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Synopsis

The purpose of this paper is to review and extend the explanation of the resistivity
anomalies observed in certain magnetic metals and alloys in terms of spin-dependent
scattering of the conduction electrons. For this purpose, the usual theory of electrical
conductivity has been extended to include inelastic collisions with and without spin
flip, Assuming the existence of an exchange interaction between the conduction
electrons and unpaired electrons localized on particular atoms, the resistivity has been
calculated for scattering by (i) isolated magnetic ions, (ii} pairs of exchange-coupled
magnetic ions and (iii)'spin-disorder in a {ferromagnetic lattice. For models (i) and (ii)
the magnetoresistance has also been investigated.

1. Introduction. Two different theories have been put forward to explain
the electrical behaviour of transition metals and their alloys. On the one
hand, there is the band theory of Mottl) for nickel, palladium and their
alloys, in which it is assumed that the abnormal behaviour of these metals
is due to transitions from the s-band (which carries most of the current) to
the d-band under influence of lattice vibrations. The consequences of this
theory have been tested by Schindler?)3) and coworkers, by Allison and
Pugh4), by Pugh and Ryan?) and others. From this work it appears that
s—d-scattering is indeed responsible for the relatively high resistivity of
these metals and for the greater part of the anomalies near the Curie
temperature.

On the other hand, it seems fairly certain that in the rare earth metals,
and probably also in iron, the unpaired electrons are localized on particular
atoms; the same situation is encountered in a number of dilute alloys of
transition elements in copper, silver and gold. Thus, it has been suggested
by Kasuya®8) and by De Gennes and Friedel?) that the resistivity of the
rare earth metals is determined to a large extent by an exchange interaction
between the conduction electrons and the localized spins in these materials.
If this interaction is sufficiently strong, disorder of the spin system will
produce an appreciable contribution to the resistivity in the form of a spin-

*) During the course of publication of this paper the sad news was received of the sudden death of
Mrs, T, van Peski-Tinbergen.
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disorder term. For a review of spin-disorder effects in the electrical resistivi-
ties of metals and alloys we refer to Coles$).

The electrical resistivity of noble metal alloys containing traces of tran-
sition elements has been measured by Gerritsen and Linde9) and others.
Some of these alloys exhibit a minimum in the resistivity at some low
temperature; typical examples are dilute alloys of iron in copper19). Others,
such as manganese in copper, show a minimum in the resistivity followed
by a maximum at a still lower temperature, Correlated with the resistivity
anomalies in these alloys is an anomalous magnetoresistancel) and mag-
netic behaviour1?). Several attempts have been made!8) to explain these
properties, but the occurrence of a maximum and (or) a minimum in the
resistivity as a function of temperature remained rather puzzling for a
number of years. However, from the work of Brailsford and Over-
hauser!) and Dekkerl%) it seems fair to conclude that the resistivity
anomalies may be attributed to the scattering of conduction electrons by
the exchange-coupled magnetic ions. In particular, these authors considered
the scattering of the conduction electrons by pairs of exchange-coupled
magnetic ions, on the assumption that there exists an exchange interaction
between the conduction electrons and the ionic spins. The pair-model had
been introduced earlier by D ekker18) in an effort to understand the magnetic
behaviour of alloys such as Cu—Mn. This model must be considered a rather
crude approximation to the actual situation encountered in dilute magnetic
alloys. In fact, from the work of Blandin and Friedell?) we now know
that the electron density (corresponding to a given spin direction) around
a magnetic impurity is determined by an oscillating function with an
amplitude which decreases relatively slowly with the distance from the ion.
Since this function is different for the two possible spin directions of the
conduction electrons, there results an indirect exchange interaction between
the magnetic ions, which may range over relatively long distances. In the
resistivity of these alloys there will thus occur a term due to the exchange
interaction between the conduction electrons and the system of magnetic
ions which are indirectly coupled among themselves. The calculation of the
resistivity poses a difficult statistical problem*).

A strongly simplified approximation to this state of affairs in dilute
magnetic alloys consists of the following: if the actual long-range indirect
exchange forces between the magnetic impurities are replaced by short-
range forces, the system of magnetic atoms may be considered to consist of
isolated atoms and of pairs of nearest neighbours; in sufficiently dilute
alloys, larger clusters may then be neglected. In this case, the impurity
resistivity would be determined by the scattering produced by the isolated
magnetic atoms and by the pairs of exchange-coupled atoms. Since the

*) An elegant approximation is being worked out by Miss T. Béal (Orsay, France; private
communication),
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latter indeed may produce anomalies of the kind observed, one may expect
similar anomalies to cccur for a more sophisticated model in which the long
range of the exchange forces is taken into account. Obviously, the pair
model does not allow a quantitative comparison between theory and ex-
periment. It is believed, however, that the pair-model exhibits the essential
teatures of the actual sitnation in a qualitative way.

