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The equilibrium properties and dynamic response of quasi-one-dimensional electron systems (1DES) have been calculated for a
confinement modelled by a harmonic oscillator potential. These calculations are compared with self-consistently calculated 1D subband
separations in a split-gate configuration. It is shown that in the limit of a vanishing occupation the classical dynamic response frequency
coincides with the subband separation. With increasing number of occupied |D subbands the dynamic response frequency decreases
slightly whereas the subband separation decreases drastically. Thus, for a large number of occupied 1D subbands, the dynamic response
frequency is significantly higher than the 1D subband separation as is observed in experiments.

Quasi-one-dimensional electronic systems { IDES)
are currently the subiect of increasing interest (e.g.
refs. [1-6]). Starting from 2DES, e.g. AlGaAs/GaAs
heterostructures, where the electrons are confined in
z-direction normal to the interface, these 1DES can
be realized by an additional lateral confinement act-
ing in x-direction. It is thereby possible to induce
quantum confined discrete energy levels, EX, and re-
strict the free motion of the electrons to the y-direc-
tion. From Shubnikov-de Haas (SdH) type of dc-
experiments on those samples typical values of | to
3 meV for the separation of 1D subbands are found
[1-5]. However, in far infrared (FIR) experiments
on the same samples resonance excitations were ob-
served at significantly higher energies. It was exper-
irnentally demonstrated that for currently investi-
gated I DES with many occupied subbands, the FIR
response is strongly governed by collective effects and
has the character of a local plasmon resonance (see
ref. [6], also for additional references on FIR ex-
citations in 1DES).

In this paper we calculate classically the equilib-
rium and dynamic properties of electrons bound in
a single or in an array of harmonic oscillator poten-
tials. We then discuss the influence of quantum con-
finement on the FIR response and compare with the
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1D subband separation. This latter discussion in
particular addresses AlGaAs/GaAs heterostructures
with split-gate configuration as sketched in fig. 1 and
heavily uses numerical results of self-consistent 1D
subband calculations for these structures by Laux et
al. [7].

We assume an external parabolic confining poten-
tial described by

Vconf(x)=zg(x‘“‘la)z‘*‘CODSl, (1)
i

where [ is the index of the stripe, a is the periodicity
and K is the curvature which characterises the par-
abolic potential. It has been shown by numerical cal-
culations that this harmonic oscillator approach is
actually very well fulfilled in a split-gate configura-
tion at least up to four occupied subbands [7].

Let us first consider the equilibrium situation in

Fig. 1. Sketch of a periodic array of 1DES with free dispersion in
y-direction which is induced via a split-gate configuration.
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the classical limit for an individual stripe (/=0 in
(1)). We have

Vconf(x)+e¢(X)=C0nSt s (2)
e (+ao L

¢(x)=; J—ao n(s)lnmds, (3)

Jj‘:’ n(s)ds =N, . (4)

Here ¢(x) is the electron potential, n(x) the equi-
librium electron density, x the dielectric constant,
N, the linear electron density and L the geometrical
size along the y-direction, 2a, is the width of the
electron channel.

The solution for this system of equations, (2)-(4),
is

n(x)=ne(l—x%/ad)"?, —agy<x<a,, (5)
with
no=xKay/ (ne?), ad=2e>N;/Kx, (6)

The eigenfrequency of the dipole plasmon mode
in an individual stripe can be calculated, neglecting
retardation, from the motion equation and the con-
tinuity equation:

—m*i=ep’ (X,1)+ Vione(x) , (7
n+d(n-v)/ox=0, (8)

where v is the electron velocity and m* is the electron
mass.

We can show that the ansatz
+ao+5(1)

nxn=n(x=50). [ neur) ax=n,
—ag+3(t)
(9)
v=0, ep=ep(x—5(t))=—4K-(x—5(1))*+const,
where 5(¢) is the amplitude of the oscillation, sat-

isfies self-consistently eq. (8). We then find from (7),
(9) and (3) that the dipole plasma frequency is

w2 =K/m* . (10)

Thus, in a parabolic confinement potential, the clas-
sical collective dipole mode frequency coincides with
the individual motion. Note that the ansatz (9) is
not at all trivial. This ansatz is valid only for a par-
abolic confinement and the lowest plasma modes.

This ansatz will not solve (9) and (10) for potential
of different shape or for the higher frequency modes.

