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Synopsis
The purpose of this paper is to review and extend the explanation of the resistivity

anomalies observed in certain magnetic metals and alloys in terms of spin-dependent
scattering of the conduction electrons. For this purpose, the usual theory of electrical
conductivity has been extended to include inelastic collisions with and without spin
flip. Assuming the existence of an exchange interaction between the conduction
electrons and unpaired electrons localized on particular atoms, the resistivity has been
calculated for scattering by (i) isolated magnetic ions, (ii) pairs of exchange-coupled
magnetic ions and (iii)'spin-disorder in a ferromagnetic lattice. For models (i) and (ii)
the magnetoresistance has also been investigated.

1. Introduction. Two different theories have been put forward to explain
the electrical behaviour of transition metals and their alloys. On the one
hand, there is the band theory of Mottl) for nickel, palladium and their
alloys, in which it is assumed that the abnormal behaviour of these metals
is due to transitions from the s-band (which carries most of the current) to
the d-band under influence of lattice vibrations. The consequences of this
theory have been tested by Schin d ler s)3) and coworkers, by Allison and
Pughs), by Pugh and Ryan 5) and others. From this work it appears that
s-d-scattering is indeed responsible for the relatively high resistivity of
these metals and for the greater part of the anomalies near the Curie
temperature.

On the other hand, it seems fairly certain that in the rare earth metals,
and probably also in iron, the unpaired electrons are localized on particular
atoms; the same situation is encountered in a number of dilute alloys of
transition elements in copper, silver and gold. Thus, it has been suggested
by Kas u yav) and by De Gennes and Frie d el") that the resistivity of the
rare earth metals is determined to a large extent by an exchange interaction
between the conduction electrons and the localized spins in these materials.
If this interaction is sufficiently strong, disorder of the spin system will
produce an appreciable contribution to the resistivity in the form of a spin-

*) During the course of publication of this paper the sad news was received of the sudden death of
Mrs. T. van Pe s k i-T'i n b e r g e n.
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disorder term. For a review of spin-disorder effects in the electrical resistivi­
ties of metals and alloys we refer to Col e s 8).

The electrical resistivity of noble metal alloys containing traces of tran­
sition elements has been measured by Gerritsen and Lin d e") and others.
Some of these alloys exhibit a minimum in the resistivity at some low
temperature; typical examples are dilute alloys of iron in copper10). Others,
such as manganese in copper, show a minimum in the resistivity followed
by a maximum at a still lower temperature. Correlated with the resistivity
anomalies in these alloys is an anomalous magnetoresistance 11) and mag­
netic behaviour-s). Several attempts have been made P) to explain these
properties, but the occurrence of a maximum and (or) a minimum in the
resistivity as a function of temperature remained rather puzzling for a
number of years. However, from the work of Brailsford and Over­
h a u ser l-) and Dekker 15) it seems fair to conclude that the resistivity
anomalies may be attributed to the scattering of conduction electrons by
the exchange-coupled magnetic ions. In particular, these authors considered
the scattering of the conduction electrons by pairs of exchange-coupled
magnetic ions, on the assumption that there exists an exchange interaction
between the conduction electrons and the ionic spins. The pair-model had
been introduced earlier by Dekker 16) in an effort to understand the magnetic
behaviour of alloys such as Cu-Mn, This model must be considered a rather
crude approximation to the actual situation encountered in dilute magnetic
alloys. In fact, from the work of Blandin and Fr i e de l-") we now know
that the electron density (corresponding to a given spin direction) around
a magnetic impurity is determined by an oscillating function with an
amplitude which decreases relatively slowly with the distance from the ion.
Since this function is different for the two possible spin directions of the
conduction electrons, there results an indirect exchange interaction between
the magnetic ions, which may range over relatively long distances. In the
resistivity of these alloys there will thus occur a term due to the exchange
interaction between the conduction electrons and the system of magnetic
ions which are indirectly coupled among themselves. The calculation of the
resistivity poses a difficult statistical problem *).

A strongly simplified approximation to this state of affairs in dilute
magnetic alloys consists of the following: if the actual long-range indirect
exchange forces between the magnetic impurities are replaced by short­
range forces, the system of magnetic atoms may be considered to consist of
isolated atoms and of pairs of nearest neighbours; in sufficiently dilute
alloys, larger clusters may then be neglected. In this case, the impurity
resistivity would be determined by the scattering produced by the isolated
magnetic atoms and by the pairs of exchange-coupled atoms. Since the

.) An elegant approximation is being worked out by. Miss T. Be al (Orsay, France; private
communication).
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latter indeed may produce anomalies of the kind observed, one may expect
similar anomalies to occur for a more sophisticated model in which the long
range of the exchange forces is taken into account. Obviously, the pair
model does not allow a quantitative comparison between theory and ex­
periment. It is believed, however, that the pair-model exhibits the essential
features of the actual situation in a qualitative way.