In the present paper we give a unified treatment of the electrical resistivity
produced by

(i) isolated magnetic atoms

(ii) pairs of exchange-coupled magnetic atoms

(iii) spin-disorder in pure ferromagnetic metals with localized spins.
In all these cases we assume that there exists an exchange interaction
between the conduction electrons and the localized unpaired electrons of the
magnetic atoms., From what has been said above, it will be evident that
this paper constitutes partly a review of previous work; in other respects it
contains an extension thereof. Thus, because the actual transport theory
including inelastic spin-dependent collisions has received relatively little
attention in the earlier papers, section 2 is devoted to this subject; this
section unifies the treatment of the three models discussed in sections 3
through 3. For models (i) and (ii) we have also investigated the effect of a
magnetic field on the resistivity. Our results on the resistivity produced by
spin-disorder in a ferromagnetic model, differ somewhat from those obtained
by Kasuya®) and by De Gennes and Friedel?), as mentioned in section
5. Finally, we believe that the formula for the resistivity produced by pairs
of magnetic atoms as originally published by Brailsford and Over-
hauser14), should have preference over their “corrected’ formula published
later18) (see section 4).

2. Transport theory for electrons which suffer inelastic and elastic collisions.
In the following sections we shall be concerned with calculating the resistivity
of a metal resulting from various kinds of scattering processes. Assuming
that the matrix elements for these processes are known, it will be necessary
to have available a general expression for the relaxation time of the conduc-
tion electrons in terms of these matrix elements; such an expression will be
derived in the present section.

Apart from the usual type of elastic scattering of the conduction electrons
by foreign charge distributions, we shall be interested in scattering processes
which are governed by an exchange interaction between the conduction
electrons and magnetic impurities. The perturbation hamiltonian in such
cases depends on the relative orientation of the spins of the incident electron
and the scattering center. Collisions of this type may or may not be elastic,
depending in general on whether the collision proceeds without or with spin
flip. Thus, in deriving a general expression for the relaxation time, one
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should take into account any energy transfer between the scattered electrons
and the scattering centers. Also, spin-dependent scattering will in general
lead to different relaxation times for conduction electrons with magnetic
spin quantum number s = 4% and my = —4%. It will therefore be necessary
to consider the “plus” and “minus’’ electrons separately.

The wave vector of an electron will be denoted by k and we shall consider
a single conduction band for which the energy as a function of k is assumed
to be of the form Eg + #2k2[2m, where m is an effective mass. In the
presence of some uniform effective magnetic field, the constant Eg may be
different for electrons with mg = +4} and ms = —4; we shall choose the
zero of energy such that E.(k)= + AE + #2k2[2m for ms = 4+-%. The number
of possible states per unit volume corresponding to an element dk in k-space
equals (1/8x=8) dk for each of the twotypes of electrons. In thermal equilibrium
and in the absence of electric or non-uniform magnetic fields, the fraction
of states occupied by electrons is given by the Fermi-Dirac distribution
function

for(Es) = foulk) = |:exP {( ﬁ;kz 4+ AE — EF>/ kBT}—{- 1:|~1

m

for mg = —+ 4; Ep is the Fermi energy and kg is Boltzmann’s constant. The
electron densities #,. may easily be shown to differ from 4# (n =total
electron density) only by a term of the order AE[Ep, which is negligible
for our purposes. The electron densities n,, are not affected by the occurrence
of collision processes involving spinflip, as long as the whole system (electrons
-+ scattering centers) is in thermal equilibrium.

In a state of steady electric current under influence of an electric field
F, along the x-axis, let the densities of electrons corresponding to dk be
given by (1/8n2) f.(k) dk. If e represents the charge of an electron, the rate of
change of f+(k) produced by the field F, equals

[0, 0tuera = — (eF ohikeg[m)(f0.[OF ) (2-1)

If the rate of change of f. due to scattering processes can be described by
a relaxation time 7.(k), we may write

(0F+/08)oon, = —(F= — fou)/m= (2-2)
In the steady state the sum of (2-1) and (2-2) must vanish, so that
fo — for = —(eFgfikyrsm)(8f0s/OF) = g(k) (2-3)

which defines the quantities g1 to be used later. Once the relaxation times
7« are known, the electrical conductivity, o, follows directly from ¢, =
=0p+1 0¢— and from the well-known expression for the current density [,:
Oos == Jus/Fy = (e/Fg) [ (1/8n3) dk(f. — fos)(fikg/m) =

= —(e2/6m?m) [ k374 (0f0.[0E.) dE.. (2-4)
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In order to calculate 74+ in terms of the relevant matrix elements, consider
the quantity (8/+/%) ..y, ; the calculation of 7_ proceeds in exactly the same
manner. The collision processes involving no spin flip will be denoted by
a subscript ¢ or ¢'; those for which spin flip does occur will carry a subscript
7 or 4'. Although usually only collisions involving spin flip may be inelastic,
we shall assume for generality that in collisions of type ¢ (or §) the electron
gains an energy £(or &) ; & is simply a difference in kinetic energy, whereas
&4 contains, in addition, a term F24E, depending upon the change in mag-
netic quantum number Ams = F 1 of the electron. The transition pro-
babilities for the various processes will be denoted by Pik. — k),
Py(ky —k_), etc. Extending the standard procedurel?) for our purpose,
we may write

