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Abstract: The poles and residues of the complete outgoing Green function in the complex momentum 
plane are used to obtain, in the case of finite range potentials, an eigenfunction expansion of the 
continuum wave solution. It is found that in the region r < a the wave solution may be expressed 
as an infinite sum of discrete terms involving the bound, antibound and resonant states of the 
problem. At the boundary radius r = a a different expansion is obtained. In this case, in order 
to get an infinite discrete sum, one has to introduce two subtraction terms. Otherwise the expan- 
sion is given by a finite sum of discrete terms and an integral contribution. 

1. Introduction 

The introduction of  complex eigenvalues of  the Schr6dinger equation to deal with 
nuclear problems is as old as quantum mechanics. In fact almost fifty years ago, in 
1928, Gamow 1) made use of complex eigenvalues in his studies on the decay of x- 
particles. 

From a physical point of  view, complex eigenvalues are used to describe a situ- 
ation in which a particle stays for a finite time in a certain state of the system and then 
decays. From a mathematical point of view this requires of the absence of incoming 
waves in the asymptotic solutions of  the Schr6dinger equation. It follows from unita- 
ity that this is only possible for complex energies. Consequently, the corresponding 
radial functions grow exponentially with distance and the usual methods of normal- 
ization and eigenfunction expansions are not valid in this case. 

Although complex eigenvalues and related eigenfunctions apply in a natural way 
to the description of resonances, in view of  the difficulties mentioned above, it is not 
surprising to see that the first nuclear reaction theories did not utilize them. 

In fact the formalism developed by Kapur and Peierls 2) was based on a pro:edure 
in which the eigenfunctions had to form a complete orthonormal set and therefore 
they were defined by a boundary condition which contained a fixed real momentum, 
instead of the complex momentum appropriate to the complex energy of eaclx cig~n- 
function. In practice this fixed momentum was identified with the momentum for 
which the scattering was calculated. 

The formalism due to Wigner and Eisenbund 3) uses real eigenvalues, determined 
by imposing a real boundary condition. Therefore the states used in the description 
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do not depend on the energy of  the scattering process. However the eigenvalues do 
not give directly the positions and widths of  the resonances. 

The idea of  using resonant states as defined from a physical point of  view has been 
so appealing that work along these lines has continued since the early work by Gamow. 

Another relevant contribution is the work by Siegert 4) in 1939, who showed that 
the properties of  an isolated sharp resonance follow directly from the corresponding 
eigenfunction. Peierls 5) in 1959, obtained a representation for the S-matrix as an 
expansion in terms of  its poles in the complex energy (or momentum) plane. 

In 1961, Humblet and Rosenfeld published in a series of  papers 6) a theory of  
nuclear reactions based on these physically defined eigenvalues and eigenfunctions. 
Since their formalism rests on the mathematical device of the Mittag-Lettter expansion 
of  the scattering or reaction amplitude, the problem related to the normalization and 
eigenfunction expansions of  the resonant states is not considered. Therefore although 
the dispersion theory is very general, it is not well suited to deal with problems that 
would require knowledge of the eigenfunctions. 

In recent years a number of  authors 7-1~) have emphasized the question of  the 
normalization and eigenfunction expansions of  these complex eigenfunctions. The 
idea is to obtain a consistent procedure in order to use these states in the description 
of  a number of processes where resonances play an important role, as for instance, 
stripping to unstable states. 

Although at present there are already several normalization procedures for these 
states, the question of  eigenfunction expansions seems to be not fully studied. In this 
context the well-known relationship between the poles of the scattering matrix, or 
more generally, of  the complete outgoing Green function and the bound and resonant 
states of  the problem is relevant. 

