
int. j. prod. res., 1998, vol. 36, no. 2, 417± 436

From CAD to computer aided welding

O. LEGOFF² * and J. Y. HASCOEÈ T³

Within the context of integrated design, we propose a new approach for o� -line
programming of welding robots by interfacing a CAD modeller (geometric data-
base) and an arti® cial intelligence system (welding database). The CAD system
associated with our development, used to design the parts to be assembled, allows
us to generate welding paths automatically and to extract the assembly features
required to determine welding parameters. With these features, we propose a new
approach to generate welding parameters automatically in the GMAW process
with neural networks. We have chosen to use backpropagation neural networks
as this approach integrates database and modelling aspects. Moreover, a neural
net based system can easily be improved, it can enlarge its ® eld of application
using new experimental welding data. In this paper we present the system we have
developed for the generation of paths and then an approach using neural net-
works to determine welding parameters. We show how CAD features can be used
to determine the welding process, the welding wire and then to compute welding
parameters.

1. Introduction

Programming by apprenticeship is the mode currently used on almost all con-
tinuous welding robots. This kind of programming allows the operator to have an
immediate control of actions, but imposes the immobilization of the production tool
during apprenticeship. On the other hand, o� -line programming is done outside the
production site. In this approach, real elements of the welding cell are replaced by
computer models. This preparation can be realized with robot programming lan-
guages or with graphic supports (computer aided design). The purpose of our work
is to ensure the coupling of a CAD modeller, used to design parts to weld, and of an
arti® cial intelligence system which can automatically determine welding parameters
in the case of arc welding with the GMAW (Gas Metal Arc Welding) process.

In manual or semi-automated welding, the welder determines the welding para-
meters (current, tension, welding, speed, etc.) and the paths to follow. CAD-robotic
applications currently available allow the operator to de® ne the path point after
point by using the models of a CAD system. Nevertheless, they do not exploit the
geometrical elements to automatically generate both the paths and the welding
parameters. The choice of these parameters has to be proposed by the user, while
it could have been deduced from the features of the CAD models. Contrarily, some
softwares use the experience linked to the welding trade to generate operating para-
meters, but weak points of these applications are the CAD aspects and the de® nition
of paths.
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The ® rst part of our work, based on feature extraction, allows the operator to
generate welding paths and to extract the information needed for the choice of
welding parameters. Then, we propose an approach for the automatic generation
of these parameters. We have studied several methods before choosing to use back-
propagation neural networks.

In this paper we present the principles used for the generation of welding paths.
Then we explain in detail the process we have developed to take into account ele-
ments that intervene in the choice of welding parameters.

2. CAD and feature extraction

The ® rst part of our work exploits information contained in CAD models of
elements to assemble in order to generate the information needed for robotized
welding. We are going to de® ne the components of a welding path before giving
the principles of feature extraction and an example application.

2.1. De® nition of a welding path
Elements that have to be extracted from CAD models are (Fig. 1):

� Joint paths de® ned in the space by a set of successive positions and orienta-
tions of a local frame RJ (Detriche 1987), linked to beads, in relation to a
reference frame R0. These local frames are linked by geometrical elements
describing the bead bottoms.

� Characteristics that will allow us to choose welding parameters: angles between
parts, thicknesses, material and joint orientation already contained in the path
description.

2.2. Feature extraction
At this stage, the only data for the problem are the CAD models of the parts. We

have chosen to use a parametric surface representation of the objects that allows us
to compute all the elements needed for the generation of paths and for the extraction
of the assembly features. Our application uses a BeÂ zier model but any other para-
metric model can be used (B-spline, Nurbs, etc.). A welding path is therefore partly
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Figure 1. Welding path features.



composed of a set of n parametric curves that represent the bottom of the bead,
limited by n + 1 characteristic points. Considering the initial portion of a path, or a
s̀imple’ path, noted T1, de® ned between two parts P1

1 and P1
2, the components are

(Fig. 2):

� C1: the parametric curve that describes the bottom of the bead.

� R1
J0 and R1

J1: frames at characteristic points, themselves de® ned by:
± J1

0 and J1
1 : characteristic points,

± J1
Y 0

¾ ®
and J1

Y 1

¾ ®
: longitudinal axis that indicates the joint orientation,

± J1
Z0

¾ ®
and J1

Z1

¾ ®
: normal axis that corresponds to reference orientations for the

welding torch.