(0f+]28)oon = (1/873) J dke} [— %Pi(k+ k) fe(l —fi) +
+ iZPi'(kl k) (1 — 9] +
+ (1/8n%) [ dk” [~ §P, (Ry = kL) f+ (1 = f1) +
+ %‘,Pj'(k'_ — ki) fL(1 = }4)] (2-5)

Here, we have introduced the abbreviation (k') = /', etc. Detailed balance
in the absence of fields for the system in thermal equilibrium requires

oy Jo+ll — fo4)

%Pi'(k.k —)'k+) = ;Pi(k+ -—>k+) m (2-6)
and

5 Py(k. k)= 3 Pyfley k') 0L =10 27)

7 7 fo-(1 — fo+)

Furthermore, up to linear terms in g, defined in (2-3), the following
relations hold:

fo (1 — f4) = 1) _ g4 . g+ (2-8)
for(1 — fo+) fo+(1 — fo+) for(1 — fo+) fo+(1 — fot)
[l —f) FO—-f) g g+ (2:9)

for(l — for)  for(l — foo) ~ foll — fo0)  Jor(l — fou)

Note that on the right hand side of these equations, the first term contains
only primed quantities and the second term only unprimed quantities,
whereas the left hand sides are mixed. Making use of the last four equations,
(2-5) may be written as follows

(@ +108) oo, = (1/8723) f dk’, s Pi(ky — k) for(l — f6+)[76-+—(—1§£—%~+—)— -
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1+ s fart 5 2igs B fons —foo)-

. N . ]
[fa-(l ZF) " Torll = fou) ] (210)

fo+(1 - f0+

Furthermore,
0
fos(l — fox) = —-kBT< afEOi> (2-11)
and
Py ofo+ 1
forld = fo) = —ksT 5= 1 for{l — exp(—eykpT))
o+ 1 (2-12)

for(l — fo-) = —kpT 8E+ 1 — for{l — exp(—e;/kpT)}

wheresi = E_|_ — Ey = (B2[2m)(k,2 — k%) and ¢y = E_. — Ey = —24E +

+ (#2/2m) (k% — kL). Employing (2—-3) (2-11) and (2-12) one obtains for
(2-10) the following expression
o

LA ug{(l Jo) [, S Plks ~R)(1 — k)
1

: +
1 — fo{l — exp(—eifkpT)}
+ (1/8n3) fdk'_ 3 Pylky — kL) (1 — 7_k_[riks).
i
1 —
[ — fo{l —_ exp(—s;/kBT)} - —g+/‘r+.

Note that the relaxation time =, contains a term which depends on the ratio

7|7+, as a consequence of collisions involving spin flip.
We now make the usual assumption that the transition probabilities
depend only on the magnitudes 2" and %, and on the angle of scattering 0.

Furthermore, we write the transition probabilities in terms of the matrix
elements, M, corresponding to a single scattering center of type 7 as follows:

Pyky — k), 0) = (2ff) |My(ky — k), )2 NS(E, — Ey — &)  (2-14)

(2-13)

N, is the number of scattering centers producing a particular collision
process; the delta function takes care of energy conservation.

Finally, we write for a volume element dk’ in A-space 2z sin 0 d0 2’2 d&’ =
= (2nm[#2) k' sin 0 d9 dE’. Expression (2-13) then takes the form

/r4 = (mk[2n#3) [2 fNi | M (ks — k., 6)|2 (1 — cos 0) sin 6 d0-

0
1

T Josll — exp(—edfhsT))

-+
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- ZfNj (My(ksy — k_, 6)[2 {1 — (r—|r4) cos B} sin 0 d -
7
0

1
e el &19)

A similar expression holds for 1/r_.
In order to obtain the conductivity, (2-15) must be substituted into (2-4);
the resulting expression for o, then contains an integral of the type

I= —fG(E)—?EO— dE = G(Ep) +%2 (ksT)? [;IZGZ ]Ef . (2-16)

In the usual theory of electrical conductivity where one deals with quasi-
elastic scattering, so that the change in energy of the electrons during a
collision is small compared to £gT, and hence the numerators 1 — fo{l —
— exp(—e/kpT)} in 1/r may be omitted, it is common practice to neglect
the second and higher terms in (2-16) because they are assumed to be
smaller than the first term by powers of AT /Er (this is correct if the
derivatives of |M,;|? with respect to E are of the order | M, |3/EP(p > 1),
which seems plausible). In our case, this procedure would be valid when
&y < kT, ie. at sufficiently high temperatures.

On the other hand, at very low temperatures the factors (ks7)2? seem at
first sight to provide a rapid convergence of the series. However, due to the
special form of the function G(E), the 2n-th derivative of G contains a part
with the factor (kpT)~27, cancelling the (kgT)2" in the (# 4 1)-th term in
(2-16); this might possibly give rise to a non-negligible contribution to I
under certain circumstances, originating in charge transport by electrons
having not exactly the Fermi energy. Fortunately, it turns out that the first
term of (2-16) is still a sufficiently good approximation for the integral I;
one can show, in fact, that the terms under consideration still go to zero
for T — 0 and we feel justified in neglecting all terms in (2-16) beyond G(E ).
(We shall return to this point in section 4 in connection with the work of
Brailsford and Overhauserl8)).