Some years ago, Berggren did interesting work in relation to eigenfunction ex- 
pansions involving resonant states. He considered a situation where a set of  resonant 
states, the so-called proper resonant states 6)t, form part of a complete set of  states 
which also includes the bound states of  the system and a set of  continuum states. It is 
relevant at this point to indicate that the continuous contribution arises from an 
integration along a line in the complex momentum plane that passes through the 
origin at an angle of  45 ° and eventually returns to the real axis. The eigenfunction 
expansion considered by Berggren does not include in a discrete way any contribution 
from resonance poles situated in the third quadrant of the complex k-plane. Actually 
such a contribution is incorporated in the integral term. It is not evident that the 
resonant poles situated in the third quadrant yield a slowly energy varying and as usu- 
ally expected, negligible contribution. Therefore we believe that it is worthwhile 
investigating eigenfunction expansions involving complex poles in both the third and 
fourth quadrants of  the complex k-plane. 

t Proper resonant states are those associated with poles of the scattering matrix situated in the 
fourth quadrant of the complex momentum plane and such that the real part of the complex momen- 
t urn is greater than the corresponding magnitude of the imaginary part. 
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In this paper we would like to present such an eigenfanction expansion, namely, 
one including the whole set of eigenfunctions associated with the poles of the com- 
plete outgoing Green function for the case of the continuum solutions of the wave 
equation. Our development is based on a Cauchy expansion of the complete outgoing 
Green function in the complex momentum plane. This procedure requires the in- 
vestigation of the asymptotic behaviour of that function as the momentum tends to 
infinity in all directions of the momentum plane. 

2. The wave function in the interior region and the outgoing Green function 

The case of scattering by a potential is particularly convenient to illustrate our 
formalism. 

We shall restrict ourselves to the case of S-wave scattering (though the same method 
is applicable for any other fixed angular momentum). We are tb_us dealing with the 
radial Schrrdinger equation 

d 2  ~b(r) + [k 2 -  V(r)]dp(r) = 0, (2.1) 
dr 2 

where k 2 is the energy in appropriate units. The wave function ~b(r) obeys the bound- 
ary condition 

q~(r = 0) = 0. (2.2) 

The interaction potential V(r) is assumed to be spherically symmetric and of finite 
range. That is 

V(r) - O, r > a. (2.3) 

As is well known, the solution of the wave equation for distances r > a, may be 
written as 

dp(r) = ½i[e-'k'--S(k)e'k'],  r >= a, (2.4) 

where, of course, S(k )  is the scattering matrix. It is also well known that the poles of 
S(k )  lie either in the lower half of the complex momentum plane or on the positive 
imaginary axis. The latter represents exponentially decreasing functions and belong 
to bound states, while the former are associated with exponentially increasing func- 
tions, and are called antibound states when the poles are situated on the negative 
imaginary axis and resonant states otherwise. 

A particularly important role in our development is played by the outgoing Green 
function G+(r, r'; k )  of the complete problem, which obeys the inhomogeneous 
equation 

02 G+(r, r , - -  '" k ) + [ k 2 - V ( r ) ] G + ( r ,  r ;k)  = 6 ( r - r ' ) ,  (2.5) 
Or e 
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with the boundary conditions at r = 0 and r = a+ t respectively given by 

G+(O, r ' ;k)  = 0, (2.6) 

[_UF / J '=a÷ 

Let us derive an expression connecting the wave function in the region r < a and the 
outgoing Green function. This relation follows immediately by using the Green 
theorem between eqs. (2.1) and (2.5) together with its respective boundary conditions, 
i.e. eqs. (2.2), (2.6) and (2.7), and the symmetry property of  the Green function. We 
obtain 

(o(r) = G+(r, a+; k) [ik~b(a+)-q~'(a+)], r < a, (2.8) 

where the dummy variable r '  is changed by the variable r. The expression inside the 
brackets on the right-hand side of  eq. (2.8) depends only on the value at r = a. Due 
to the continuity of the solution ~b(r) at the point r = a, we may utilize eq. (2.4) in 
order to write eq. (2.8) as 

(o(r) = -G+(r,  a; k) ke -ik", r <_ a, (2.9) 

this expression relates, for a given value of the real momentum k, the interior wave 
function with the outgoing Green function multiplied by a constant factor. 

It  follows from expression (2.9) that an eigenfunction expansion for the wave 
function in the region r < a may be obtained by expanding the outgoing Green 
function in terms of  its poles in the complex energy or momentum planes. The rele- 
vant point is that the residues at the poles of the outgoing Green function are precisely 
the bound, antibound or resonant states of the problem. 