� g 1
0 and g 1

1 : angles between parts.

� E1
1,0,E1

1,1,E1
2,0 and E1

2,1: respectively thicknesses of P1
1 at J1

0 , of P1
1 at J1

1 then of
P1

2 at J1
0 and of P1

2 at J1
1 .

� M1
1 and M1

2 : materials which make up P1
1 and P1

2.

The process developed to extract all these data uses classical geometric opera-
tions: calculations of normals, tangents, surface intersections, etc. Nevertheless the
extraction of certain features, such as thickness, can be di� cult according to the
element geometries. The di� erent operations are not described here but the details
can be found in Lego� (1995). The de® nition of c̀omplex’ paths, whose beads are
composed of several parametric curves, consists in chaining several simple paths.

However, torch orientations ( J1
Zj

¾ ®
vectors) at characteristic points are de® ned by the

bisecting vectors of initial vectors stemming from simple paths. Indeed, during weld-
ing along a continuous path, at a given point, it is impossible to wait for a torch
reorientation that would produce an undesirable deposit of metal. So a single inter-
mediate orientation has to be used.

2.3. Application
During the di� erent stages of the creation of the welding paths the user only has

to choose the parts to weld and the paths on which he wants to create a joint. It is not
always easy to automate the choice of beads to realize to ensure a correct assembly,
for this choice depends on many parameters which are not included in computer
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Figure 2. Components of a simple path T1 .



models of elements (environment, supported e� orts, etc.). The proposed methods
have been developed within a CAD modeller (Euclid). Figures 3 to 6 show path
examples de® ned for the welding of a motorbike framework. The system shows path
representations and torch orientations; the characteristics that are not represented
(thickness, angles, etc.) are indicated to the operator and kept for the determination
of welding parameters.

The approach we propose allows us to extract all the characteristics of the
assembly that will be used for the welding robot program. Paths and torch orienta-
tions can be used to simulate and to program the robot movements; the other
features, needed for the choice of welding parameters, are exploited later.

3. Neural networks and welding parameters

Because of the lack of knowledge of the phenomena that intervene in the welding
electrical arc, there are no theoretical models for choosing welding parameters. An
automatic choice of these parameters therefore has to use the experience and the
know-how which exist in this ® eld (experimentation, knowledge of experts). The
computer exploitation of this knowledge uses various approaches such as expert
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Figure 3. Motorbike framework.

Figure 4. Plane/cylinder welding.



systems database or the data analysis. Our objective is to propose an arti® cial
intelligence system which can provide welding parameters for a given assembly.
Considering the diversity of welding cases that can appear, it is essential for this
system to be evolutionary and auto-adaptative to the user’s needs, so it must be able
to take into account new welding con® gurations (processes, welding positions,
welded materials, etc.). We have studied several methods, commonly used in weld-
ing, before turning our work on to a new approach: neural networks, which are
seldom used in this area and more generally in the ® eld of CAD and of integrated
design.

3.1. Studied methods
The methods used (Barborak et al. 1991, Bernasek 1991, Breat et al. 1992) try to

take into account the experience linked to the welding trade with di� erent data-
processing techniques.
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Figure 5. Cylinder/cylinder welding.

Figure 6. Welding of 3 parts.



3.1.1. Expert systems
These systems are well adapted to diagnose and propose modi® cations of adjust-

ments when a welding test has not given the expected results. The MIG-expert
product, developed by the French Welding Institute, uses such a system (Breat
and Pauwels 1991, Breat et al. 1992). However, the functioning principle of the
expert system, based on the exploitation of type If . . . Then . . . rules, does not
seem very appropriate for reaching our objective. First, the determination of welding
parameters is more similar to database or modelling aspects, moreover updating an
expert system requires writing new rules, always a delicate stage where a programmer
has to translate the principles exposed by the expert into rules understandable to the
system. So, after having studied expert system possibilities and envisaged the diver-
sity and the quantity of rules that would be needed to generate welding parameters
automatically, we have preferred to turn our work towards other methods.