Following the procedure outlined above, we obtain from (2-4) the well-
known formula

Oox = (nye2[m) Tpy (2-17)

where 7p is the relaxation time for electrons with the Fermi energy.

Note that if the matrix elements in (2-15) are independent of 0, ie. if
the scattering is isotropic, the term containing (r—/r4) disappears upon inte-
gration. Thus, for isotropic scattering, the relaxation times rpy. are given by

2
1+ exp(-—ei/kBT)

Ures = (okeft) | B Ny Mifhs > )1
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2
Ny \Mj(ks — k)2 ] 2-1
In this formula, the quantities kp, satisfying Ep = +AE 4 (42k2p./2m)
have been replaced by kp = V2mEp[#2, from which they differ only by an
amount of order AE|Ep.

3. Scattering of conduction electrons by isolated magnetic ions. In this section
we shall consider the resistivity p; resulting from scattering of the conduction
electrons by isolated magnetic ions. The magnetic ions will be characterized
by a spin angular momentum operator S (expressed in units #), a spin
quantum number S and a magnetic spin quantum number M;, which runs
from —5 to 4-S. If u(S, M) represents a spin eigenfunction, the following
relations hold:

S%u(S, Ms) = S(S + 1) (S, M)

Sau(S, M) = Maai(S, M) (3-1)

Similarly, the electron spin operator is s and the eigenvalues of s2 and s,
are s(s + 1) and my respectively, where s = § and ms = 4-4.

Choosing the origin of our coordinate system at the center of a magnetic
ion, we shall assume that the Hamiltonian for an electron at 7 interacting
with the ion consists of the following two parts:

2
Ho=——+ Ulr) + gbS:H + 2Bs:H
v/

and (3-2)
) = V{r) —2](r)s-S.

Here, p and m are the momentum and effective mass of the conduction
electron; U(r) is the periodic potential of the crystal lattice; the third and
fourth terms in ) represent the energy of the ion and the electron in a
magnetic field H pointing along the z direction, with f = e#/2mc represent-
ing the Bohr magneton, and g and 2 the spectroscopic splitting factors of
ion and electron, respectively. V(r) describes the usual spin independent
interaction between the electron and the ion, whereas the term contain-
ing J(r) stands for the exchange interaction between them; ¥ and J arereal.
The eigenvalues of o are
%2p2

E(k, M, ms) = ——

+ gBMH + 2BmyH. (3-3)

From the assumed form of the exchange interaction it follows immediately
that in the scattering processes the quantities S, s and (M + ;) remain
unchanged, because the operators $2, s2 and (Sz + s;) all commute with the
Hamiltonian 3# = 59 -~ 21. The initial state of the system electron plus
ion will be characterized by the quantum numbers M; and ms, and by the
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wave vector k of the electron. In the Born approximation, the scattering
processes leading to transitions of the electron from k to k' are then
governed by matrix elements (cf. (2-14))

Mgy (k(ms), k' (m}), 6) = <my, My | [ S#1(r) €47 dr| ms, M s> (3-4)

where the integration over r extends over unit volume of the crystal.
q =k — k', and mg, M define the final spin state of the system. Performing
the integration over #, (3-4) becomes

<77’L.19» JVI.IS ]V(f]) —_ ZJ(Q){SZSZ, -+ %(S+S_ + S—-S+)}l s, Ms> (3_5)
where, as usual, the dependence of
V(Q) Ef V(f) el r dy and ](q) Ef](f) el dr

upon the direction of ¢ is neglected; S. = Sz 4 1Sy. The relevant non-
vanishing spin-matrix elements are

g, Mg 1555z msM > = msh (3-6)

<ms + 1, Mg — 1|35\ ms, M s> =
={(s — ms)(s + ms + 1)(S + M)(S — Ms + 1)} (3-7)

g — 1, My + 1 |5-S4] ma, Mgy =
={(s +ms)(s —ms + 1)(S — M)(S + My + 1)} (3-8)

The matrix element (3-6) gives rise to scattering without spin flip, whereas
(3-7) and (3-8) correspond to collisions with spin flip. Note that (3-7) auto-
matically vanishes for ms = 44 as it should, because in this state the elec-
tron can make a transition only to my=—4. Similarly, (3-8) vanishes auto-
matically if ms = —}. Also note that (3-7) and (3-8) vanish, respectively,
if Mg == —S and if M = +S; these cases are thus automatically excluded
in a summation over M, from —S to +S. The collisions without spin flip
may be considered elastic. In a collision with spin flip, the electron absorbs
an energy
h2k'% H2k2

2m 2m F 24E;

& =

here AE = BH, so that by (3-3) & = F gfH for ms = +14, because the total
energy of scattering center plus electron must remain constant.