The outgoing Green function G+(r, r'; k) is defined for all r, r '  > 0, and is con- 
sidered as a function of the complex momentum or energy variables; it possesses, 
except in very special cases, the same distribution of poles as the scattering matrix 
S(k). In the complex momentum plane, the outgoing Green function is a mero- 
morphic function. In general all its poles are simple. Poles of  second or higher order 
occur only in very special circumstances. We assume that we are dealing with prob- 
lems in which these difficulties are not present. Let us consider the contour integral 

i = l f r  G+(r'k'-ka; k') dk', (2.10) 

where F represents a large closed contour in the complex momentum k-plane about 
the origin in the clockwise direction which excludes all simple poles, k,, and the value 
k'  = k. Hence by using Cauchy's theorem it follows that 

I = - - 1  I -  fcG+(r'a;k')dk'+ ~fc G÷(r'a;k')dk'+ fc G+(a'r';k')dk'l=O, 
2rci k ' - k  , k ' - k  k k ' - k  

(2.11) 
t W e  d e f i n e  a +  = l im~_.  0 aq-e. 
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where in the above expression, C represents a large circle of radius R centered at the 
origin; the contours C., encircle each of the simple poles k, that are enclosed by the 
contour C, and the contour Ck encloses the momentum k'  = k. The contours C, C, 
and C k, are all in the counterclockwise direction. 

By using the residue theorem, we may write expression (2.11) as 

~ 1 ~ G+(r,a;k')dU. (2.12) G+(r, a; k) = P"- + 
k - k ,  272i c k ' - k  

The expression for the residues has been derived elsewhere 11.12. 14) and will not be 
repeated here. The residues are given by 

p.  = U . ( a ) U . ( r ) / 2 k .  U~(r)dr  + iU2.(a)/2k.  . (2.13) 

The functions/.7, that appear in the above relation represent bound, antibound or 
resonant states of the problem. These eigenfunctions obey the radial equation 

d 2 
- U . ( r )  + [k, 2, - V(r)]  U . ( r )  = 0, (2 .14)  

d r  2 

with the boundary condition at the origin 

U, (r = 0) = 0, (2.15) 

and the outgoing boundary condition 

The quantity inside the brackets appearing in the denominator of eq. (2.13) gives the 
normalization of these eigenfunctions 

foU2,(r)dr + iU~(a)/2k,, = (2.17) 1. 

This normalization procedure is consistent with bound state eigenfunctions. In 
fact it is easy to convince oneself that the above normalization reduces to the usual 
procedure in the case of bound states. 

Therefore, by using eqs. (2.13) and (2.17) in eq. (2.12) we obtain 

i LfcC+(a, r; k')dk' G+(r, a; k) = U,(a)U,(r) ~- (2.18) 
. 2 k . ( k -  ko) k ' -  k 

Substitution ofeq. (2.18) into eq. (2.9) gives the following relation for the wave func- 
tion in the region r < a: 

d?(r) = Z C, U,(r)+ ke-lk~j[__ -- G+(r, a; k') (2.19) 
,, 2~i c k ' - k  
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where the coefficient C~ is given by 

C, = ke-~kaU~(a)/Ek~(kn-k). (2.20) 

The expansion of  the wave function in the interior region given above contains a 
finite number  of  discrete terms and an integral contribution. Our aim is to obtain an 
eigenfunction expansion involving only discrete terms. Since for finite range poten- 
tials the number  of  complex poles is infinite ~3), one has to consider the limit o f  an 
infinite radius for the contour C of  the corresponding integral term in order to include 
all the poles into the sum of  eq. (2.19). A sufficient condition for the vanishing of  the 
integral term is 

G+(r, a; k) --, 0 as Ikl ~ oo, 

where obviously the variable k is complex. Therefore in order to see if the contribution 
of  the integral term vanishes, one has to look at the behaviour of  the outgoing Green 
function G+(r, a; k) as the complex momentum tends to infinity. 

