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The thermodynamics of two types of isostructural phase transitions (IPT) is investigated in the
framework of the Mitsui model using the molecular field approximation. The first type of IPT is
obtained including four-particle interaction members into the Hamiltonian. The consideration
dealing with the temperature dependence of the asymmetry parameter explains IPT of the second
type. It is shown that the maximum of dielectric constant may appear either in the point of IPT
or above it. The investigation carried out gives a qualitative explanation of the experimental
facts in numerous crystals undergoing IPT.

B pamrax momenu Muuyu B NpuOGIIMKEeHHH MOJEKYIAPHOr0 IOJA MCClenyercA TepMo-
OMHAMMKA [BYX THUIOB MBOCTPYKTYPHBIX ()a30BEIX TepeXomoB. 1A BO3HHKHGBEHHA
OMHOr0 U3 HUX HeoGXOOMMO IIPHCYTCTBHME B IaMHUJbTOHHWAHE YeTHIDEXHYACTHYHBIX B3aH-
MOZeHCTBHI, NAA APYrOro HAJMUMAe TeMIepaTypHO! 3aBHCUMOCTM IlapaMeTpa AacHM-
metpuu. [TokasaHo, 4T0 MAKCHMYM AMIIEKTPUUECKON MPOHAIAeMOCTH MOMKET OABUTHCA
KaK B CaMoil TOUYKe M30CTPYKTYPHOro IepexXopa, Taxk u Boimle eé. IIpoBegennoe uccieno-
BaHHWe MO03BOJIAET KAYEeCTBEHHO OGBACHUTH 3KCIEPHMEHTAJIbHbie NaHHBE B GOJBLIOM
Ki1acce KPUCTAVLIIOB, UCIIBITHBAIOINUX U30CTPYKTYPHbBIE ePeXOTHl.

1. Introduction

Phase transitions occurring without any change in the symmetry of the crystalline
lattice are called isostructural phase transitions (IPT; see, e.g. Barma et al. [1]). Now
a rather large quantity of crystals showing IPT are known, e.g. some superionic con-
ductors [2], (NH,),H(80,), [3], Ca,Pb(C,H;CO0); and Ca,Sr(C,H;CO0); [4], SnCl, -
- 2 H,0 [5]. Near the 1PT point 7'; various thermodynamic properties — specific heat,
dielectric constant, etc. — show an anomalous behaviour. However, the appearance
of these anomalies may be different going from crystal to crystal. So in (NH,),H(SO,),
during IPT from the VI to the VII phase the dielectric constant shows a weak bend [3]
only. But in SnCl, - 2 H,0 near 7 ¢ increases by three orders [6]. The character of
the behaviour of the order parameter P near 7' is one of the main reasons leading to
the qualitative difference of one IPT from another.

It is well known that during the usual second-order phase transition P = 0 at
temperatures 7' > T, and P 2= 0 at T < 7T, and when 7 — 0, P — 1 [7].
In IPT case we may distinguish two essentially different kinds of P(7') behaviour.

First, at T'; the parameter P performs a jump from the value 0 < P; <1 to
P, < P,=1 — (Fig. 1a). The jump value AP = P, — P, may be AP <1 and
AP <1 as well. AP = 0 is also possible but then the P(7) dependence shows a bend
at the T'; point. These transitions are called isostructural phase transitions of the first
type — IPT-1. They are specific to the largest part of the crystals mentioned above
[2to 5].

1) 52 K, Pozhelos, Vilnius 232600. USSR.
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Fig. 1. Schematic representation of two types of P(T) dependences undergoing IPT. T is the
IPT point, 7, is the point of the usual phase transition

Second, it may occur that P at T = T; performs a jump from the value P; >0
to P, << 0 — Fig. 1b. The best example, showing such P(7T') behaviour is the crystal
SnCl, - 2 H,O0 [5]. This type of isostructural transitions will be called IPT-2.

Further we shall show that the behaviour of the thermodynamic properties for these
two types of IPT is quite different.

A change of P(T) sign was observed, e.g. in (NH,),S0, [8] and in a number of fer-
rites [9]. However, the appearance of P(T)) = 0, where 7'y is the so-called compensa-
tion point, is not related with IPT. Around T’ no singularities in the behaviour of the
macroscopic properties occur, while in SnCl, - 2 H,O specific heat and dielectric con-
stant show great anomalies [6, 10].