In the present paper we give a unified treatment of the electrical resistivity
produced by

(i) isolated magnetic atoms
(ii) pairs of exchange-coupled magnetic atoms
(iii) spin-disorder in pure ferromagnetic metals with localized spins.

In all these cases we assume that there exists an exchange interaction
between the conduction electrons and the localized unpaired electrons of the
magnetic atoms. From what has been said above, it will be evident that
this paper constitutes partly a review of previous work; in other respects it
contains an extension thereof. Thus, because the actual transport theory
including inelastic spin-dependent collisions has received relatively little
attention in the earlier papers, section 2 is devoted to this subject; this
section unifies the treatment of the three models discussed in sections 3
through 5. For models (i) and (ii) we have also investigated the effect of a
magnetic field on the resistivity. Our results on the resistivity produced by
spin-disorder in a ferromagnetic model, differ somewhat from those obtained
by Kas uy av) and by De Gennes and Fried el t), as mentioned in section
5. Finally, we believe that the formula for the resistivity produced by pairs
of magnetic atoms as originally published by Brailsford and Over­
haus er t-), should have preference over their "corrected" formula published
later 18) (see section 4).

2. Transport theory for electrons which suffer inelastic and elastic collisions.
In the following sections we shall be concerned with calculating the resistivity
of a metal resulting from various kinds of scattering processes. Assuming
that the matrix elements for these processes are known, it will be necessary
to have available a general expression for the relaxation time of the conduc­
tion electrons in terms of these matrix elements; such an expression will be
derived in the present section.

Apart from the usual type of elastic scattering of the conduction electrons
by foreign charge distributions, we shall be interested in scattering processes
which are governed by an exchange interaction between the conduction
electrons and magnetic impurities. The perturbation hamiltonian in such
cases depends on the relative orientation of the spins of the incident electron
and the scattering center. Collisions of this type mayor may not be elastic,
depending in general on whether the collision proceeds without or with spin
flip. Thus, in deriving a general expression for the relaxation time, one
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should take into account any energy transfer between the scattered electrons
and the scattering centers. Also, spin-dependent scattering will in general
lead to different relaxation times for conduction electrons with magnetic
spin quantum number ei, = +t and m, = -to It will therefore be necessary
to consider the "plus" and "minus" electrons separately.

The wave vector of an electron will be denoted by k and we shall consider
a single conduction band for which the energy as a function of k is assumed
to be of the form Eo + /i, 2k 2(2m, where m is an effective mass. In the
presence of some uniform effective magnetic field, the constant Eo may be
different for electrons with m s = +t and ms = -l; we shall choose the
zero of energy such that E",(k)= ± LIE + {i,2k2(2m for m, = ±t. The number
of possible states per unit volume corresponding to an element dk in k-space
equals (1 (8n 3) dk for each of the two types of electrons. In thermal equilibrium
and in the absence of electric or non-uniform magnetic fields, the fraction
of states occupied by electrons is given by the Fermi-Dirac distribution
function

to±.(E±.) == fo",(k) = [exp {( n;: ± LIE - Ep ) / kBT } + 1J-1

for m, = ± t; Ep is the Fermi energy and kB is Boltzmann's constant. The
electron densities n± may easily be shown to differ from in (n = total
electron density) only by a term of the order LIErEp, which is negligible
for our purposes. The electron densities n±. are not affected by the occurrence
of collision processes involving spinflip, as long as the whole system (electrons
+ scattering centers) is in thermal equilibrium.

In a state of steady electric current under influence of an electric field
F:v along the z-axis, let the densities of electrons corresponding to dk be
given by (1 (8n 3) f,.(k) dk. If e represents the charge of an electron, the rate of
change of t±(k) produced by the field F x equals

[8h!8t]fleld = -(eF:vnkx(m)(8fo±(8E±.) (2-1)

If the rate of change of f±. due to scattering processes can be described by
a relaxation time T=(k), we may write

[c3f±.(8t] coil. = -(f±. - fo±.)(T...