Substituting the above information into expression (2-15) for the relax-
ation times, we obtain

1 me\Tz i

T 278 Mo=—s Par,

UIV(q) F J(g) M2 sin 6 d(1 — cos B) +
0
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+ (1@ (5 F M & M 4 1)
0

1

sin 0 df)(l —_ —T———cos 0)

3-9

T+ Lk {lmexp<:[:gﬂH>}:] (3-9)
* kpT

The upper signs refer to electrons with m; = +1; the lower signs refer to

ms = —%. The quantity Pas, represents the probability for a given magnetic

scattering center to be in the state M; N;is the number of isolated scatter-
ing centers per unit volume.

If V(gr) and J(gr) are independent of 6 (isotropic scattering at the Fermi
level), the value of + at the Fermi level is, according to (2-18), given by

1 EnN +8
=2 3 _mr.[(V T TM)2 + JHS F Mo)(S 4 M +1) -
TH+ mth My=—8
2 w] (3-10)
gﬂH> )
1 4 exp <:|:kB_T

where V = V(gr) and J = J(gr)

If there are no internal or external magnetic fields, ¢ = 0; in that case,
Pz, = 1/(25 -+ 1) and all collisions are elastic. Under these circumstances,
the two relaxation times will be equal and the part of the resistivity under
consideration becomes

w 1 ’msz N¢
=) —) = ===V + J2S(S + 1 3-11

pi <m2)<fp)z aned#Hs [VE+ 7556 + 1)] (3-11)
Thus, the resistivity produced by the exchange interaction is proportional
to S(S 4+ 1).

Magnetoresistance. In the presence of a uniform internal or external
field H, we have

exp(—all,) ¢pH s
Py, = —-—T—S—where o= and D = ME_Se M (3-12)
and the following relations hold
Z ¢I|Is =1 I( )
1 dD 2541 25+1) « o
EMsle.:_ﬁ Ia = —<-——-—) coth 1“—-—2-—‘~} —|—é‘ COthE

L 1(14)

1 d2D 25+1 (254 1)
ZM??M,’;"D—E;E=5(S+1)~<—'—2~*~>C0th{ 5 }coth

N

o . 1 dD P
+ %coth2—2- =SS+ 1)— LR coth—z—

o
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The summations over M run from —S to +S5. Expression (3-10) may then

be put in the following form
1 4D D

mkFNi [V2+]2{ (S41) ——-—Ltanh———}j: 2V]-l-——d— =
D d da

1

TF4

1 1 1
- (3-15)
TF0 T1 T2

Here, 7rq represents the relaxation time in the absence of a magnetic field
(cf. (3-11)); 71 and 73 are a consequence of the magnctic field and are defined
by the corresponding terms containing D in (3-15). From the additivity of
the conductivities oqs one readily finds for the ratio of the impurity re-
sistivities with and without magnetic field

H 2 2
plH) TFO TR0 ( TF0> T (a1g)
T]

= =1—
p1(0) TP+ + Th- T1  — TR0

T2

If we limit the discussion of the magnetoresistance to relatively small
magnetic fields, we may write tanh («/2) ~ «/2 and d In D/de ~ S(S +
-+ 1)e/3. In that case

1 kpN
Nmpl—]25<s+l)d‘

T bt
1 2mkpN, .
and one finds from (3-16)
pi(H) <gl3H)2l: J?
Rl — S+1
o:0) W) L7 T sy e

2V 2
+{ AT TSE T 1S(S + 1)” (3-17)

where terms in H with a power larger than two have been neglected. Thus,
isolated magnetic atoms produce a negative magnetoresistance, as one
should expect because a magnetic field tends to order the system of atomic
spins.

4. Scattering of conduction electrons by neavest neighbour pairs of magneticions.
If the scattering by nearest neighbour pairs of magnetic ions is considered, pair
energy levels enter into the calculation and more differentiated types of
scattering arise, even in the absence of a magnetic field. For instance, in
the latter case elastic collisions may occur with electron spin flip correspond-
ing to a change in direction, but not in magnitude, of the total spin of an
ion pair. Also, inelastic collisions may occur without electron spin flip (or,



928 TINEKE VAN PESKI-TINBERGEN AND A. J. DEKKER

illustratively said, with double electron spin flip) accompanying a change
in magnitude, though not in z-component, of the total ion pair spin.

The Hamiltonian for an electron at r with spin § interacting with a nearest
neighbour pair of solute magnetic ions at 0 and R, with spins §; and Sy
respective- ly, is taken to be the sum of (cf. (3-2))

2
Hy = —;'im— 4 U(r) — WSy Sz + g8(S1s + Sa2) + 28,4

and
H1=V()+ V(r —R) —2](r) s 8 —2](r — R)s-S2 =
=V +V(r—R -—{f )+ J(r — R)}-
{s-(81+ S} — {J(r) — J(r — R)}{s-(S1— Sa)} (4-1)

where W is the effective exchange interaction between nearest neighbour
magnetic ions; the fourth and fifth terms in 3% represent the energy of the
lon pair and the electron in a magnetic field H, pointing, as before, in the
z~direction.