In some experiments (e.g. refs. [2-6]) arrays of
periodic stripes are investigated. In this case, taking
into account the Coulomb interaction of neighbour-
ing stripes, it follows from the equation of motion
(for nearest neighbours)

—m*w26,=f'5,+% (G141 +0,-1=28)) , (1)

with
K=K+2eN, /ka. (12)

In this case we thus have a renormalisation of the
dipole plasma mode frequency at g=0

@2 =R/m* (13)

and the appearance of a positive dispersion ((dw/
dg>0), g is the wave vector perpendicular to the
stripes)

m*w?=K+4N_e%in%(ga/2)/(xa?) . (14)

A similar dispersion has also been calculated in ref.
[8]. Let us now discuss the quasi-classical regime. In
this case eq. (2) should be generalized to

nh?
Veonr(X) +e¢(x)+ Eg(x) =const, EF=7n—*n(x) .
(15)

Thus the combination V x(x) = V o+ e@(x) is not
constant and gives rise to the quantisation of the in-
dividual electron motion, V.(x)=const— (nh?/
m*)n(x), where n(x) is, in zero approximation,
given in (5). It is evident that in the regime where
the number of occupied subbands is large, the po-
tential Vegr(x) is not parabolic and
Verr(X) < Vogne(x). This behaviour is nicely dem-
onstrated in self-consistent numerical calculations of
the 1D subband structure for a split-gate configu-
ration in ref. [7]. In fig. 2 we have depicted the lin-
ear density N, and the separation E;,,—E; of the
lowest unoccupied subband, E,, ,, to the highest oc-
cupied subband, E;, from the numerical results in the
latter reference. At V,=—1.53 V, the onset for the
filling of the lowest 1D subband, E, occurs. At
Ve=—1.46V, (—1.41, —1.35,...) successively higher
subbands are occupied. This occupation leads im-
mediately to a strong decrease of the subband spac-
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Fig. 2. Linear carrier density N; (dash-dotted line) and 1D sub-
band spacing £, — E; (full lines) between the lowest unoccu-
pied (E;, ) and highest occupied (£;) subband versus gate volt-
age ¥, in a split-gate structure with 400 nm slits. The data are
extracted from the self-consistent subband calculations of ref. {7].
Starting at Vy=—153 V, (-1.46, —1.41, —1.35, —1.3) the
lowest (1st, 2nd,...) 1D subband is occupied. Full circles indicate
plasma frequencies. The dashed line is extrapolated between the
different calculated plasma frequencies.

ing, as shown for the highest subband in fig. 2. Lower-
lying subbands have even slightly smaller separations.

We can now compare this subband separation with
our calculated response frequencies. For Ny =0 the
calculated potential (fig. 2 of ref. [7]) is indeed in
very good approximation parabolic. We can thus de-
duce the curvature and determine, via equations (6)
and (10) the dipole plasma mode frequency which
gives w,=35.7 meV. It agrees excellently with the
subband spacing for V,< —1.53 V in fig. 2. This di-
rectly visualizes our statement, that, for small M, the
plasma eigenfrequency and the subband separation
coincide. From the electron distribution of fig. 4. in
ref. [7] we see that already for four occupied 1D
subbands the system behaves quasi-classically. On
the other hand, from fig. 2 in ref. [7] we find that
in the occupied regime the potential is still approx-
imately parabolic. We can then use our approach to
determine K via (6) from N =2.2x10% ecm~! and
ap=>51 nm at V,=—1.3 V and find w,=4.6 meV.
This frequency, which is depicted in fig. 2 by a full
circle at V,= — 1.3 V, is significantly larger than the

subband spacing of 2.1 meV. Thus there is a signif-
icant difference of about a factor two in this regime
between the subband spacing and the plasma-dipole
mode. Similar values are also observed in experi-
ments, e.g. refs. [4-6]. Fig. 2 also demonstrates the
increase of the plasmon frequency with decreasing
gate voltage as it has been observed experimentally
for samples similar to the structures calculated in ref.
{7] (refs. [2] and [4], and also in measurements by
ourselves ).

In conclusion, we have demonstrated that the dy-
namic response frequency of the dipole-plasmon
mode in 1DES with many occupied 1D subbands is
significantly larger than the single particle excita-
tion. With decreasing occupation, this difference de-
creases, and, in the limit of an empty channel, the
FIR frequency coincides with the one particle
excitation.
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