Using eq. (2.8) one can get an expression for G+(r, a; k) of  the following form 

G+(r, a; k) = G+(a, a; k)qb(r)/~b(a), r < a. (2.21) 

The above expression is particularly convenient to study the behaviour o f  the out- 
going Green function with k. In fact in that way one can make use of  the results ob- 
tained by Peierls 5) in connection with the behaviour of  the scattering matrix S(k) as 
k tends to infinity. This follows immediately by realizing the close connection be- 
tween the outgoing Green function evaluated at r = r' = a and the scattering matrix. 
In fact by substituting eq. (2.4) for r = a into eq. (2.8) we obtain a relation that can 
be written as 

1 [l_S(k)e2,ko]. (2.22) G+(a, a;k)  = 

Peierls showed that for finite range potentials t, S(k) behaves for very large k as 
4k 2 exp[-2ika] in the lower half  k-plane and as exp[-2ika]/4k 2 in the upper half 
k-plane. Therefore by using the above results into (2.22) it follows that G÷(a, a; k) 
for very large k is proportional  to  k in the lower half  k-plane and goes as 1/k in the 
upper half  k-plane. On the other hand, it is well known 23) that along the real axis 
S(k) tends to the unity as k tends to infinity and consequently G+(a, a; k) goes to 
zero. 

In summary we obtain the result that G+(a,  a; k) diverges along any direction of  
the lower half k-plane as k tends to infinity. 

Let us now consider the behaviour of  the second factor on the right-hand side of  
eq. (2.21), i.e. c~(r)/~b(a) as the momentum increases. 

The analysis is made for potentials having a finite different from zero value at the point r = a. 
This includes most of the interesting cases. One should notice that any long range potential can be 
cut off in a way that satisfies the above condition. 
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It is well known ~a) that the "physical" solution may be compared with the so 
called "regular" solution ~(k, r) through the relation 

q~(r) = k~(k, r)/J(k), (2.23) 

where J(k) is the Jost function. In contrast to ~b(r), the "regular" solution is every- 
where an analytic function of k. Hence it is convenient to express the factor ~p(r)/dp(a) 
in terms of "regular" solutions, 

~p(r)/~b(a) = ~(k, r)/~(k, a). (2.24) 

The "regular" solution obeys the integral equation 13), 

sin kr t~ r 

~(k, r) - + 7 |  dr'  sin k(r-r')V(r')¢(k, r'). (2.25) 
k kJo 

The important point is that for finite range potentials the "regular" function ¢(k, r) 
behaves as 

~b(k, r) = sin kr/k, (2.26) 

when Ikl ~ oo ;  thus, ~b (k, r) approaches its "unperturbed" value as Ikl ~ oo in all 
directions of the complex plane. Hence, substitution of (2.25) into (2.23) leads to 

~(r)[(a(a) = sin kr/sin ka, r < a. (2.27) 

Since the radius a is always larger than the variable r, it is straightforward to see that 
in both the upper and the lower halves of the complex k-plane the quantity dp(r)/ 
~b(a) vanishes exponentially as k goes to infinity. In a similar way it may be seen that 
this quantity oscillates indefinitely along the real k-axis. 

From the above analysis it follows that the outgoing Green function G+(r, a; k) 
vanishes in all directions of the complex plane as the momentum tends to infinity, i.e. 

G+(r, a; k) ~ 0 as Ikl ~ oo. (2.28) 

Hence the integral term of eq. (2.19) goes to zero in the limit of  infinite radius and 
we obtain the interesting result that in the region r < a the Green function G + (a, r; k) 
may be written as 

G+(a,r;k ) ~ U,(a)U,(r) = , 1" < a. (2.29) 
, 2k , (k -k . )  

Consequently in the region r < a, the wave function qS(r) can be expanded in terms 
of the discrete sum 

dp(r) = Z C.U,(r), r < a, (2.30) 
n 

where the expansion coefficients (7. are given by eq. (2.20). 
We may ask the question as to what happens at the boundary value r = a. It is 

evident that eq. (2.29) cannot be extended to deal with this case. Since G+(a, a; k) 
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diverges as Ikl --, 0o, we have to return to eq. (2.18), which for r = a reads 

G+(o, a; k) = ~ U2(a) + 1 fc  G+(a' a; k') dk'. (2.31) 
,, 2k,,(k- k,,) ~ i  k ' -  k 

Therefore the expression for the wave function at r = a is given by 

N ~ G+(a, a; k') ~b(a) = • C~ Un(a)+k e-ika dk', (2.32) 
2rri dc k - k '  

