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Abstract—It is argued that, by exploiting the quasi-sialic eigenstates in a metal/dielectric composite medium,

it should be possible to construct a new type of device called a SPASER (surface plasmon amplification by stim-
ulated emission of radiation), where a strong, coherenlt ac electric field is built up in a spatial region whose linear

size is much smaller than the wavelength.

An essential component of most types of lasers is an
optical resonator. This is needed in order to have states
of the electromagnetic {(EM) field which are approxi-
mate eigenstates, where the field intensity can be built
up to large values as a result of many stimulated, and
therefore coherent, emissions of photons. Usually,
these resonators are macroscopic in size and are con-
structed using good mirrors for reflecting EM waves. In
recent years, the phenomenon of “random lasing™ was
discovered and studied [1-3]. This phenomenon is due
to the occurrence of small optical resonances in a col-
lection of transparent dielectric grains. Even in this
case, the resonators and resonance states cannot be
-smaller than the wavelength of light. This places a
seemingly strong lower bound on how small a laser can
‘be. Naturally, this lower bound is even greater in the
case of infrared lasers than in the case of visible light
lasers. We now argue that it should actually be possible
to overcome this apparent limitation and build a
nanometer sized laser where a strong coherent EM field
can be built up, and eventually radiated, whose fre-
quency is in the infrared or visible region of the optical
spectrum.

The basic premise upon which our argument is
based is that in heterogeneous media there exist quasi-
static resonances of the EM field whose spatial small-
ness is almost unlimited. These resonances are eigenso-

:lutions of Maxwell’s equations in the static or quasi-
static regime. Such an eigenstate is represented by an
electric potential field ¢(r) that satisfies the equation

V- E-Vp=0
" and vanishes over the entire external surface or bound-
ary of the system. Here, € is the electric permittivity,
“which in the general case is a position-dependent sec-
ond-rank tensor with components that are complex and
frequency-dependent.

The simplest case of such quasi-static eigenstates
occurs in a macroscopically heterogeneous mixture of

two separately uniform constituents with scalar permit-
_tivities £y, &,. In sach a composite medium, there exists

an infinite set of resonances or eigenstates; these are
characterized by special negative values of the ratio
e//€; or by special values of the related matenals
parameter s = €,/(g, — £,} which lie on the real, semi-
closed segment [0, 1) of the real axis [4—6]. Of course,
no real composite medium can ever be found in such a
resonance state, since no real material can have an elec-
trical permittivity that is real and negative—if the real
part is negative, then there must also be a nonzero imag-
inary part. However, if the imaginary part is smatll, then
the system can be excited to a state that is close to such
aresonance. The best case known to us is when metallic
silver (Ag) inclusions are embedded in a conventional
dielectric host and the frequency of the EM field is in
the near infrared or visible range. In those ranges, the
real part of the electric permittivity of Ag is negative,

large, and frequency-dependent, while the imaginary

part is as small as 0.18 [7]. An important aspect of the
quasi-static resonances in such a composite medium is
that they do not depend on any of the characteristic EM
lengths, such as wavelength in the dielectric constituent
or skin depth in the metallic constituent. In fact, they
are independent of all physical properties of the constit-
uent materiats and depend only on the microgeometry
of the interface between those constituents.

In numerical studies, we discovered that, in a two-
constituent composite medium with a disordered
microstructure, many of the quasi-static eigenstates are
strongly localized—the electric field has nonnegligible
values only in a limited region of space, whose size is
determined only by the detailed shape of the interface
[8]. Because of this, it appears that microstructures can
be found where quasi-static resonances exist whose
size is as small as we like, as long as it is still valid to
use electric permittivity and the continuum limit for the
description of the EM materials response.

These resonances have some peculiar properties.
(a) Because of the quasi-static nature of the fields, the
magnetic component is negligible—the field is almost
exclusively an electric field. This is in marked contrast
with the states in a conventional EM resonator, where
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the electric and magnetic fields have comparable mag-
nitudes. (b) The small size of the resonance is achieved
by an effective dynamic screening of the electric field
outside the resonance. This is done primarily by the
conduction electrons in the metal, which are free tw
move and readjust their self-field so as to nullify the
totai field. This is the same physical phenomenon that
is responsible for the collective excitations known as
plasmons, except that now the response is strongly
affected by the metal/dielectric interface. That ts why
these quasi-static resonances are also commonly
known as “surface plasmon resonances.”

These properties mean that, in contrast with conven-
tional optical resonators, where all the action is in the
EM field and everything could take place even in a vac-
wum, the quasi-static resonances require active and
essential dynamic participation of the conduction elec-
trons in the metallic constituent. That is why we call the
process which occurs when such a resonance builds up
its amplitude, by interacting with an appropriate set of
two-level excited systems, by the name “surface plas-
mon amplification by stimulated emission of radiation
(SPASER)” instead of by the better known name “light
amplification by stimulated emission of radiation
(LASER)” [9].