In this paper the thermodynamics of both types of IPT will be studied in the frame-
work of Mitsui’s [11] model using the molecular field approximation (MFA) quite suf-
ficient for the qualitative explanation of IPT.

There are several papers (see [3, 4, 12, 13]) devoted to the IPT problem. However,
in these works the analysis was made on the basis of a phenomenological free energy
expansion [7] with addition of some new members. But it appeared rather difficult to
understand the nature of IPT on the phenomenological level. More consecutive would
be the addition of extra interactions to the microscopic Hamiltonian and the calcula-
tion of the particle function with this energy. This would allow to describe the variety
of IPT to a rather full extent.

2. The Model Hamiltonian

We consider the Hamiltonian of a two-sublattice model,

H =, + Iy, M
Hy = — 5 2 Jylss; + 010y) — T Kysio; —
15 ij .
— A% (i—0) —HZ (s + 09, (la)
Ho=—%3 V(001001 + 5:818u31) — D} VOIS 5 (1b)
4] 7]

where the variables s; = +1, 0, = 41 are related to two different sublattices, J; and
K;;are the potentials of pair interactions among the spins in the same and different sub-
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lattices, respectively, 4 is a parameter characterizing the asymmetry of the two-

minima potential, H the external field, v§}2, and vf—?,z, are the potentials of four-particle
interactions. The Hamiltonian (1a) was proposed by Mitsui [11] to characterize the
phase transition in Rochelle salt and later was often used in the investigations of
transitions in various ferroelectrics {14 to 16]. The Hamiltonian (1a) may be also
used to describe ordering in superionic conductors[2]. If one assumes n; = + (1 + 0),
p; = +(1 + &), then the Hamiltonian of a superionic conductor of type [17]

Hy = — fj'" TS nmy + JPpips + I np] — & ,12 Ny — & X Ps
obtains the form (1a).

In MFA the free energy F = —7T In Sp exp (—¥#/|T) may be written
2+ gt
2

— T {(n2ch H)T + In2ch H,/T), 2
H, = Js + Ko + 20,8® + 2v,80% + 4 + H ,
H,=Jo + Ks + 2v,0° + 2v,8% — 4 + H,

where o= (0,», § = {s;) are the average values of spins, J = ¥ J;;, K = 3, Ky,
i 1Y)
1 2 . . .
vy =3, vﬁ-ﬂzl, Vg = D, ’U%}Zz. Convenient for further analysis the notations
ikl ikl

F=1J

+ Kso + %vl(s‘* + o) + 3vys%0? —

_K—J 4 T 1 sto
CEExTS VSRR TERFy P e
$—g¢ v+ _ 3y — H

3 ATxTs T ETT PRI

transform expression (2) into
F =& —an® + 3q,(8* + %) + 608" —
— (ln 2 ch BH; + In 2 ch BH;) , (3)
Hi =& —an+ 208 + 7°) + 25 + 1) +y + b,
Hy =&+ an+ 20,8 —7°) — 2¢n(€ —m) —y + .
The equilibrium values of & and 7 can be obtained from the condition 0F /3§ =
= 0F[on =0,
§=1(thfH; +thpH;), =% (thpH; — thpHY . ()
The thermodynamics of transitions (3), (4) in the case g, = g, = 0 and 4 = const
is well known [18]. There are several regions (depending on the ratio between the par-
ameters o and y) where the phase transition to the state with & == 0 can occur [11, 14].
However, the influence of the members g,, ¢, on transition thermodynamics was never
consecutively investigated. It is interesting-to mention that four-particle interaction
terms in (3) may have deformation origin as well.?) We may assume that the inter-

action potentials J;; and K;; in (1a) depend on distance and, correspondingly, on de-
formation (in MFA, only on homogeneous deformation),

Jl] = J "["‘ J’uaa ’ Kl] = K + K,uo‘“ 2 (5)

%) For this remark we are thankful to Dr. E. V. Kholopov.
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where the dash means differentiation with respect to the coordinate, u,, is the volume
deformation tensor. Putting (5) into (1a) and finding the free energy in MFA as in [19]
we obtain the former free energy expression (3), with g, =~ (J' — K')%

The influence of ¢y, g, on the thermodynamic properties of IPT-1 is presented in
Section 3. The temperature dependence of 4 qualitatively explaining IPT-2 is shown
in Section 4.