In the steady state the sum of (2-1) and (2-2) must vanish, so that

f±. - fa±. = -(eF :vJik:vT", lm)(ofo", /8E) == g±.(k)

(2-2)

(2-3)

which defines the quantities g± to be used later. Once the relaxation times
T", are known, the electrical conductivity, 0'8, follows directly from O'e =
=O'e++0'8- and from the well-known expression for the current density J x:

O'e,. === Jg;,,(F:v = (e(Fx)J (1 (8n 3) dk(f., - fO±.)(likx(m) =
= -(e2(6;rr;2m)J k3T::(8fo",(8E±) dE.,. (2-4)
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In order to calculate T + in terms of the relevant matrix elements, consider
the quantity (8/+/8t) coli. ; the calculation of L proceeds in exactly the same
manner. The collision processes involving no spin flip will be denoted by
a subscript i or i'; those for which spin flip does occur will carry a subscript
j or j'. Although usually only collisions involving spin flip may be inelastic,
we shall assume for generality that in collisions of type i (or i) the electron
gains an energy si(or S1); et is simply a difference in kinetic energy, whereas
Sj contains, in addition, a term +2L1E, depending upon the change in mag­
netic quantum number Llms = =+= 1 of the electron. The transition pro­
babilities for the various processes will be denoted by Pi(k+ _ k~),

Pj(k+ -k'-), etc. Extending the standard procedure-") for our purpose,
we may write

+ (1/8n3) J dk'- [- ~ Pj (k+ -+k'-) 1+ (1 - 1'-) +
j

+ ~ Pj'(k'- _ k+) 1'- (1 - /+)] (2-5)
i'

Here, we have introduced the abbreviation I(k') = I', etc. Detailed balance
in the absence of fields for the system in thermal equilibrium requires

(2-6)

and

'" P ,(k' _k )= ,"' P (k -+k') 10+(1 - 16-) (2-7)
k.J j - + k.J j + - I' (1 I)i' j 0- - 0+

Furthermore, up to linear terms in g, defined in (2-3), the following
relations hold:

1~(1 - /+) 1+(1 - I~)
r

g+ g+
(2-8)

10+(1 - 10+) 10+(1 - 16+)
-

16+(1 - 10+) 10+(1 - 10+)

1'-(1 - 1+) /+(1 - 1'-)
,

g- g+
(2-9)

10-(1 - 10+) 10+(1 - 10-) 10-(1 -10-) 10+(1 - 10+)

Note that on the right hand side of these equations, the first term contains
only primed quantities and the second term only unprimed quantities,
whereas the left hand sides are mixed. Making use of the last four equations,
(2-5) may be written as follows

(8f+/8t)ooll.=(1/8n3)Jdk~~Pi(k+_k~)/o+(1-lo+)[, g~, -
i 10+(1 - 10+)
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Furthermore,

(2-11 )

(2-12)

(2-13)

and
I 810+ 1

10+(1 - 10+) = -kBT-- ---,--...,.-
8E+ 1 - /0+{1 - exp( -ei/kBT)}

, 8/0+ 1
10+(1 - 10-) = - kBT -- -----:---;-:---:-------:c:--=-:-

8E+ 1 - 10+{1 - exp( -ejfkBT)}

where IJi = E~ - E+ = (n2f2m)(k~2 - k~) and ej = E~ - E+ = -2LlE +
+ (n2/2m)(k~2 - k~). Employing (2-3), (2-11) and (2-12) one obtains for
(2-10) the following expression

_8;; = _g+ [(I/8n3)Jdk~ ~ Pi(k+ ~ k~)(1 - k~/kx)'

1. +
1 - /0{1 - exp( - ei/kBT)}

+ (1/8n3) J dk~ f Pj(k+ ~ k~)(1 - T_k~/T+kx).

• 1 ] == -g+/T+.
1 - 10{1 - exp( -ej/kBT)}

Note that the relaxation time T+ contains a term which depends on the ratio
7'_/T+, as a consequence of collisions involving spin flip.

We now make the usual assumption that the transition probabilities
depend only on the magnitudes k' and k, and on the angle of scattering e.
Furthermore, we write the transition probabilities in terms of the matrix
elements, M i , corresponding to a single scattering center of type i as follows:

Pi(k+ ~ k~, 0) = (2n/li) IMi(k+ ~ k:l-> 0) /2 Nio(E~ - E+ - et) (2-14)

N; is the number of scattering centers producing a particular collision
process; the delta function takes care of energy conservation.

Finally, we write for a volume element dk' in k-space 2n sin 0 dO k'2 elk' =

= (2nm/n2 ) k' sin () dO clE'. Expression (2-13) then takes the form
"

1/7'+ = (mkf2nn3) [7 JNi ]Mt(k+ ~k~, 0)1 2 (1 - cos 0) sin 0 dO·

o
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+ 7JN j IMj(k+ ~ k'-, 6)[2 {I - (T-IT+) COS 6} sin 0 dO .

o
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. 1 ] (2-15)
1 - fo+{I - exp( -Bjfl~BT)} .

A similar expression holds for I/T-.
In order to obtain the conductivity, (2-15) must be substituted into (2-4);

the resulting expression for Ge± then contains an integral of the type

J 8/0 n2
[ d2G ]1=- G(E)- de = G(Ep ) +- (kBT)2 -2 + ...

