
276 Surface Science 229 ( 1990) 276-278 
North-Holland 

PLASMA AND SINGLE PARTICLE EXCITATIONS IN QUASI-ONE-DIMENSIONAL 
ELECTRON SYSTEMS 

V. SHIISIN *, T. DEMEL and D. HEITMANN 
Mnx Planck-I~stit~t~~r Festk~rperfo$sc~ung, ~eisenbergstr~se I, D- 7000 Stuttgart 80, Fed. Rep. ~fGer~an~? 

Received 11 July 1989; accepted for publication 14 September 1989 

The equilibrium properties and dynamic response of quasi-one-dimensional electron systems (IDES) have been calculated for a 
confinement modelled by a harmonic osciilator potential. These calculations are compared with self-consistently calculated 1 D subband 
separations in a split-gate con~guration. It is shown that in the limit of a vanishing occupation the classical dynamic response frequency 
coincides with the subband separation. With increasing number of occupied 1D subbands the dynamic response frequency decreases 
slightly whereas the subband separation decreases drastically. Thus, for a large number of occupied 1D subbands, the dynamic response 
frequency is significantly higher than the 1D subband separation as is observed in experiments. 

Quasi-one~dimensional electronic systems ( 1 DES) 

are currently the subject of increasing interest (e.g. 
refs. [ l-61 ). Starting from ZDES, e.g. AlGaAs/GaAs 
heterostructures, where the electrons are confined in 
z-direction normal to the interface, these 1DES can 
be realized by an additional lateral con~nement act- 
ing in x-direction. It is thereby possible to induce 
quantum confined discrete energy levels, E:, and re- 
strict the free motion of the electrons to the y-direc- 
tion. From Shubnikov-de Haas (SdH) type of dc- 
experiments on those samples typical values of 1 to 
3 meV for the separation of 1D subbands are found 
[ l-5 1. However, in far infrared (FIR) experiments 
on the same samples resonance excitations were ob- 
served at significantly higher energies. It was exper- 
imentally demonstrated that for currently investi- 
gated 1 DES with many occupied subbands, the FIR 
response is strongly governed by collective eIIects and 
has the character of a local plasmon resonance (see 
ref. [ 61, also for additional references on FIR ex- 
citations in 1 DES). 

In this paper we calculate classically the equilib- 
rium and dynamic properties of electrons bound in 
a single or in an array of harmonic oscillator poten- 
tials. We then discuss the influence of quantum con- 
finement on the FIR response and compare with the 
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lD subband separation. This latter discussion in 
particular addresses AlGaAs/GaAs heterostructures 
with split-gate configuration as sketched in fig. 1 and 

heavily uses numerical results of self-consistent 1D 
subband calculations for these structures by Laux et 
al. [7]. 

We assume an external parabolic confining poten- 
tial described by 

where 1 is the index of the stripe, a is the periodicity 
and K is the curvature which characterises the par- 
abolic potential. It has been shown by numerical cal- 
culations that this harmonic oscillator approach is 
actually very well fulfilled in a split-gate configura- 
tion at least up to four occupied subbands [ 71. 

Let us first consider the equilibrium situation in 
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Fig. 1. Sketch of a periodic array of 1 DES with free dispersion in 
y-direction which is induced via a split-gate configuration. 
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the classical limit for an individual stripe (I=0 in This ansatz will not solve (9) and ( 10) for potential 

(1)). We have of different shape or for the higher frequency modes. 

Vconf(x) +e@(x) =const , (2) 
In some experiments (e.g. refs. [ 2-6 ] ) arrays of 

periodic stripes are investigated. In this case, taking 
into account the Coulomb interaction of neighbour- 
ing stripes, it follows from the equation of motion 

(for nearest neighbours) 
(3) 

s +a0 

n(s) ds =NL . (4) 
--a0 

Here G(x) is the electron potential, n(x) the equi- 
librium electron density, K the dielectric constant, 
N,_ the linear electron density and L the geometrical 
size along the y-direction,, 2~ is the width of the 
electron channel. 

The solution for this system of equations, (2)-( 4), 
is 

n(x) =no( 1 -x2.1&)“2, -&<XIU, ) (5) 

with 

n,,=tcKa,,/(~e~), ai=2e2N,/KK, (6) 

The eigenfrequency of the dipole plasmon mode 
in an individual stripe can be calculated, neglecting 
retardation, from the motion equation and the con- 
tinuity equation: 

-m*t;=e@‘(x,t)+ Vconf(x) , (7) 

li+a(n-2.+/ax=o, (8) 

where v is the electron velocity and m* is the electron 
mass. 

We can show that the ansatz 

n(x,t)=n(x-d(t)), j’,I;a:::‘n(x,f) dx=N,_, 

(9) 

v=6, e@=e@(x-d(t))=--K-(x-J(t))‘+const, 

where s(t) is the amplitude of the oscillation, sat- 
isfies self-consistently eq. ( 8 ) . We then find from ( 7 ) , 
(9 ) and (3) that the dipole plasma frequency is 

wi = K/m* . (10) 

Thus, in a parabolic confinement potential, the clas- 
sical collective dipole mode frequency coincides with 
the individual motion. Note that the ansatz (9) is 
not at all trivial. This ansatz is valid only for a par- 
abolic confinement and the lowest plasma modes. 