3. The First Type of Isostructural Phase Transition (IPT-1)

For simplicity we limit our investigation to the region a + 1 > 2y, [a] <1, and take
h = 0. When ¢; = ¢, = 0 a second-order phase transition to the state & == 0 occurs.
Our aim is to show how the four-particle interactions lead to IPT. The necessary
condition for IPT-1 to occur is

Folfy = 1,1 —0,T)) = F(§, 0,3, 0, T), (6)

where F, F, are the free energies determined by (3), &, 7, the equilibrium values of
the order parametersat ' = T 4 0,&,, n,at T = T'; — 0. With the aim of investigat-
ing the temperature dependence of & near 7', (T', = T;) we expand equation (4) with
respect to &’ = & 4 2¢,£% while neglecting the constant g, which makes no contribution
to the present consideration. The $& value can be obtained from (4)

’2~i4_(.€)_
(B&") ~ B
¢
A(C):athé‘-}—m—y, )
B(C)=al-%(%—thzc+“t;c),
E=(y —an+ 2gP)t.

We can also expand the free energy F; from (6) near 7, with respect to the par-
ameter S§'. Limiting ourselves to the second-order term in 8¢’ we obtain

AX0)

F, ~ —A( V= — e, 8
L~ A B = — 5 ®)
On the other hand, F,at T = T — 0, when T'; is sufficiently low, can be written as
Fy~—1—g¢g. (9)

The comparison of (8) and (9) yields that at

4%8)
~ —l1 1

PT is possible. Thus, g, <0, because considering (10), the assumptions (4()/B()) <1
and A(l) <€ 1 were made.

Some tendencies of the &{T) behaviour were established solving the exact equations
(4) with a computer.

The dependence of order parameter & on 7 = (T, — T)/T, for various values g,
and fixed o = 0.5, y = 0.1, and ¢, = 0 is shown in Fig. 2. IPT-1 is not observed at
low |g], but beginning from g, ~ —0.17 a small jump A& on the §(r) dependence
appears. It indicates the occurrence of IPT-1. A further increase of |g;| causes the
decrease of the difference (7', — T')/T, and the increase of the jump value A&.
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Fig. 2. The behaviour of the order parameter £ on (T, — T)/T, for various values of g,.
gr=—016, ---- —0.2, — - — —0.24, ——— —0.27

Fig. 3. The dependence of the dielectric constant & on (T'; — T)/T, for g, = —0.2¢4

Beginning from ¢, ~ —0.265 IPT-1 vanishes (T; — T,) and the system jumps ab-
ruptly from the state & = 0 to the fully ordered one § = 1. It resembles the analogous
&(T) behaviour in the Slater model {20] for KDP. A further advance of |g,| gives no
account on the transition order. It should be noted that the variation of other par-
ameters @, v, and g, (in permissible limits) qualitatively does not change IPT-1.

Therefore, four-particle interactions or deformation effects mentioned in (5) are
the main parameters responsible for IPT-1 occurrence.

The analysis of the temperature dependence of the dielectric constant ¢ = (d§/dh)a—o
and specific heat C = —7T (8*F[087*) shows thatthe behaviour of C(T) and &(T) near
T, qualitatively differs. In Fig. 3 the dependence &(r) for ¢, = —0.24 is presented.
When v — 0, the Curie-Weiss law &(z) ~ 7! is valid. At 7 — T, the £(z) dependence
shows a small bend. A similar &(r) behaviour was observed in (NH,),H(SO,), at the
pressure p ~ 5.2 to 5.4 kbar [3]. In Table 1 the ratios of specific heat jumps AC at
T, and T; points due to ¢, at a = 0.5, y = 0.1, g, = 0 are presented. The values
AT = (T, — T)|T, and Af = §T; + 0) — &(T; — 0) are also presented there.
Table 1 shows that the jump (AC) at T = T; can be both of the same order as (AC)
at T = T, and considerably exceed it, contrary to &(7T') where &(T,) > &(T;) for all ¢,.