8E 6 de EF

(2-16)

In the usual theory of electrical conductivity where one deals with quasi­
elastic scattering, so that the change in energy of the electrons during a
collision is small compared to kBT, and hence the numerators 1 - fo{1 ­
- exp(-elkBT)} in l/T may be omitted, it is common practice to neglect
the second and higher terms in (2-16) because they are assumed to be
smaller than the first term by powers of kBT/EF (this is correct if the
derivatives of IMi(1)1

2 with respect to E are of the order IMi(i)12IEP(P :2 1),
which seems plausible). In our case, this procedure would be valid when
eiU) ~ kBT, i.e. at sufficiently high temperatures.

On the other hand, at very low temperatures the factors (knT)2n seem at
first sight to provide a rapid convergence of the series. However, due to the
special form of the function G(E), the 2n-th derivative of G contains a part
with the factor (knT}-2n, cancelling the (kBT )2n in the (n + 1)-th term in
(2-16); this might possibly give rise to a non-negligible contribution to I
under certain circumstances, originating in charge transport by electrons
having not exactly the Fermi energy. Fortunately, it turns out that the first
term of (2-16) is still a sufficiently good approximation for the integral I;
one can show, in fact, that the terms under consideration still go to zero
for T ~ 0 and we feel justified in neglecting all terms in (2-16) beyond G(EF).
(We shall return to this point in section 4 in connection with the work of
Brailsford and Overhauser tsj].

Following the procedure outlined above, we obtain from (2-4) the well­
known formula

(2-17)

where TF is the relaxation time for electrons with the Fermi energy.
Note that if the matrix elements in (2-15) are independent of e, i.e. if

the scattering is isotropic, the term containing (T-/7'+) disappears upon inte­
gration. Thus, for isotropic scattering, the relaxation times TF± are given by

l/TF± = (mkF/nli3) [~ Nc jMt(k± ~ 1~~)12 2 +
i 1 + exp( -et/kBT)
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+ ~ u, IMj(k± -+ k~)12 1 + ~ (k T) J. (2~18)
t exp -8j B

In this formula, the quantities kF± satisfying EF = ±L1E+ (1i 2k2
F±/2m)

have been replaced by kF = V-Z"""mEF!li2, from which they differ only by an
amount of order LJE/EF.

3. Scattering ofconduction electrons by isolated magnetic ions. In this section
we shall consider the resistivity Pi resulting from scattering of the conduction
electrons by isolated magnetic ions. The magnetic ions will be characterized
by a spin angular momentum operator S (expressed in units Ii), a spin
quantum number 5 and a magnetic spin quantum number M s, which runs
from -5 to +5. If u(5, M s) represents a spin eigenfunction, the following
relations hold:

8 2u(5 , M s) = 5(5 + 1) u(S, Mil)
Szu(5, M s) = Msu(5, M s)

Similarly, the electron spin operator is s and the eigenvalues of S2 and Sz

are s(s + 1) and ms respectively, where s = t and m; = ±t.
Choosing the origin of our coordinate system at the center of a magnetic

ion, we shall assume that the Hamiltonian for an electron at r interacting
with the ion consists of the following two parts:

yt'o = p2. + U(r) + gPSzH + 2fJszH
2m

and
yt l = V(r) - 2J(r) s·S.

(3-2)

Here, p and m are the momentum and effective mass of the conduction
electron; U(r) is the periodic potential of the crystal lattice ; the third and
fourth terms in £'0 represent the energy of the ion and the electron in a
magnetic field H pointing along the z direction, with ~ = en/2mc represent­
ing the Bohr magneton, and g and 2 the spectroscopic splitting factors of
ion and electron, respectively. V(r) describes the usual spin independent
interaction between the electron and the ion, whereas the term contain­
ing J(r) stands for the exchange interaction between them; V and J are real.

The eigenvalues of :;If0 are

li2k2
E(k, M s, rns) = --+ g~MsH + 2pmsH . (3-3)

2m

From the assumed form of the exchange interaction it follows immediately
that in the scattering processes the quantities S, sand (Ms + ms) remain
unchanged, because the operators 8 2, S2 and (5z + sz) all commute with the
Hamiltonian ;;It = yf0 + yf1. The initial state of the system electron plus
ion will be characterized by the quantum numbers M s and mil, and by the
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wave vector k of the electron. In the Born approximation, the scattering
processes leading to transitions of the electron from k to k' are then
governed by matrix elements (d. (2-14))

Mi(j)(k(ms), k'(m~), 8) = <m~, M~ IJ Jof'l(r) eiq
'
r dr] ms, M s> (3-4)

where the integration over r extends over unit volume of the crystal.
q == k - k', and m~, M~ define the final spin state of the system. Performing
the integration over r, (3-4) becomes