! 

where the coefficient C~ is the same as in eq. (2.20). Notice that the discrete sum in 
eq. (2.32) runs up to a finite number of resonance terms. If  we want to consider a sum 
including an infinite number of resonances, the analysis made above on the asymptotic 
behaviour of the complete outgoing Green function G+(a, a; k), namely, that this 
function diverges linearly in k as k goes to infinity, implies that the integral term in 
eq. (2.32) diverges as the radius R if the circle C tends to infinity. The preceding 
result means that we have to consider two subtraction terms in the expansion of  eq. 
(2.32) if we want to obtain a purely discrete expansion. Otherwise we have to deal 
with a finite sum of  terms and an additional integral contribution. 

The expression for the wave function (k(a) involving two subtractions follows 
directly from Cauchy's expansion and is given by 

dp(r) = - ke  -ik" [G +(a, r; O)+ k [~k' G+ (O' r; k')]k,=o+k2 ~ U"(a)U"(r)l , ~ k ~ ) _ l  " (2.33) 

3. Expansion coefficients 

In this section we derive an alternative expression of the expansion coefficients Cn 
given by eq. (2.20). Our aim is to obtain an expression for each coefficient C, in terms 
of an integral involving the wave function ~(r) and the corresponding eigenfunction 
U,(r). The derivation of  such an expression is well known in the framework of other 
reaction formalisms. In our case one has to proceed in a different way because the 
eigenfunction expansion of the wave function is different in the region r < a and at 
the boundary radius r = a. 

We are interested in deriving integral expressions for the coefficients Cn because 
they could be useful in connection with the problem of completeness of the set of 
eigenfunctions U~(r). 

Consider the equation for the eigenfunction U,(r) and the complete outgoing Green 
function G+(r, r'; k) given respectively by eq. (2.14) and eq. (2.5). Using Green's 
theorem we obtain 

[ , ;  .... d G+(r ' r'; k ) - G + ( r ,  r ' ;  k U,(r Un(r) a r  ,= 0 

f0" f" +(k2 -k~ )  G ( r ) a + ( r , , " ;  k)dr = oU~(r)6(r-r)dr. (3.1) 
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Applying the boundary conditions associated with U`'(r) and G+(r, r'; k), i.e. eqs. 
(2.6), (2.7) and (2.16), to expression (3.1) gives the result 

f o U,(r') = i(k-k,,)Un(a)G+(a, r'; k ) + ( k 2 - k ~ )  Un(r)G+(, ", r'; k)dr, r' <= a. (3.2) 

It is now convenient to consider eq. (3.2) at the point r '  = a and then make use of 
eq. (2.9). The resulting expression can be written as 

f£~o(r)U.(r)dr + i ¢(a)U,(a) _ kU,(a)e -ik" (3.3) 
k + k, k, z - k2 

Therefore, by comparing eq. (3.3) with the expression for the coefficients 6',, i.e. eq. 
(2.20), allows the coefficient C`" to be written as the product 

C. = l,.a`'. (3.4) 

The coefficients h "̀ and a`" are given respectively by 

h,, = (k +k,,)/2k,,, (3.5) 

Io a, = r~(r)U,(r)dr + i ~o(a)U.(a) . (3.6) 
k + k ,  

Substitution of eqs. (3.5) and (3.6) into (2.30) gives the following expression for the 
wave function in the region r < a: 

dr '¢ , r 'U , , , r ' )+ i  d~(a)U"(a)_ U,(r), r <  a. (3.7) ( )  ( 1 ~(r) = ,, --2~, k + k,, _l 

The above equation may be written as 

= k + k ,  dr '¢(r ')U,(r ')  U,(r)+d?(a) i U.(a)U,(r),  r < a. (3.8) 
¢(r)  . ~ . 2k,, 

Actually the last term of eq. (3.8) vanishes exactly. In fact let us multiply and divide 
that term by k - k , ,  and then make use of the outgoing boundary condition for the 
eigenfunctions U,(r) [eq. (2.16)] in order to write the last term of eq. (3.8) as 

r ~ 2k,(k-k,)U"(a)U"(r) -- 2k~-I~,)J'U'(a)U"(r)l (3.9) ik £ £ 
i , -  II 

where U'(a) means the derivative of U.(r) with respect to r calculated at r = a. 
Using eq. (2.29) allows eq. (3.9) to be written as 