-m*w2s,=d.s,+~ (6,+, +s,_, -26,) ) (11) 

with 

K= K+ 2eNJlca. (12) 

In this case we thus have a renormalisation of the 
dipole plasma mode frequency at q=O 

63; d/m* (13) 

and the appearance of a positive dispersion ( (do/ 
aq>O), q is the wave vector perpendicular to the 
stripes) 

m*w~=~+4N,e2sin2(qa/2)/(Ku2). (14) 

A similar dispersion has also been calculated in ref. 
[ 8 1. Let us now discuss the quasi-classical regime. In 
this case eq. (2) should be generalized to 

Vconf(x) +e@(x)+E,(x) =const, E,=$n(x) . 

(15) 

Thus the combination V&(x) = V,,r+e@(x) is not 
constant and gives rise to the quantisation of the in- 
dividual electron motion, V.&x) =const - ( xfi2/ 
m*)n(x), where n(x) is, in zero approximation, 
given in (5 )_ It is evident that in the regime where 
the number of occupied subbands is large, the po- 
tential V,ff(x) is not parabolic and 

ve&x) < I’&x). This behaviour is nicely dem- 
onstrated in self-consistent numerical calculations of 
the 1D subband structure for a split-gate configu- 
ration in ref. [ 71. In fig. 2 we have depicted the lin- 

ear density N,_ and the separation E,,, -E, of the 
lowest unoccupied subband, Ei+ , , to the highest oc- 
cupied subband, E,, from the numerical results in the 
latter reference. At I’,= - 1.53 V, the onset for the 
tilling of the lowest 1D subband, E,, occurs. At 
I’.,= - 1.46 V, ( - 1.4 1, - 1.35 ,... ) successively higher 
subbands are occupied. This occupation leads im- 
mediately to a strong decrease of the subband spac- 



278 ff. Skikin et al./Excitntions in electron systems 

I 

-1.6 -1.5 -1.4 -1.3 -1.2 

vg IV1 

Fig. 2. Linear carrier density NL (dash-dotted line) and ID sub- 
band spacing E,, , - E, (full lines) between the lowest unoccu- 
pied (E,, , ) and highest occupied (E,) subband versus gate volt- 
age V, in a split-gate structure with 400 nm slits. The data are 
extracted from the self-consistent subband calculations of ref. [ 71. 
Starting at VB=- 1.53 V, (- 1.46, -1.41, - 1.35, - 1.3) the 
lowest ( 1st 2nd,...) 1D subband is occupied. Full circles indicate 
plasma frequencies. The dashed line is extrapolated between the 

different calculated plasma frequencies. 

ing, as shown for the highest subband in fig. 2. Lower- 
lying subbands have even slightly smaller separations. 

We can now compare this subband separation with 
our calculated response frequencies. For NtxO the 
calculated potential (fig. 2 of ref. [ 7] ) is indeed in 
very good approximation parabolic. We can thus de- 
duce the curvature and determine, via equations (6) 
and (10) the dipole plasma mode frequency which 
gives 0,=5.7 meV. It agrees excellently with the 
subband spacing for Vg< - 1.53 V in fig. 2. This di- 
rectly visualizes our statement, that, for small NL, the 
plasma eigenfrequency and the subband separation 
coincide. From the electron distribution of fig. 4. in 
ref. [ 7 ] we see that already for four occupied 1D 
subbands the system behaves quasi-classically. On 
the other hand, from fig. 2 in ref. [ 7 ] we find that 
in the occupied regime the potential is still approx- 
imately parabolic. We can then use our approach to 
determine K via (6) from N,_==2.2~ lo6 cm-’ and 
ao=51 nm at V.=-1.3 V and find 0,=4.6 meV. 
This frequency, which is depicted in fig. 2 by a full 
circle at I’ g= - 1.3 V, is significantly larger than the 

subband spacing of 2.1 meV. Thus there is a signif- 
icant difference of about a factor two in this regime 
between the subband spacing and the plasma-dipole 
mode. Similar values are also observed in experi- 
ments, e.g. refs. [ 4-6 1. Fig. 2 also demonstrates the 
increase of the plasmon frequency with decreasing 
gate voltage as it has been observed experimentally 
for samples similar to the structures calculated in ref. 
[ 7 ] ( refs. [ 2 ] and [ 4 1, and also in measurements by 

ourselves ) . 
In conclusion, we have demonstrated that the dy- 

namic response frequency of the dipole-plasmon 
mode in 1 DES with many occupied 1 D subbands is 
significantly larger than the single particle excita- 
tion. With decreasing occupation, this difference de- 
creases, and, in the limit of an empty channel, the 
FIR frequency coincides with the one particle 

excitation. 
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