Another important point to consider is how a
SPASER can interact with a regular incident EM field,
and whether or how it can emit such a field. Indeed, the
localized quasi-static resonances do not interact with

such regular EM fields in the quasi-static approxima-

tion. However, beyond that approximation, there will
be a weak interaction, This is like having a conventional
LASER with optical mirrors forming the resonator that
have a very low, but not zero, transmissivity. This is

~ desirable because it allows the field intensity to build up

inside the resonator before being extracted for outside
use. The same can be said of the localized quasi-static
resonances, except that now we also need to worry
about dissipation: Because the electric permittivity of
the metallic constituent has a finite imaginary part, the
value attained by the physical parameter s can never be
exactly equal to any resonance value s, (recall that these
values are real and satisfy 0 < 5, < 1). At best, the dif-
ference s — s, will be small and imaginary. Conse-
quently, the resonance, once excited, will decay by dis-
sipation (i.c., EM energy will disappear and reappear as
internal energy and increased entropy of the composite
material) with a characteristic exponential dissipative
decay time T, given by [9]

T 1 dRes(w)
ta = [Ims(m) dw :lu,:m"’

where @, is the real part of the complex frequency €,
defined by s(€2,) = 5,,.

In addition to this, the resonance field will also
decay by radiating a real EM wave to the far-field

region. Since the electric dipole moment -of a dark,
localized quasi-static resonance vanishes [8], this radi-

ation can only happen due to higher multipole moments
of that state—the next higher moments are magnetic
dipole and electric quadrupole moments. These lead o
a radiated power that is smaller in magnitude by a factor
of order (ka)* <€ 1 (a is the size of the cigenstate, k =
21t/ is the wave number) compared to the electric
dipole radiation if that were not zero. The radiative life-
time T, of the eigenstate due to these two moments will
be of order

T
Em(ka)s,

where T = 21/ is the period of the EM field and €, is
the electric permittivity of the metallic constituent. This
radiative lifetime is greater by a factor of 1/(ka)* than
would be the lifetime due to electric dipole radiation if
that did not vanish. :

This weak interaction of the resonance with the EM
“far field” is most useful if it is just strong enough to
bring about radiative decay of the resonance in a time
comparable to the dissipative decay time described
above. For T= 10" s (A =3 um) and ka = 0.01, we
thus get . '

T, ~

It will also be interesting to consider microstructures
where dark localized states exist for which not only the
electric dipole moment but also the magnetic dipole
and electric quadrupole moments vanish. In that case,
the radiative decay will be due to electric octupole or
magnetic quadrupole radiation and we will have

T
g (ka)’

The radiative lifetime of such a state will be much
greater than previously calculated. Eigenstates with
zero values for the electric dipole, magnetic dipole, and
electric quadrupole moments exist in the case of an iso-
lated spherical inclusion (see below). It will be interest-
ing to explore their occurrence also in the case of more
complicated inclusion shapes.

Another important issue is the spatial extent of the
resonances and how that size depends on various
microstructural features of the metal/dielectric com-
posite. In the case of an isolated metal sphere embed-
ded in a dielectric host, the resonance potential field or
eigenfunction is always a spherical harmonic: Inside
the sphere, the potential is given by the “regular spher-
ical harmonic” r'Y,,(Q) (r and Q are measured relative
to the sphere center), but outside the sphere it is given
by the “singular spherical harmonic” 7~ 1Y, (Q) [5].
For large /, this means that the spatial extent of the
eigenstate is essentially equal to the size of the sphere.
It i1s expected that, for isolated, oddly shaped metal
inclusions, the grain size again determines the spatial
extent of the eigenstates. This is certainly so in the case
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of the higher eigenstales, i.e., those with increasingly
large eigenvalues s, and an increasingly oscillatory
nature of the associated potential field @,(r).

Interestingly, numerical simulations have shown
that, in more complex microstructures, there some-
times appear quasi-static eigenstates whose size is
much smaller than the typical inclusion size. For exam-
ple, in the case of a V-shaped metallic inclusion, there
== are eigenstates which are strongly localized near the tip
# or apex of the V shape [8]. We conjecture that what
= determines the size of such a highly localized eigen-
state is the radius of curvature of the metal/dielectric
interface in the vicinity of that eigenstate. This question
needs to be studied by further calculations.

In order to build up the electric field in a quasi-static
eigenstate with characteristic frequency @, we need to
have a collection of excited two-level systems with an
energy gap equal to fi@ that can be induced to emit their
energy coherently into this eigenstate. In practice, this
can be done in various ways. Our suggestion is to make
the dielectric host a compactified collection of semi-
conducting quantum dots (QDs) with an appropriate
gap in their spectrum of eigenstates. These can be
excited either by a strong incident uniform EM field or
by an electric current flowing through the host. Of
course, only those QDs that lie inside the limited spatial
extent of the eigenstate will be able to interact with it
and excite it. Quantitative estimates showing that this
can work appeared in [9].

The ideas we described here, when they are imple-
mented, wiil push down the lower limit on the size of
optical or near infra-red fields to the nanometer realm.
Electric field states of that size would open up the pos-

ing nanofeatures of solid surfaces. A strong coherent
electric field of that size, which would be available in a
SPASER, would open up the possibility of imprinting
comparably small changes onto a solid surface. For
these reasons, it is important to test these ideas experi-
mentally and find out whether they can be implemented
in practice. -
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sibility of constructing an electric nanoprobe for study-
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In summary, we believe it should be possible to con-
struct a device similar to a LASER, called a SPASER,
with a spatial size much smaller than the wavelength of
the EM field, in which a high intensity coherent optical
electric field can be built up. Such a device would have
many interesting applications. Experiments to test this
expectation, as well as some other predictions, would
be very desirable.
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