The above results qualitatively describe the experimental facts in several crystals.
E.g. in superionic conductor RbAg,I; two transitions were observed. One of them (at
low temperature) is an isostructural phase transition of first type [2]. The experi-
mental value AT ~ 0.42 in RbAg,I;. Then according to our theory (AC)z, ~ 1.5(AC)r,

Table 1
7. —02 —0.22 —0.24 —0.26
(T, — T)/T, 0.41 0.27 0.14 0.02
Ag 0.25 0.43 0.61 0.88
(AC)r/(AC)p, 1.5 4.5 115 12,5

37 physica (b) 111/2
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and the jump of the order parameter A ~ 0.25 in the T'; point. According to Johnston
et al. (AC)r, £ (AC)z, in RbAg,J; [21]. However, the value of A£ at 7T is unknown
to us. In ferroelectric (NHy),H(SO,), at pressure p = 5.2 kbar, AT ~ 0.11. Our
theory at AT ~ 0.11 gives Af ~ 0.6. According to Gesi [3] Af = (Py — P;)/Ps ~
~ (.64, where P is the polarization, Py = P(T; — 0) and P, = P(7; + 0). For these
AT and Af the specific heat jump (AC)y, must exceed (AC)p, by approximately
ten times. However, the experimental data on the specific heat in (NH,),H(SO,), at
p == 5.2 kbar are unknown.

4. The Second Type of Isostructural Phase Transition (IPT-2)

Comparing the energies U = (H#) of various ordered phases from (1) (T — 0) we
obtain

Upp = —J — K —vy, — v, —2H,
Ugps = —J — K —v, — v, + 2H, (11)
Uspp=—J + K —v, —v, — 24,
Uspe = —J + K —v; —v, + 24.

In F1 phase (s) = (o) =1, in F2 (8) = (oD = —1, in AF1(s) = 1,<0d> = —1,
and in AF2 (s) = —1, <o) = 1; (11) shows that when H = 0, K < 0, 4> 0, the
AT1 state is more favourable and when K < 0, 4 < 0, the AF2 state appears. The
symmetry of AF1 and AF2 phases will coincide if not only s; and o, but also 4 simul-
taneously change sign.

Now it would be useful to remember the six-vertex Baxter model in external
staggered field S [23]. The field S acting on every one of six vertices changes the
energy of only two “antiferroelectric” ones, while the action of direct fields does not
change their energies. It can be seen from (1), (11) that the asymmetry parameter /I
influences only the energies of antiferroelectric states. Therefore, the asymmetry
parameter / in Mitsui’s model (1) is analogous to Baxter’s stepped field § (if to make
no difference between internal and external fields). :

The thermodynamics of the transition described by Hamiltonian (1a) at 4 = const
was investigated in various approximations [14, 23, 24]. It is interesting to consider
the case 4 = A(T) assuming that near the temperature 7'; 4 turns to zero in agree-
ment with the simplest linear rule

d= 4T — Ty, (12)
where 4y >0, 4 >0at T > T, and 4< 0 at T < T;. The introduction of the T
dependence of 4 permits to describe qualitatively the thermodynamic properties of
IPT-2. It is noteworthy that a dependence analogous to (12) was assumed in Baxter’s

staggered field § model when describing the transition in SnCl, - 2 H,0 {5]. We con-
sider the case K < 0 or |a| > 1. Then £ = 0, and (3) can be written

F =ant —2tIn2 ch f(dyr; + an), . (13)

where 7; = t — ;. Here and further ¢ will mean |a|. Besides, in (3) we took g, = 0,
g, = 0, because these terms have no influence on IPT-2. It follows from (13) that at
dy= 0 the phase transition point ¢, = a. Equation (4) for the definition of the equilib-
rium value 1 becomes

1 = th B(dyt; + an) = thx . (14)



On the Theory of Isostructural Phase Transitions in Crystals 571

Expressions (13), (14) are invariant with respect to a simultaneous change of
signs 7 — —1), t; — —7;. Therefore,