The eigenvalues of £ are

K22
E(k, 1, M, me) = —— + Wi + ghMH + 2fmsH (4-2)

where I (I 4+ 1), M and m, are the eigenvalues of (81 + 82)2, S12 + S3; and
sprespectively (I ==0,1,...,25;M =—I, —I+1,...,+I; mg= —4%, +4),and

Wi = W{2S(S + 1) — I{I + 1)} (4-3)
are the eigenvalues of
~ WS-8y = JW{8 + 85 — (81 + $2)%
The probability that a pair state (I, M) is occupied reads

—(W MH)/ksT
b1t = = eﬁl;{ (W1 + gBMH)/kpT} (44

> 3 exp{—(Wr + gbM'H)[kpT}

I'=0 M'=-I

For zero magnetic field this becomes

—WilkgT
pp = — R WrlReT) (4-4a)
> (20" + 1) exp(— Wy [kgT)
Ir=o

The scattering processes under consideration are governed by matrix
elements

Mgy (k(ms), k' (mg), 0) = <mg, I', M'| [ 51 exp(iq-r) dr| ms, I, M> (4-5)
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(cf. (2-14)) in analogy to (3-4). The integration over r involves

[ 1 expliq 1) dr = (1 + R [ [V(r) (r{s-(S1 + Sy)}e?’"
— (1 — R) [ J(r){s- Sl—So}eW’dr:
= (14 e ™YV (g)—T(g){s (S1 + SN —(1— %) J (9){s-(S1—82)} (4-6)

where, as usual, the dependence of

Vig) = [V(r) et dr and J(g) =[](r) €7 ar

upon the direction of q is neglected.

The relevant non-vanishing spin-matrix elements are found from general
considerations on angular momentum operators20), providing as selection
rules

for §1 + 89 : 4l =0,4M =0, +1; for §1— 8¢ : A = +1,4M =0, 4-1;
in processes with AM = O the electron spin does not reverse; with AM =
= +1 it does.

With each process, we indicate the amount of energy absorbed by the
electromn.

g, I, M is,{S12 + Sog}| me, I, MY =meM ; 8y =10

<ms F 1,1, M 4 1155(Ssx + Sex}| ms, I, My =

={( Fm)stms+ NI F M)IT £ M+ )} = F gpH
(e I, M [55(S1z — Saz)| #s, T — 1, M> =

@S + 12— 12|t
=ms{(I+M)(I—M) T e = WI

<ms T 1,1, M |s5(S12 — Sex)|ms, I — L, M T 1> =

25 N2 _Jy2 |*
_—.{(sims)(s:i:ms-l-1)(I:l:M)(I:|:M“1)( :_;z)_1 };
g =WI T gfH

25+1)2—12 |4
<mS,I—'l,M’Sz(S]_z—SZz),ms,I,M>=7ns{(]+M)(I—M)(_‘-4;;'_2%:1—‘—} ;
8¢=—WI
<m8 i l,I— ]JM:J: ] ls?:(sl:i:— SZ:EHmSJ I: M> =

@S+ 12—T2 )t
a7z — | ’

={(s Foms)s £oms + 1) T M— 1 F M)
g = —WI T gfH

The interference factors |1 4 exp(tq- R)|2 which occur in the expressions
for the relaxation times as a consequence of (4-6), must be averaged over
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all orientations of R relative to ¢, which is best done by integration

1 in ¢R
e j“ + elBeosz2gin v dy dp = 2(1 + Slzlg > {4-8)

Substitution of the matrix elements {4-4) into (2-18) by means of (4-5), (4-6)

and (4-7) yields, with IV, the number of nearest neighbour ion pairs per unit
volume,

3

3 28
-—-]:——:m,aN'pE 2 ﬁzMJ(%-quR)

Ty  Th I=0M=—1I R

Wlg) T M@ (1 — cos 0) sin 0D +

n

; sin gR 2 (I + M) ([ — M)-
+¢ILM!Q I%) e + ) (¢ — 1)
@S+ nE—1I2 (I — cos8)sinf db

412 =1 T— joll — exp(—WIjkaD)}

k4

o (1= g a0 + 300 — 20,
0
(25 4+ 1z — I (1 —cosf)sinfdd
412 — 1 U — fo{l — exp(WI[ksT)}

T

tna [ (14 ) e a0 300 £ 00+ 1)

0

TF : :
A TE 3) )
( re )T T T explgBH AT

T R _

+¢71—1,M:F1f<1 qu )l]()lzi(IiM)(IiM_l)'(Z_S{f:)_z_—lI?'
0

1—Ec050 sin 6 4 : +

( Tt > lmfo{l—exp(MI’VIﬂ:gﬁHy

kT |

R S 2 _ Jo

+MMK1 MQ)UM%UiM—wu¥M@i%%T"'

0
: (1 = cos 6) sin § d¢ : (4-9)
TE

1~f0{1 = eXP(%»



SPIN-DEPENDENT SCATTERING AND RESISTIVITY 931

(N.B. In the second and fifth terms between the square brackets in
(4-9), one starts from states other than (7, M), still retaining the same
summation limits; it is easily seen, though, that the terms omitted or added
are all zero).