(m~, NI~ iV(q) - 2](q){sz5z + t(s+5- + s_5+)}1 ms, Ms> (3-5)

where, as usual, the dependence of

V(q) =J VCr) ei q
' r dr and J(q) =1 J(r) eiq

· ,. dr

upon the direction of q is neglected; 5± = 5x ± i5v. The relevant non­
vanishing spin-matrix elements are

(ms, M s Isz5z1 msM s>= msMs (3-6)

(m s + 1, M s - 1 Is+5-1 ms, NIs>=

= {(s - ms)(s + m; + 1)(5 + JVI s)(5 - Ms + I)}! (3-7)

(ms - 1, M s + 1 Is-5+1 ms, NI s>=

= {(s + ms)(s - ms + 1)(5 - M s)(5 + Ms + I)}! (3-8)

The matrix element (3-6) gives rise to scattering without spin flip, whereas
(3-7) and (3-8) correspond to collisions with spin flip. Note that (3-7) auto­
matically vanishes for ms = +t as it should, because in this state the elec­
tron can make a transition only to m~=-l Similarly, (3-8) vanishes auto­
matically if m, = -to Also note that (3-7) and (3-8) vanish, respectively,
if M s = -5 and if M s = +5; these cases are thus automatically excluded
in a summation over M s from -5 to +5. The collisions without spin flip
may be considered elastic. In a collision with spin flip, the electron absorbs
an energy

1i2k ' 2 1i2k 2

ej =: -- - -- =f 2.1£;
2m 2m

here LIE = f3H, so that by (3-3) ej = += gf3H for m; = ±i, because the total
energy of scattering center plus electron must remain constant.

Substituting the above information into expression (2-15) for the relax­
ation times, we obtain

1<

1 mkN +8 [f
~= 2nn3'!-]'1,~_sPl\I. lV(q) =fJ(q) Msj

2sin8d8(1 -cosO) +
o
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n

+JIJ(q)12 (5 =fMs)(5 ± Ids + 1)·

o

.sin edO (1 - .,- cos 8) [1 I]
~ (±~H)1 - to± 1 - exp

kBY

(3-9)

(3-10)

The upper signs refer to electrons with m; = +L the lower signs refer to
ms = -t. The quantity PMs represents the probability for a given magnetic
scattering center to be in the state M s ; Nt is the number of isolated scatter­
ing centers per unit volume.

If V(qF) and ](qF) are independent of e (isotropic scattering at the Fermi
level), the value of 'I" at the Fermi level is, according to (2-18), given by

mk N +8 [
TF± = n~3 i M.~_SPliI. (VfJMs)2+J2(5=fMs)(5±Ms+l)·

. (gPH~) ]
1 +exp ±-­

kBY

where V == V(qp) and] == j(qp)
If there are no internal or external magnetic fields, ej = 0; in that case,
P111. = 1f(25 + 1) and all collisions are elastic. Under these circumstances,
the two relaxation times will be equal and the part of the resistivity under
consideration becomes

Pi = ( m
2

·) (_1_) = m
2k:~i [V2 + j25(5 + 1)] (3-11)

ne 'l"F i nne Ii

Thus, the resistivity produced by the exchange interaction is proportional
to 5(5 + 1).

Magnetoresistance. In the presence of a uniform internal or external
field H, we have

exp(-etMs) g{JH +8 '1
PM = where a = _.- and D = L e-O:,,· (3-12)

• D kBT M.=-S

and the following relations hold

L PlIi. = 1
1 dD (25+ 1) f(25+ 1) IX} a

I: M s P.1I'I.= - D da = - -2- eoth r 2 +t eoth"2

~ M;PlIf.=~~~ =5(5+ 1)- C5

2
-t.2)coth {(2S~ l)a} coth ; + (3-14)

ex ldD ex+ t coth 2
2 = S(S + 1) - IS da - coth"2
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(3-16)

(3-17)

The summations over M s run from -S to +S. Expression (3-10) may then
be put in the following form

_= mk~Ni[V2+]2{S(S+I)_'~dD tanh~}±2VJ_I dDJ=
nn3 D da 2 D da

1 1 1
---±- (3-15)
1"FO '7"1 7"2

Here, TFO represents the relaxation time in the absence of a magnetic field
(d. (3-11)); '7"1 and 7"2 are a consequence of the magnetic field and are defined
by the corresponding terms containing D in (3-15). From the additivity of
the conductivities Ge± one readily finds for the ratio of the impurity re­
sistivities with and without magnetic field