F(n,v) = F(~n, —7) %0, (1)

and the symmetry of the system on both sides of 7; = 0 is the same. At 7; = 0 and
T=1t—a =0, when 1 = 0, the symmetry of the system differs from (15). This may
be easily noticed if one compares (15) and F(n = 0,7, = 0) = —2¢1n 2. From (13),
(14) we obtain the values of specific heat C, dielectric constant ¢, and “staggered”
susceptibility & = 1/(04/8n)

O — 2t(qAO_"'0‘)2
tchix —a’
1 - 1
_—_— S — 1
= o — 1 ¢ = fohia —a’ (16)

where ¢ =1 if 7, >0 and ¢ = —1 if 7; < 0. Expressions (13), (14), (16) determine
the thermodynamics of IPT-2. However, before discussing the results which can be ob-
tained from (13), (14), (16) with the help of a computer, we tried to solve the problem
analytically in various limiting cases.

4.1 The thermodynamics of the transition for low n

In order to investigate analytically the singularities of IPT-2 thermodynamics we
studied the case 7, € 1,7 €1 and b = a — 1 <€ 1. Then n < 1 and we can expand (12)
in a series with respect to 7. Leaving only linear terms in v and 7; and the terms of
fourth order in 7, we obtain

F=m?—24pm+ 2. (17)
Then the equation describing 7 may be written
3
m—mn+%=m (18)
The specific heat C, ¥ = 1/e and y = 1/¢ are
(qdy —m)® =
0 =S 2t ———— = 2 . v == 2 . ].9
P 1=t+7 r=1+b+17 (19)

We shall investigate the dependences of 7, C, y at different 7, 7;, 4, and for sim-
plicity consider y ~ ¥. We introduce 7; = v + u, where [u| <€ a. Then, depending on,
the sign of u, three regions with qualitatively different behaviour of thermodynamic
functions can appear.

(i) p=0

In this case 7 = 7; and (18), (19) at |v] — 0 and |7] <€ 4, give

711

n = £(34, |7])}3 [1 F W} ,
1= (34, [7])*?® F I,

24%3q, 5713 20
Cr >0) = (31())2/3 { ~ B4y ], (20)
243 7 |z| 13
%<mzwﬁwp_wmm}
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Here the upper sign corresponds to the region v >0, and the lower —7 < 0.
It may be seen that at the point of IPT-2 7, = 0 the order parameter 7 changes its sign
and ¢ and C become infinite in accordance with the rule v—2%73. This was noticed in
[4, 12, 13]. However, contrary to their results, it follows from (20) that even at v = 1;
the dependences 7(7), C(t), and y(t) are not fully symmetric with respect to the point
7 =0.

(i) 4> 0.

We investigate first the temperature region |r| — 0, but 7; 4= 0 and suppose that
7; > |7| or more strictly 7; > |7]3/2 45 1. Then, solving equation (18) we obtain

1= (B [1 ¥ —L]

Bdm)
7 = (3457)% Fr,
2 .
A {[Ao— (34T (a £ @h
0%i

2

A.
1) & ale (g7 2 — 1)}

where the upper sign corresponds to the region r > 0 and the lower to 7 < 0.
Now we consider |7;] — 0, but |z| == 0. Then at |7;] < [7|¥2 45" as in (21) we obtain

4y |7yl ]

_ vzl 4 |
7 +(3 I { + 9 V3 7|32

. 3Ao Tl <
= E e
o=da+wid -6 m>1/212(1 F ol )y -

= Hr Lo 3 111)3’2)

3 Y|

£ 1l [y — B2 & Iy ( BTN 'ﬁ>}

where the upper sign notes 7; > 0 and the lower 7; < 0.

It follows from (21), (22) n(r = 0) = (3dyu)®. When 7; — 0 + 0, 7 — (3u)'/2,
and when 7; — 0 — 0,  — — (3u)!®. Thus, in the point of IPT-2 7; = 0 the order
parameter 7 performs a jump An = 2(3u)1/%. It is of interest to note that the maxima
of the specific heat Cpay and dielectric constant ey, may be reached at different tem-
peratures. It follows from (21), (22), that C = Cpax at 7; = 0 only. Comparing
1 = T = 0) = (34,u)*® and y, = y(z; = 0) = 2u we obtain that at y, = 2(2u)1/2 >
> Ay, = Ymin (OT & = émay) When 7 — 0. If y, < A, then g = ymin near 7; — 0.
Moreover, the 3 minimum at y, > 4, appears in the point r obtained from (18), (19),

TR (T =g 4 >0 (23)
but at y, < dg, % = Ymin is always at 7, = 0.