We shall first consider the situation for H = 0, which is less complicated
and still brings out the main features; this is also the case treated by
Brailsford and Overhauserl4). All states with the same I but different 4/
become equally probable (cf. (4-4a)), and in (4-9) the terms linear in M
vanish upon summation over M from —I to 4+1. The two equations for
7+ and 7- coincide into one equation for 7. as expected physically from the
absence of a preferred direction. In analogy with (3-11) we find for the
“pair resistivity”’

" 1 m2kpN
Pp="% (;)p‘—‘ T = {4 + B(T) B + p(T) C} (4-10)
with
B(T) = i?? I(I + 1)(2I + 1)
B (25 + 1)2 — I2 (4-11)
(1) = 2prl i
P%;T— + 1

)
B = f(l + E#«) [J(g7)12 (1 — cos §) sin 6 dO
)

grR
. (4-12)
sin gpR
C =  Q— o) |2 . T,
f( P |7(gr)1? (1 — cos 0) sin 0 d6
0
sin qFR
D= <1 >2V —
+ R (gr) J(gr)(1 — cos 6) sin § dO

(The integral D enters only in the presence of a magnetic field).

The temperature dependence of py is contained in the coefficients A(T')
and y(T). Following Brailsford and Overhauserl4) we find their
asymptotic values for small and large T':

kT < |W|
. 4S5 — 1 2WS
if W>0 B(T) ~£S25+1)—S ST eXp(- el )
2WS
y(T) ~ 2S exp <— /_*kBT > (4-13)
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w
exp T >

it W< 0 BI) ~

oles

(4-13)
w
y(T) =~ 45(S + )eXp< kBT>
k8T > |W| I
WSS+ 1]
B(T) ~ +O+ T e
~ 1S WS(S + 1)
p(T) ~3S5(S 4+ 1 {1 T }

If we assume that V{gr) and J{gr) are independent of the scattering angle
and we write V = V{gr) and | = Jlgr), the “high”’ temperature behaviour
of pp takes the form

_ m2hkpNy l: S(S+ 1)

where the function
_ 2xsin2x + (1 — 24%) cos 2x — 1
2x4

. ; 2
F(x)-—zT‘—[2x5|n2x-—(2x -1}cos 2x—1]

o 1 ) o L e T~ 1
I " an —
-0 2 2

-0.2} — X

Fig, 1. The interference function F(x).

comes from integration of the terms (sin ¢rR)/gpR in (4-12). In terms of

this function, expression (4-10) takes the form

2m2hpN
anesh3d

(V{1 4+ F(hpR)} + J28(D){1 + F(krR)} +
+ J(I{1 — F(keR)}] (4-16)

It is clear from (4-15) that the total resistivity (magnetic impurity
+ phonon resistivity) as a function of 7" exhibits a minimum only if
WF(kpR) > 0. The values of 2pR for which this occurs for a given sign of W

Py =
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may be read from figure 1. In the case of ferromagnetic coupling between
neighbouring solute ions (W > 0) such a minimum is followed by a
maximum at lower temperatures if F(kpR) < (4S5 4 3)/(12S + 1), as can
be shown by an analysis of (4-13). If the coupling is antiferromagnetic

(W < 0), a minimum is always followed by a maximum.
BU+FY +¥(1-F)

T S=1 WO

2,054

S=1 W<0
» 2001
1.04
------------ P
t,'
l/‘
7 185 4
{
0.5
/ (a)
i
1
/)
)
/
i 1.904
! Ko/ 1wl
01 2 345 10

Fig. 2. (a) The temperature dependence of # and y for the special case S = 1 and
antiferromagnetic conpling between the partners of a pair; (3) gives the corresponding
temperature dependent part of the pair-resistivity for three values of F.

In figure 2a we show the temperature dependence of §(T) and ¢(T) for
the special case W < 0 and S = 1; figure 2b gives the corresponding
temperature dependence of the resistivity calculated for three wvalues of

F(krR).

As to the “corrected” formula of Brailsford and Overhauser!8), we
may remark that these authors met with a convergence problem similar
to the one mentioned toward the end of section 2; they got around it by
using a different integration procedure, which makes their corrected result
look better at small T than the original one. Nevertheless, the procedure
is not wholly justified, as they make use from the beginning of a constant a
which already contains a relaxation time taken at the Fermi level (ref. 18,
eq. (2)), to be compared with our formula {2-3)). The actual integral involved
is much more complicated, but, as was mentioned in section 2, the correction

terms in it tend to zero for 7" -+ 0, coutrary to the conclusion from their

partial approximation.
Magnetoresistance. The application of a small magnetic field
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(eBH < kpT) causesin general a decrease of pp (negative magnetoresistance);
under certain circumstances, however, i.e. if the pairs are strongly anti-
ferromagnetically coupled and the cross-term D is sufficiently small, pp
may increase slightly. This is indeed what one expects from physical
arguments.