3.1.2. Data analysis and modelling
Modelling from experimental examples is one of the methods often used in

welding (McGlone 1979, Alberry 1989, Galopin 1989). The aim is to ® nd a model
of the studied phenomenon. The models frequently used are stemming data analysis.
The initial model is linear and a least-square approximation provides the model
parameters that minimize this criterion. From this method we have tested linear,
logarithmic, exponential, and power models (Lego� 1995). Our works in this ® eld
have not given satisfactory results. The necessity of a great number of tests and the
impossibility of taking into account qualitative variables strongly limit the interest of
this approach, particularly in our case where we need to be able to update the system
easily.

3.1.3. Database and interpolation
The use of a database is the simplest solution and it presents the advantage that it

can be very easily updated. However, such a system can only repeat the welding cases
that it has learnt. To remedy this problem we can search for the closest case to the
one to be dealt with, if this case is not known by the database, or several close cases
in order to interpolate. It is the approach proposed by the French Welding Institute
(Breat and Pauwels 1991, Breat et al. 1992). This is a very interesting idea but the
application is delicate. The ® rst di� culty is the choice of a measure of resemblance
between cases to deal with process and known data. Criteria that we have used are
(Diday et al. 1982): the Euclidian norm, the c 2 distance, the absolute value and the
Cambera distance. Despite di� culties linked to this method (Lego� 1995) results are
interesting and updating the initial database is very simple. Nevertheless the neural
approach permits one to obtain better results for the same welding database.

3.1.4. Neural networks
After having tested several approaches to building our system, we have studied a

new discipline in full evolution: neural networks. There exists some neural network
applications to welding concerning the bead section modelling according to welding
parameters (Andersen et al. 1991, Sutter and Xu 1993), and the on-line control of
weld bead (Anderson et al. 1990). One of the main points of neural network
approaches is that they are based on learning from examples, which is particularly
our problem. The characteristics of a problem well adapted to solving by neural
networks (Davalo and Nain 1990):
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(1) The rules needed to solve the problem are unknown or really di� cult to
explain and formalize. However, experts are able to propose a set of examples
corresponding to the problem inputs and outputs (solutions).

(2) The problem uses noisy data.
(3) The problem can be evolutive (taking into account new data).
(4) The problem requires a high speed of processing.
(5) There is no technological solution.

We notice that our problem can be solved with neural networks. One of the main
points is the possibility of evolution that allows us to enlarge the initial ® eld of
application by considering new reference examples. Furthermore, this approach
has given the best results on a test database, so this is why we have developed our
system with neural nets.

3.2. Backpropagation neural networks
We propose a description of the neural networks we have used. Today the term

neural networks gathers many models which tend to mimic some functions of the
human brain by reproducing some of its structures. The ® rst formal neuron model
was presented by McCulloch and Pitts in the forties (McCulloch 1943). Here, we
detail neither the biological foundations of these models, nor all the architectures
and kinds of neural networks: they can be found in the literature (Lippman 1987,
Davalo and Nain 1990, Bourret 1991). For all neural networks we distinguish a
learning stage and a using stage. In our application we use multi-layered feed-for-
ward networks which are the most used (in 90% of practical applications).

3.2.1. Model of a multi-layered neural network
During the use stage, such a system acts as a `black box’ with inputs and outputs.

The links between layers are the lively elements. During the learning stage an
algorithm teaches the system the values to give these links. The backpropagation
algorithm has been developed by Rumelhart et al. (1986); the typical structure of
multi-layered neural net is represented in Fig. 7. Each neuron is connected to all
neurons of the following layer by links whose weights wi,j,k are real numbers. Each
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Figure 7. Model of a multi-layered neural network.



coe� cient wi,j,k is the weight of the link from the neuron j of the layer i - 1 towards
the neuron k of the layer i. System variables are the following:

X = x1,x2, . . . ,xN( ) is the input vector,
Y = y1,y2, . . . yP( ) is the reference output vector,
S = s1, s2, . . . , sP( ) is the computed output vector of the system,
wi,j,k are the weights a� ected to each link between the layers i - 1 and i,
bi,k are bias associated to each neuron of the layer i.

The structure of the system is de® ned:

� The number of layers composing the net (minimum: one output layer).

