ~ / 1 5 ,  0.1; (4) ~ / 1 5 ,  1.0; (5) ~/120, 0.1; (6) ~/120, 1.0 

Fig. 5 .  The dependence of dielectric constant E and specific heat C on ti (= t - t i )  at p > 0 and 
a = 1.2. Dashed lines G ,  continuous E .  The notations of the curves are the same as in Fig. 4 
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1 1  I 
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Fig. 6 

Fig. 6. The dependence on ti = t - ti a t  p < 0 and a = 1.2. The notations of the curves are 
the same as in Fig. 4 having changed ,u -+ - p  

Fig. 7. The dependences of E and C on ti a t  p < 0 and a = 1.2. The curve notations as in Fig. 6 

When p < 0 the order parameter q(z) (Fig. 6) smoothly passes through zero in the 
point ti = 0. The maximum of E (Fig. 7) can be reached not necessarily a t  ti = 0, 
whereas C = Cmin only in the point zi = 0. 
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