Thus, during IPT-2 y may become minimum not in the point of the isomorphic
transition 7; = 0, but in the region 7' > T, while C = Cp,y at T = T only. This
fact found experimentally in SnCl, - 2 H,0 was discussed from another viewpoint in
the work of Salinas and Nagle [25].

(iil) <0
This case can be investigated similarly to u > 0. At |vy] — 0 and |7;| < 3245 we

obtain
LT NP

n=x = T x=T+ o (24)



On the Theory of Isostructural Phase Transitions in Crystals 573
At lr] = 0, 7] <€ (4, 17;)%?), n and y are expressed as

n = — (34, |7;])/® [1 - W}

1= Bl F . (25)

In (24) the upper sign corresponds to the region 7, > 0 and in (25) to v > 0. For
simplicity we excluded the expressions of € in (24), (25).

Contrary to the case u > 0, the order parameter n near 7; ~0 approaches zero
linearly % ~ |17]|. The behaviour of all thermodynamic functions is symmetric with
respect to the point 7; = 0. The maximum of specific heat as previously appears in
the point 7; = 0. However, y = ymin may occur at7; 5= 0. If A, > u'/2, then y = Ymin
at 7; = 0, but if Ay < ul/?, then y = ymin only at 7; < 0.

Thus, the analytical investigation shows that the assumption (12) allows to explain
qualitatively the occurrence of IPT-2. Moreover, various temperature dependences
9(T), 2(T), and C(T) are described mainly by two parameters: “closeness” {, — #; = p
and 4.

4.2 Numerical analysis

Here we present the results of the numerical investigations of expression (13), (14),
and (16) obtained with the help of a computer.

In Fig. 4 to 7 the calculated dependences of 7, e, Cont =¢ —aandz; =1t — ¢ at
a = 1.2 and various values of y and 4 are shown. As seen from Fig. 4 the character
of n(T) essentially depends on Jgand u > 0. Thus, forlow A,and p > 0 withz decrease,
7(t) increases till the TPT point (v; = 0), while at large 4, 7(z) (v decreasing) decreases
itself. Here, the case is possible, when 7(r) ~ const in a broad enough temperature
region 7; > 0 (Fig. 4, curve 2). The value of the order parameter jump An (r; = 0)
decreases while u decreases, but does not depend on 4,.

Fig. 5 shows that the maximum of specific heat for all values of the model par-
ameters occurs in the point 7, = 0 but ¢ = gmax can be either at v >0 or r; = 0 as
well.

a6+
i w
&\0_3 B 15
0 L
0
-03F- 5
3
06 5 5+
/ 4
2
i | i 7
022 =01 0
T
Fig. 4 Fig. 5

Fig. 4. The dependence of the order parameter ont =¢t — aat u >0and ¢ = 1.2. (1) u = a/6,
4y = 0.1; (2) /6, 1.0; (3) a/15, 0.1; (4) a/15, 1.0; (5) a/120, 0.1; (6) a/120, 1.0

Fig. 5. The dependence of dielectric constant ¢ and specific heat C on 7; (=t — ¢;) at x >0 and
@ = 1.2, Dashed lines C, continuous ¢. The notations of the curves are the same as in Fig. 4
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Fig. 6. The dependence 7 on 7; = ¢ — £; at 4 << 0 and @ = 1.2. The notations of the curves are
the same as in Fig. 4 having changed 4 — —u

Fig. 7. The dependences of ¢ and C on 7; at 4 < 0 and @ = 1.2. The curve notations as in Fig. 6

When p < 0 the order parameter n(r) (Fig. 6) smoothly passes through zero in the
point 7; = 0. The maximum of ¢ (¥ig. 7) can be reached not necessarily at 7; = 0,
whereas C = Cp;, only in the point 7; = 0.
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