PitH) = 27"FO = 1 _ 7"FO__ ( TFO )2 _
Pi(O) '7"F+ + TF- '7"1 7"2 '7"1 - '7"PO

If we limit the discussion of the magnetoresistance to relatively small
magnetic fields, we may write tanh (1X/2) ~ cx/2 and d In D/drx ~ S(S +
+ 1)1X/3. In that case

1 mkpNi
- ~ -;- ]2S(S + 1) rx2
'7"1 6nn3

2mkFN i
3nn3 VJS(S + I) IX

and one finds from (3-16)

PitH) 1 ( g{3H )2 [ J2 1 '(' 1
Pita) ~ - kBT V2 + J2S(S + 1) 11" S S + )+

+{ V2 +2~~(S + 1) is(S + 1)fJ
where terms in H with a power larger than two have been neglected. Thus,
isolated magnetic atoms produce a negative magnetoresistance, as one
should expect because a magnetic field tends to order the system of atomic
spins.

4. Scattering ofconductionelectrons bynearestneighbour pairs 0tmagneticions.
If the scattering by nearest neighbour pairs ofmagnetic ions is considered, pair
energy levels enter into the calculation and more differentiated types of
scattering arise, even in the absence of a magnetic field. For instance, in
the latter case elastic collisions may occur with electron spin flip correspond­
ing to a change in direction, but not in magnitude, of the total spin of an
ion pair. Also, inelastic collisions may occur without electron spin flip (or,
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illustratively said, with double electron spin flip) accompanying a change
in magnitude, though not in a-component, of the total ion pair spin.

The Hamiltonian for an electron at r with spin S interacting with a nearest
neighbour pair of solute magnetic ions at 0 and R, with spins 81 and 8 2

respective-ly, is taken to be the sum of (d. (3-2))

YCo =~ + U(r) - W81· 8 2 + g{3(S1Z + S2z) + 2f3szH
2m

and

Jft'1 = V(r) + V(r - R) - 2J(r) $·81 - 2J(r - R) S·82 =

= V(r) + V(r - R) -{](r) + J(r - R)}·

{s'(81 + 8z)} - {](r) - J(r - R)}{S'(S1- 52)} (4-1)

where W is the effective exchange interaction between nearest neighbour
magnetic ions; the fourth and fifth terms in :!If0 represent the energy of the
ion pair and the electron in a magnetic field H, pointing, as before, in the
z-direction.

The eigenvalues of J"t'o are

li 2k2

E(k, 1, NI, ms) = -- + WI + gf3NIH + 2f3msH (4-2)
2m

where 1 (1 + 1),1\11 and l1~s are the eigenvalues of (81 + 82)2, S1;z + 5 zzand
szrespectively (1=0,1, ... ,25;1\11 = -1, -1 + 1, ... , +1; ms = -l, +t), and

WI = tW{25(S + 1) - 1(1 + I)} (4-3)

(4-4)PI, 111 = """"28='-----,.--0-;'-----------'---

~
1'~0

are the eigenvalues of

- W81 · 8 2 = tW{S~ + S~ - (81 + S2)2}

The probability that a pair state (I, M) is occupied reads

exp{-(WI + gf3MH)fkBT}
+1'
~ exp{-(WI' + gf3NI'H)fkBT}

111'=-1'

For zero magnetic field this becomes

PI = 28

~ (2£' + 1) exp(- Wr/kBT)
1'=0

(4-4a)

The scattering processes under consideration are governed by matrix
elements

M i(1l(k(ms), k'(m~), e) = <m~. 1', M'll :!If1 exp(iq·r) dr] m~, 1, M> (4-5)
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(d. (2-14)) in analogy to (3-4). The integration over r involves

! $\ exp(iq·r) dr = (1 + eiq.R)J[V(r) - ](r){s·(S1 + 8 2)} eiq'r dr­

- (I - eiq'R)J J(r){s·(S1 - S2)} eiq'r dr =

= (1+ eiq'R)[V(q)_J(q){s· (S1 + S2)}J -(1- ei q
'
R

) J (q){S'(S1- S Z)} (4-6)

where, as usual, the dependence of

V(q) = J V(r) eiq' r dr anel J(q) = J J(r) ei q
·
r elr

upon the direction of q is neglected.
The relevant non-vanishing spin-matrix elements are found from general

considerations on angular momentum operators 20). providing as selection
rules

for 8 1 + 82 : .11 = 0, LlM = 0, ± I; for 8 1 - 8 2 : .11 = ± I, LlM = 0, ± I;
in processes with LlM = °the electron spin does not reverse; with LlNI =
= ±I it does.

With each process, we indicate the amount of energy absorbed by the
electron.