� The number of neurons in each layer (the last layer is composed of a number of
neurons P equal to the number of outputs).

� The activation functions f used for the neurons (they can be di� erent for each
neuron, but are the most often identical for a layer and for the whole system,
that is the case in Fig. 7). Generally the logarithmic sigmoid function is used
(although other functions can be used):

f (x) =
1

1 + e- x

� The entry of f , noted Ii,k, is computed for the neuron number k of the layer i
by:

Ii,k = å i
wi,j,koi,j + bi,k

where oi,j is the output value coming from the layer i - 1 by the link wi,j,k . So:

f (Ii,k ) = oi+ 1,k and f (IL ,k ) = sk for the output layer.

3.2.2. Backpropagation learning
The aim of the learning stage is to determine the values of the coe� cients wi,j,k

and bi,k by minimizing an error-function. It is achieved by presenting to the system
learning examples after a random initialization of weights and bias several times if
necessary. The error-function to minimize is the sum-squared error between com-
puted outputs and real outputs. Once the partial derivative for each weight and bias
is known, the aim of minimizing the error-function is achieved by performing a
simple gradient descent. The error-function for all the M examples is de® ned by:

E(w,b) = å
M

m= 1
Em(w,b)

with Em(w,b) the error on the example m:

Em(w,b) = å
P

p= 1
sm
p - ym

p( )2

So, the gradient descent gives the weights and bias modi® cation rule:

wi,j,k (q) = wi,j,k(q - 1) - e(q) ¶ E
¶ wi,j,k

where e(q) is the gradient step or l̀earning rate’ at epoch q.
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After calculations and taking into account the use of the sigmoid function, we
obtain

wi,j,k (q) = wi,j,k (q - 1) - e(q)di,koi,j

where

dL ,k = 2 å
M

m= 1
sm
k - ym

k( )sm
k 1 - sm

k( ) for the output layer,

di,k = å h

di+ 1,hwi+ 1,k,hoi+ 1,k 1 - oi+ 1,k( ) for hidden layers,

where h focuses on the neurons of the next layer, for i = L - 1, we have h = 1, . . . ,P
on the output layer L .

Bias bi,k are learnt as other weights assuming that it concerns a constant entry
value equal to 1. The learning stage is stopped if the sum-squared error E(w,b) is
lower than an error goal, i.e. E(w,b) £ E0, or if a maximum number of epochs Q has
been reached.

3.2.3. L imits and improvements of the algorithm
The use of the backpropagation algorithm for neural networks learning gives

good results in many applications. However, some di� culties remain:

� Initialization of link weights greatly in¯ uences the algorithm, notably the con-
vergence point of the network.

� The convergence speed is not controlled.

� There is no design method for a system (number of layers, number of neurons
in each layer, etc.) to solve a given problem.

� Progression values and stopping criteria of the algorithm (gradient step, max-
imum number of epochs, error goal) have to be determined by practical experi-
ence.

� Data have to be pre-processed to ensure the algorithm convergence. This pre-
processing is generally a reduction of inputs and outputs to a similar scale
(generally from 0 to 1, - 1 to 1 or - 0.5 to 0.5).

Much research work aims to improve weak points of the method, and it is very
unusual to use the backpropagation algorithm, such as has been presented, without
modi® cations. Classical improvements of the backpropagation are:

� The use of an adaptive learning rate (Demuth and Beale 1991, Vogl et al.
1988), where e(q) is modi® ed according to the evolution E(w,b) during learn-
ing;

� The introduction of a `momentum term’ in the weight modi® cation rule
(Lippman 1987, Vogl et al. 1988, Bourret et al. 1991, Demuth and Beale
1991), which limits weight oscillations during learning. The modi® cation rule
then becomes:

wi,j,k(q) = wi,j,k (q - 1) - e(q)di,joi,j + ¹ wi,j,k(q - 1) - wi,j,k (q - 2) )(

where ¹ is the momentum term 0 < ¹ < 1;

� The use of a new activation function (Harvas Martinez et al. 1992, Scalero and
Tepedelenlioghu 1992);
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� A non-random choice of initial weight values (Nguyen and Widrow 1990).