¢(a)[ikG+(r, a; k ) - G ' + ( r ,  a; k)]. (3.10) 

We can immediately see from the boundary condition obeyed by the Green function 
G + (r, a; k), i.e. eq. (2.7), that eq. (3.7) is identically zero. Therefore the eigenfunction 
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expansion for the wave function in the region r < a reads 

4fir) = h, 4)(r')Un(r')dr' U.(r), r < a, (3.11) 
n 

where the coefficients hA are given by eq. (3.5). 
We may interprete the coefficient h A as a weight factor. This is suggested by the fact 

that the integral term in eq. (3.11), i.e. 
4 a  

b, = 1  4(r')U~(r')dr', (3.12) 
d 0 

corresponds to the familiar inner product between the wave function ~b(r) and the 
eigenfunction Un(r ). 

Let us now consider the situation at the boundary radius r = a. Substitution of 
eqs. (3.5) and (3.6) into eqn. (2.32) leads to the expression 

[ f o  ~ k e - a ' o f  G+(a, a; k') $(a) = ~ h A dr' dp(r')U,(r')+ i dp(a)U,(a)_ Uo(a)+ dk'  
,, k + k ,  A ~ Jc  k - k '  

(3.13) 

Since the sum in eq. (3.13) includes a finite number of terms it is evident that the sur- 
face term of the corresponding expansion coefficient does not vanish. Clearly, this 
situation is in contrast to the result obtained previously for the region r < a. 

It is of  interest to mention that in a recent paper, Romo 15) asserts that bound, 
antibound and resonant states form a complete set of states in the internal region of 
space r < a. The analysis made by Romo is only for the delta shell potential. Our 
results agree with those of Romo only in the region r < a. We have shown that at the 
boundary radius r = a, a purely discrete expansion is not valid unless we introduce 
subtraction terms t. Otherwise in addition to a finite sum of  discrete terms there is an 
integral contribution. We would like to point out that Romo's  analysis is made in 
terms of  integrals along the internal region in such a way that the features of  the 
eigenfunction expansion at r = a are not exhibited. 

4. Conclusions 

In this paper we have shown, for the case of  finite range potentials, that the poles 
and residues of  the complete outgoing Green function as a function of  a complex 
variable, may be used to obtain a purely discrete eigenfunction expansion of the wave 
function q~(r) in the region of space r < a. Such an expansion possesses an infinite 
number of  terms involving the bound, antibound and resonant eigenfunctions of  the 

¢ Actually the delta shell potential possess the peculiarity that at r = a it has an infinite value. The 
exact expression of  G + (a, a; k) associated with the delta shell potential V(r) = 2c$(r---a) is G + (a, a; k) 
= 1/ ik- -k  cotka--;t .  It is s traightforward to show that G+(a, a; k) behaves respectively as l[k in the 
upper k-plane and as a constant  in the lower k-plane. Therefore a purely discrete expansion requires 
only one subtraction term. 
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problem. On the other hand we have obtained that at the boundary radius r = a, a 
purely discrete eigenfunction expansion o f  the wave function ~b(a) is not valid unless 
we introduce into the expansion two subtraction terms. Otherwise we have to con- 
sider, in addition to a finite number of  discrete terms, an integral contribution. Since 
the resonance contribution is included into the discrete part we may expect, if  the 
discrete sum runs over sufficiently larger number of  resonances, that the integral 
term corresponds to a slowly energy-varying quantity. 

Therefore we reach the conclusion that for finite range potentials the residues and 
poles of  the complete outgoing Green function do not give a complete representation 
of  the wave function in the interior region r < a. Since the scattering matrix is con- 
structed from the condition of  the continuity o f  the interior and exterior wave solu- 
tions at the boundary r = a, we conclude also that a purely discrete expansion for 
the scattering matrix is not valid unless we introduce two subtraction terms. 

It is a pleasure to thank Prof. R. E. Peierls for an illuminating discussion and 
Dr. M. Berrondo for useful discussions. 
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