<ms, I, M ISz(51Z + 52z)1 ms, I, M) = msM; et = 0

<ms :+ I, I, 1Vl ± I IS'f(51± + 52±)1 ms, I, M> =

= {(~ :+ ms)(s ± m, + 1)(1 :+ M)(I ± M + I)}t; e1 = :+ g~H

<ms, I, M [Sz(51Z - 52Z) 1 m8, 1 - 1, M> =

{
(25 + 1)2 - ]2}t

= m« (] + M)(I - M) 412 _ 1 ; Bt = WI

<ms :+ 1, I, M IS'f(5l± - 52:l:) [ ms, I - 1, M :+ 1> =

={(S :+m8)(s±mS+ 1)(]±M)(I±M-l) (25+ 1)2-
I 2 }t;

412 - 1

8j = WI r gfiH

{
(25+ 1)2_I2}t

(ms,1-1, M ISz (51z- 52z) Im«, I, M >= m, (1+ M)(I-M) ;
412- 1

Bt = - WI

<ms:+ I,] - 1,M ± 1 IS'f(S1± - 52±)[ms, I, M> =

-l-: ms)(s ± m; + 1)(]:+ M _ 1)(1:+ M) (25+ 1)2- I
2 }t ;

412 - 1

8j = -WI :+ g(JH

The interference factors 11 ± exp(iq' R) [2 which occur in the expressions
for the relaxation times as a consequence of (4-6), must be averaged over
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all orientations of R relative to q, which is best done by integration

;n Jf11 ± el'!RCosxl2 sin X dX clrp = 2 (1 ± Si~~R) (4-8)

Substitution of the matrix elements (4-4) into (2-15) by means of (4-5), (4-6)
and (4-7) yields, with N p the number of nearest neighbour ion pairs per unit
volume,

"
1 mk 28 +I [ f( sin qR )- = -Np 'i, 'i, PI M 1+---

'T± nli3 I~O ;lJ~-I' qR
o

. W(q) + tM](q) 12 (I - cos 0) sin 0 dO +
'"

+ PI-l,Mf(1 - Si~~R) IJ(q) 12 HI+M) (I - M)·

o
(25 + 1)2 - 12 (1 - cos 0) sin 0 df

412 - 1 -1--jo{-I--ex-p-(-W-1-/k-B-T)-:-} +
'"

f( sin qR)+ PI,M 1 - qR IJ(q)12 HI + M)(I - M)·

o
(2S+1)2_12 (l-cosO)sinfJdO- +

412 - 1 1 - fo{l - exp(WI{kBTH

"
f( sin qR)+ pl,M 1 +~ \](q)!2 i(I +M)(1 ± M + I)'

o

(
T'F ). 1. 1--cos 0 sin () dO -:---------:-~---:--_____=_::=::--=::-:- +
T± 1 - fo{1 - exp(±g~H/kBT)}

'"

f( sin qR ) (25 + 1)2 - 12

+ PI-I, M'FI 1 - qR \J(q)12 HI ± M)(1 ± M-l) 412 _ 1 .
o

(
T'F ) • 1

1 - - cos e sin 0 dO ----;-{--------~l+
T± j ( - WI ± g~H)

1 - 0 1 - exp f
kBT

in

+ PI,Mf(1 - Si~~R) IJ(q)12 HI + M _ 1)(1 +M) (2S Z21~ ~ 1
2

.

o

(4-9)



(4-10)
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(N.B. In the second and fifth terms between the square brackets in
(4-9), one starts from states other than (I, M), still retaining the same
summation limits; it is easily seen, though, that the terms omitted or added
are all zero).

We shall first consider the situation for H = 0, which is less complicated
and still brings out the main features; this is also the case treated by
Brails ford and 0 ver ha us e r U). All states with the same I but different M
become equally probable (d. (4-4a)) , and in (4-9) the terms linear in M
vanish upon summation over M from -1 to +1. The two equations for
T+ and T- coincide into one equation for T. as expected physically from the
absence of a preferred direction. In analogy with (3-11) we find for the
"pair resistivity"

m ( 1) m2kpN p
P» = ~2 - = 2li 3 {A + P(T) B + y(T) C}

ne rr P nne n
with

f3(T) = ! ~ PII(l + 1)(21 + I)
I

y(T) = h PII -,-(2_S_+~1)_2_1_
2

J WI
exp-- + 1

kBT

"

J( sin qpR)
A = 1 + qpR W(qp)12 (I - cos 0) sin () de

u

(4-11 )

n

B = J(I + Si~:~R_) IJ(qp)1 2 (I - cos e) sin edt)
o

" (4-12)

C= J(I - Si;:;R) IJ(qp)12 (1 - cos 0) sin 0 dO

o
n

J( sin qpR)
D = 1 + qpR 2V(qp) J(qp)(l - cos 0) sin 0 dO

o
(The integral D enters only in the presence of a magnetic field).