3.2.4. Chosen algorithm
After having used some of these methods of improvement of the initial back-

propagation algorithm (momentum term, adaptive learning rate and an initial value
choice of weights by the method of Nguyen and Widrow) that have allowed us
to obtain interesting results (HascoeÈ t 1994, Lego� 1994a,b), we have chosen to use
a new algorithm which is faster than these methods during learning stage: the
`Resilient Propagation’ (RPROP) algorithm. This algorithm, proposed by
Riedmiller and Braun (1993), is in fact an adaptive learning rate where the gradient
step is locally de® ned for each weight of the network. The modi® cation of weights
and the learning rate take into consideration the in¯ uences of the considered weight
on the error-function. Each weight possesses an update-value D i,j,k. During the
learning stage this value is modi® ed according to its in¯ uence on the error
E(w,b) . We will not describe here the functioning of RPROP, but another advantage
of this algorithm is the reduced number of evolution parameters that has to be a
priori ® xed. It is indeed a problem of classical methods that they generally require
several tests before obtaining a set of parameters ensuring a stable evolution of the
algorithm and an optimal convergence.

So the parameters used by RPROP are:

� D 0: initial values of update-values, so D 0 directly determines the size of the ® rst
weight-step,

� h + and h - : increase and decrease factors of D i,j,k ,

� D min and D max: lower and upper limits of update-values.

It appears that default values of these parameters proposed by Riedmiller and
Braun ( D 0 = 0.1, h + = 1.2, h - = 0.5, D min = 10- 6 and D max = 1.0) have always
given us better results than the classical methods.

3.3. Design of the system of welding process parameter choice
Welding processes with which we are connected are gas metal arc welding pro-

cesses (GMAW) which use a fuse electrode under gaseous protection and this for
conventional assemblies. Welding parameters associated to this type of welding
processes can be divided into two classes (Cornu 1985): predetermined variables
(welding process, electrode, etc.) and operating parameters (current-intensity, arc
voltage, welding speed, etc.). These data are of two types: qualitative, in which
case they are represented by binary values; or quantitative, when they are centred
and reduced.

Initial data of the problem, extracted from the CAD system, are:

� The material that composes the parts, coded as follows:
(m1,m2) = (1,0) Û steel,
(m1,m2) = (0,1) Û other material.

� The thicknesses E of parts at considered points.

� Three variables that allow us to de® ne the orientation of the joint to weld
(Fig. 8):

a : the rotation angle 0Ê £ a £ 180Ê ,
b : the inclination angle - 90Ê £ a £ 90Ê ,
g : the angle between the two parts to joint.
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The system acts as a black box. However, the determination of unknown para-
meters, predetermined variables as well as operating parameters, has to be done
logically. So it is important to structure the order in which parameters are deter-
mined. That allows us to reduce the neural network size (number of layers and
neurons) and also authorize several entry points. Suppose, for example, that the
user has already made a choice of a welding process that he wishes to use. It is
then possible to go directly to the next stages taking into account the chosen process
for the determination of other elements.

Welding parameters, outputs of the system, are determined in four stages (Fig. 9):
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Figure 8. De® nitions of a and b .

Figure 9. System structure.



(1) A neural network determines the welding process most adapted to the weld-
ing problem. In our application three processes, di� erentiated by their pro-
tection gas, are considered: PR1(Ar + CO2) , PR2(CO2) and PR3(O2 + Ar) .
The reference database is composed of 0 and 1, thus when it is possible to use
the ® rst two processes we have: (PR1,PR2,PR3) = (1,1,0) . During the
utilization stage of the system, the closer to 1 a response is, the more it is
recommended to use the considered process.

(2) Three networks are then used, one for each welding process, in order to
choose the electrode. In the same way as for welding processes, electrodes
are considered as qualitative information, which allows us to take
electrodes of di� erent composition and diameter into account. The four
electrodes considered in our application only di� er by their diameter:

Ele1 ® u = 0.8 mm, Ele2 ® u = 1 mm, Ele3 ® u = 1.2 mm,
Ele4 ® u = 1.6 mm.

(3) The system then determines the number of passes n and preparations to do
on parts before welding (Fig. 10): the gap between parts d (mm), the angle of
the chamfer u (degrees) and the height under chamfer h (mm) if it is necessary
to make a chamfer.