5. Resistivity of a fervomagnetic metal. The exchange scattering of con-
duction electrons in a ferromagnetic metal with localized spins has been
treated by Kasuya$) and by De Gennes and Friedel?). These authors
assumed that the scattering results from the departure of each ion spin
from the mean ion spin o. Approximating the ferromagnetic coupling
between ion spins by a molecular field model, we may apply the formulae
already found for the scattering of conduction electrons by isolated magnetic
ions in a magnetic field by introducing two alterations:

(2) Replacing gfS-H by the energy —y§-¢ of an ion spin in the molecular
field, due to the total magnetization of the crystal lattice; the molecular
field coupling constant y is connected with the Curie temperature T by

Yy = 3kBTc/S(S + 1)

(b) Transferring a term V{r) — 2J(r) s-0 from 2#{ to 3#;; this merely
means inclusion of the periodic part of the electron-ion exchange interaction
in the unperturbed Hamiltonian, leaving § — o for each ion to govern the
electron scattering.

Thus, (3-2) becomes

752
+ U(r) + V(r) — 2J(r) szo0 — yS,0

Ho=——
" (5-1)

and
H= —=2](r) s-(S — 0) = —2]J(r)}{s:Sz — 520 + $(s4:5- + s_S4)}

Here, the z-direction is taken to be that of spontaneous magnetization.

We shall assume that the added s-dependent potential in 5# is sufficiently
accounted for by a shift +AF (corresponding to ms = 4%) in the bottom
of the conduction band, where AE is now proportional to o (but of different
sign); a more painstaking approximation would not be consistent with our
simple model.

Just as in section 3 we may neglect the differences between #. and 1,
and between kpy and kp, (being of the order of AE/EF), at least as long as o
is not too large (¢ <€ S); that is to day, we exclude the low temperature
region (I" £ 37, say) where our model is not satisfactory anyway and
should be supplemented by consideration of spin waves.

Application of section 3 is straightforward; with

<ms, Mg |8,S, — s.0| ms, Ms) = ms(Ms — a)
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and the other matrix elements remaining unchanged, it yields
1 mkpN +'S

=P S | T~ 02

TRy nhd M— S

+ TS T M)(S + M+ 1)

gl

where IV is the number of ions per unit volume and the scattering is taken
to be isotropic.
Taking into account that

+8
0= Z:Jq P M s
exp(yoM/kpT)

b, = IS
3, explyoM; [hsT)

Z PuMi=S(S + 1) — o coth(yo/kgT) =

— S(S+ 1) F o LT SXPFYolAET)

[ — exp(FyoltsT)

(5-2) simplifies into

L MkFN J2{S(S + 1) — o — o tanh(yo[2ksT)}  (5-3)

TFA

Note that no difference is found between the two relaxation times. This
means that the resistivity becomes simply

m kFN

p= Ty J2[S(S + 1) — 0% — o tanh{3T;0/2TS (S + 1)}] (5-4)

Although our assumptions are essentially the same as those introduced
by Kasuya$), our formula differs from his result in that theterm
—o tanh(yo/2kpT) in(5-4) has been replaced by —o. Whereas Kasuya’s
formula leads to an infinite value of dp/dT immediately below the Curie
temperature, (5-4} predicts a finite positive value which is in better agree~
ment with experiment.

In their discussion of the spin-disorder resistivity, De Gennes and
Friedel?) concluded that for temperatures not too far below T, the col-
lisions between the conduction electrons and the spin-lattice can be considered
elastic. In this approximation they find for the dependence of p on the

average spin ¢ the following formula
p(0)[p(0) = 1 — o®{S(S + 1)} (5-5)

We note that this formula can be obtained from (5-4) by omitting the last
term.
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In figure 3 we give a comparison between the formulae of Kasuya, De
Gennes and Friedel and our formula (5-4) for the case S = 7/2. It should
be pointed out that actually none of these formulae can be applied to the
region of low temperatures.

181 m2ke NI ne?n?

1 A
13 1

124 «—Kasuya
11 4

104

94 de Gennes

o and Friedel

7 -

5 present authors

5-
4+
3-
7
1 —'_'T/Tc

]

T T T T T T
0 01020304050607 08081011 12

Tig. 3. Comparison between the theoretical formulae of Kasuya8), De Gennes and
Friedel?) and the present authors for S = 7/2. It must be emphasized that none of
these formulae actually applies in the low temperature region.

145 T T T T T T LRAR & T T
138 |-
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w5l
st

OHM-CM x16~

5F R T T VI SO TP T
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[
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Electrical resistivity of Gd vs temperature

Fig. 4. The resistivity of gadolinium as a function of temperature according to Colvin,
Legvold and Spedding?2l),

In figure 4 we reproduce for comparison an experimental curve for the
resistivity of gadolinium (S = 7/2) as obtained by Colvin, Legvold and
Spedding?l). We note that the shape of this curve in the vicinity of the
critical temperature deviates from that obtained from a simple molecular field
model. Itislikely that short-rangeorder playsaroleinthat temperatureregion;
De Gennes and Friedel?) have discussed certain aspects of this problem.
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