(4) Finally, the operating parameters are determined. Using a continuous cur-
rent: the current-intensity I(A), the voltage U(V), the welding speed (the
feedrate of the welding torch) Vs (mm/mn) and the welding wire
(electrode) melting speed V f (m/mn).

3.4. Learning
We are going to detail the results obtained during the learning stages for each

network. As designers of these neural networks, we have had to de® ne for each
network: the number of layers, the number of neurons in each of these layers and
the two stop criteria E0 and Q.

Generally speaking, the choice of the structure of neural networks is a delicate
problem. It is very di� cult to establish general rules about network design. We can
be tempted to choose a large number of neurons and layers (more variables to
optimize), but it increases the possibilities for the learning algorithm to reach a
local minimum and to generate unstable results in the using stage. We can see
that in practical applications it is very rare to use a network with more than two
hidden layers. So the aim is to choose the minimum number of neurons and layers
that allows us to solve our problem. Several papers (Harvas Martinez et al. 1992) can
guide an initial choice, but experimentation is the only way to validate and de® ni-
tively choose a neural network structure.
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Figure 10. Part preparation.



For our application, we ® rst tested the networks’ performances on several typical
cases (classi® cation and approximation problems), then we used the following strat-
egy. First, a network has at least one hidden layer with a number of neurons equal to
the number of inputs and one output layer. If the learning algorithm converges
rapidly (a hundred of epochs) we reduce the number of neurons in the hidden
layer. If it converges very slowly, we consider that the initial model is not rich
enough, and we increase the number of neurons in the hidden layer before adding
a second hidden layer.

As for the choice of stop criteria during the learning phase, the stopping para-
meter Q is only a limit for the algorithm and its value is arbitrarily chosen. The
second parameter E0 is the sum-squared error that we allow during the learning
phase for all output variables. Considering the values these data can take
(between 0 and 1) the choice of E0 = 0.01 has seemed judicious since it corresponds
to a magnitude order of 10% (E0 = 0.12) of the maximum value of a single variable.

The number of reference examples used for the learning of a network is noted M,
at the end of learning the ® nal number of epochs is noted Qf and the sum-squared
error reached is noted Ef . All learning times TT required for a learning stage have
been obtained on a PC 486DX33 and Matlab.

3.4.1. Welding process: PROCESS
The network PROCESS allows us to determine the welding process adapted to

the considered welding case.

� The structure of the network is the following:
5 inputs: E, a , b , (m1,m2) ,
3 outputs: PR1,PR2,PR3,
3 layers with 10 + 10 + 3 neurons.

� The learning parameters are: Q = 5000 and E0 = 0.01.

� The number of examples used and the results are given in Table 1.

We notice that the learning stage gives a precise result with Ef = 0.01. If we
consider the nature of outputs (binary values) the objective is to obtain responses
close to 1 or 0 that have been learnt by the network. The ® nal error Ef therefore
allows us to assert that all examples taught to the network will be repeated with no
signi® cant error during the utilization stage. In order to represent areas of process
utilization, we have chosen to express responses of the network for a given material
and a given b , variables being thickness and angle a . Figure 11 represents a section
of the resulting surfaces if we choose 0.8 as threshold for a favourable response. For
each welding process, contours delimit the zones where network responses are super-
ior to this value and correspond to utilization areas.
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Network M Qf Ef TT

PROCESS 220 1041 0.01 15Â
Table 1. Learning of PROCESS networks.



3.4.2. Electrode: EL E
Knowing the initial data and the welding process to use, three networks are used

(one for each process) ELE PR1,EL E PR2 and ELE PR3, to choose an electrode
compatible with the joint to weld.

� The structure of the networks is the following:
4 inputs: E, a , b , g ,
4 outputs: Ele1,Ele2,Ele3,Ele4,
2 layers: 5 + 4 neurons.

� The learning parameters are: Q = 5000 and E0 = 0.01.

� The results obtained are given in Table 2.

The precision of the results is satisfactory, it is similar that for networks
PROCESS with Ef = 0.01 for a same nature of outputs (binary). The maximum
errors are 0.05 for ELE PR1, 0.05 for EL E PR2 and 0.06 for EL E PR3. We can
represent areas of electrode utilizations according to thickness for a determined
welding position (Fig. 12). For example the welding with the process PR3 of two
steel plates with 3.5mm thickness, a = 45Ê , b = 0Ê , g = 90Ê will be carried out with
an electrode of 1 mm diameter.
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Figure 11. Welding of steel, b = 0.

Network M Qf Ef TT

ELE PR1 24 102 0.01 17Â Â
ELE PR2 23 117 0.01 18Â Â
ELE PR3 34 452 0.01 66Â Â

Table 2. Learning of EL E networks.



3.4.3. Part preparation: PREP
In the same way as for the preceding stage, we have three networks with identical

structure to determine preparations to undertake on the parts before welding and the
number of passes to realize. The three networks are PREP PR1, PREPPR2 and
PREP PR3.

� The structure of the networks is the following:
8 inputs: E, a , b , g ,Ele1,Ele2,Ele3,Ele4,
4 outputs: u ,d,n,h,
2 layers: 8 + 4 neurons.

� The learning parameters are Q = 5000 and E0 = 0.01.

� The results obtained are given in Table 3.

We notice that for process PR3 the criterion E0 has not been reached, never-
theless, as Table 4 shows, examples of learning are reproduced with a satisfactory
error edge.
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Figure 12. Response of network EL E PR3.

Network M Qf Ef TT

PREPPR1 40 2667 0.01 7Â 10Â Â
PREPPR2 36 4336 0.01 0Â 18Â Â
PREPPR3 35 5000 0.05 7Â 01Â Â

Table 3. Learning of PREP networks.

u d n h

MAX 60 3 5 1.5
² MAX 2.6 0.13 0.49 0.07

Table 4. Errors obtained.



3.4.4. Operating parameters: PARA
This last stage generates the operating parameters to be used. A new variable is

introduced here, it concerns the number of the pass realized n1, with 1 £ n1 £ n.

� The three networks PAPA PR1,PARA PR2 and PARA PR3 have the same
structure:

13 inputs: E, a , b , g ,Ele1,Ele2,Ele3,Ele4, u ,d,n,h,n1,
4 outputs: Vs, V f ,I,U,
2 layers: 20 + 4 neurons.

� The learning parameters are: Q = 5000 and E0 = 0.01.

� The results obtained are given in Table 5.

During the learning of the network PARAPR3 with Q = 5000 epochs, the cri-
terion E0 has not been reached. A new learning with a limit of Q = 30 000 epochs has
allowed us to improve the results for this network especially. We observe in Table 6
that the errors made on learning examples are acceptable.

3.5. Application
The di� erent networks that compose the system have been trained, it is then

possible to exploit them. We present here an example of application but other
examples can be found in Lego� (1995). The example we have chosen to treat is
represented in Fig. 13, it concerns the welding of a complex joint compound of a
vertical descending path portion and an horizonal portion. Considering that welding
parameters are constant along a joint portion, from point J1

0 to point J1
1 then from

point J2
0 to J2

1 for our example, we use vectors

J1
Z1

¾ ®
and J2

Z0

¾ ®

to de® ne angles rather than the torch orientation represented by

J12
Z

¾ ®
.

So the joint features are:

� Thicknesses of parts: E = 3mm.
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Network M Qf Ef TT

PARA PR1 40 1941 001 20Â 10Â Â
PARA PR2 36 1562 0.01 16Â 18Â Â
PARA PR3 68 13 868 0.01 2h 46Â

Table 5. Learning of PARA networks.

Vs V f I U

MAX 11 730 420 30
²MAX 0.23 20 9.5 0.39

Table 6. Errors obtained.



� Material: steel (m1,m2) = (1,0) .

� Angle values:
Portion C1: a = 90Ê , b = - 90Ê , g = 90Ê .
Portion C2: a = 45Ê , b = 0Ê , g = 90Ê .

The ® rst stage consists in determining the process that has to be used to weld this
joint. Responses of the network PROCESS are:

C1: PR1 = 0 PR2 = 1 PR3 = 1

C2: PR1 = 0.83 PR2 = 1 PR3 = 1

So in order to weld all the joints with the same gas it is possible to use the
protection gas PR2, or Argomix PR3. We are going to develop the two possibilities.
So for the choice of an electrode:

EL E PR2 C1: (Ele1,Ele2,Ele3,Ele4) = (0,1,1,0)

C2: (Ele1,Ele2,Ele3,Ele4) = (0,1,1,0)

ELE PR3 C1: (Ele1,Ele2,Ele3,Ele4) = (0,0,0.9,0)

C2: (Ele1,Ele2,Ele3,Ele4) = (0,1,0,0)

Only the process PR2 allows us to use the same electrode for all of the joints to
weld, so, it is the solution that has to be chosen in this case. If no welding process had
allowed us to obtain a solution with one electrode for all the joints, it would have
then been necessary to choose another way to weld these parts, for example to divide
this joint into two distinct joints. For the considered example, we have arbitrarily
chosen to use the electrode Ele3 ( u = 1.2mm) but it is possible to use Ele2 or to
develop the two solutions.

Then we can determine, with PREP PR2, the part preparations:

C1: u = 0Ê d = 0mm n = 1 h = 0 mm

C2: u = 0Ê d = 0mm n = 1 h = 0 mm

These results indicate that parts have to be welded in a single pass (n = 1) with
neither chamfer ( u = 0Ê ) nor gap (d = 0mm). Finally, we can determine the operat-
ing parameters with PARA PR2:
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Figure 13. Example of a complex joint.



C1: Vs = 271 mm/mn V f = 3 m /mn I = 130 A U = 19.7 V

C2: Vs = 470 mm/mn V f = 5.2 m /mn I = 151 A U = 21.7 V

These paramters have been used to weld the joint with a welding robot and a
protection gas close to PR2 (TeÂ ral 12-Airliquide). The result is entirely satisfactory,
no modi® cation of the parameters proposed by our system having been necessary.

4. Conclusions

In order to increase productivity in the area of robotized welding, o� -line pro-
gramming is an essential factor whose objective is to reduce the immobilization
duration of the production tool while facilitating the task of the operator. The
objective of the work presented in this paper is to automate the o� -line programming
of welding robots, notably for continuous welding processes with fuse electrode
under gaseous protection. In the current context of integrated design and concurrent
engineering, our objective is therefore to group three worlds: the world of CAD, the
world of welding and the world of robotics. We present two essential aspects of this
integration within a CAD modeller: the feature extraction from the CAD model,
then an arti® cial intelligence system which can choose welding parameters according
to the experience and the know-how of the welding trade.

First of all we show how it is possible to use information implicitly contained in
CAD models of parts to be welded, information at present poorly exploited by
CAD-robotic systems. By using the notion of features, we propose a de® nition of
welding paths integrating both geometrical aspects, necessary for the movements of
the torch by the robot, and knowledge linked to the welding trade that are indis-
pensable for choosing parameters. A set of methods is proposed in order to automate
the paths creation process and to extract the assembly characteristics. The para-
metric surfaces exploitation allows us to treat a great diversity of welding problems,
from the simplest (two ¯ at plates) to the most complex (several parts of complex
forms). The process is automated to limit the user’ s interventions to the choice of
parts and joints to weld.

As for the automatic generation of welding parameters (trade aspect) in the
framework of robotized GMAW welding, we propose an approach based on the
utilization of backpropagation neural networks. It presents many advantages com-
pared with arti® cial intelligence systems generally used in the welding area (data
analysis, expert systems, modelling) by integrating database and modelling aspects
and by learning from experience (reference database) with no need for knowledge
formalization. The proposed system allows us to take into account quantitative as
well as qualitative data. It is thus possible, taking into account the features extracted
from the CAD models (positions, orientations, thicknesses and materials composing
the assembly), to treat the entire welding problem from the process choice and the
electrode choice to the parts preparations (chamfer, plate gap) and determination of
the operating parameters. Moreover, the learning method allows us to update the
system easily in order to enlarge its initial area according to new knowledge. For
example, we can consider other welding processes than these proposed or add new
parameters not considered by the current system.

Our work is part of the new concepts developed in the area of CIM, integrated
design and CAD. Moreover, it shows the interest of new approaches for some
unsolved problems in this area, where experience and know-how are often determin-
ing factors for the choice of many design and manufacturing parameters.
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