The temperature dependence of PP is contained in the coefficients f3(T)
and y(T). Following Brailsford and Ov erh aus er w) we find their
asymptotic values for small and large T:

kBT ~ IWI
45 - 1

if W > 0 f3(T) R::J !5(25 + I) - S 45 + 1

(
2WS)y(T) R::J 2S exp --,;;;r (4-13)
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if W < 0 ~(T) R! i exp ( k:T )

y(T) R! 45'(5 + I) exp ( W_)
kBT

(4-13)

(4-14)

f3(T) ~ is(5 + I) 1f 1 + WS(S + I) f1
3kBT

y(T) ~ !S(5 + I) { 1 - W'~~Bi I) }

If we assume that V(qF) and /(q1") are independent of the scattering angle
and we write V == V(qp) and J == J(qp), the "high" temperature behaviour
of PP takes the form

e» = :~;~P [A + 2J 25(S + 1){ 1 + F(kpR) W 5 (:k:T1) }] (4-15)

where the function
2x sin 2x + (1 - 2x 2) cos 2x - 1

F(x) == 2x 4

F(x)

1

0.4

DoS

0.2

0.\

-0.\

-0.2

31T
T__ x

Fig. 1. The interference function F(x).

211

comes from integration of the terms (sin qpR)(qpR in (4-12). In terms of
this function, expression (4-10) takes the form

2m2kpNp
P» = [V2{1 + F(kpR)} + J2~(T){l + F(kFR)} +

nne2Ji3

+ j2y(T){1 - F(kpR)}] (4-16)

It is clear from (4-15) that the total resistivity (magnetic impurity
+ phonon resistivity) as a function of T exhibits a minimum only if
WF(kpR) > O. The values of kFR for which this occurs for a given sign of W
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may be read from figure 1. In the case of ferromagnetic coupling between
neighbouring solute ions (W > 0) such a minimum is followed by a
maximum at lower temperatures if F(kpR) < (45 + 3)/(125 + 1), as can
be shown by an analysis of (4-13). If the coupling is antiferromagnetic
(W < 0), a minimum is always followed by a maximum.

/H1+Fl +'T(1-F)

S~l wen

2.05

10

5=1 W<O

F.O

F =-0.2

F =_0.1
\0

1.90

1.95

l'

(a)

,••••••••••-_••••_••_--'ft,--
"

,1/'

!
I,

I
I
I

I
/
I,
:

0.5

Fig. 2. (a.) The temperature dependence of fJ and y for the special case 5 = 1 and
antiferromagnetic coupling between the partners of a pair; (b) gives the corresponding

temperature dependent part of the pair-resistivity for three values of F.

In figure 2a we show the temperature dependence of f3(T) and y(T) for
the special case W < 0 and 5 = 1; figure 2b gives the corresponding
temperature dependence of the resistivity calculated for three values of
F(kpR).

As to the "corrected" formula of Brailsford and Ove r h aus er w), we
may remark that these authors met with a convergence problem similar
to the one mentioned toward the end of section 2; they got around it by
using a different integration procedure, which makes their corrected result
look better at small T than the original one. Nevertheless, the procedure
is not wholly justified, as they make use from the beginning of a constant a
which already contains a relaxation time taken at the Fermi level (ref. 18,
eq. (2)), to be compared with our formula (2-3)). The actual integral involved
is much more complicated, but, as was mentioned in section 2, the correction
terms in it tend to zero for T ~ 0, contrary to the conclusion from their
partial approximation.

Magnetoresistance. The application of a small magnetic field
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(gf1H ~kBT) causes in general a decrease ofpp (negative magnetoresistance);
under certain circumstances, however, i.e. if the pairs are strongly anti­
ferromagnetically coupled and the cross-term D is sufficiently small, P»
may increase slightly. This is indeed what one expects from physical
arguments.

(5-1 )
and

5. Resisiioity of a ferromagnetic metal. The exchange scattering of con­
duction electrons in a ferromagnetic metal with localized spins has been
treated by Kasuya s) and by De Gennes and Fr i e d e l "). These authors
assumed that the scattering results from the departure of each ion spin
from the mean ion spin a. Approximating the ferromagnetic coupling
between ion spins by a molecular field model, we may apply the formulae
already found for the scattering of conduction electrons by isolated magnetic
ions in a magnetic field by introducing two alterations:

(a) Replacing gpS'H by the energy -yS· a of an ion spin in the molecular
field, due to the total magnetization of the crystal lattice; the molecular
field coupling constant y is connected with the Curie temperature T c by

v = 3kBTcjS(S + 1)

(b) Transferring a term V(r) - 2J(r) s-o from .n"l to ~o; this merely
means inclusion of the periodic part of the electron-ion exchange interaction
in the unperturbed Hamiltonian, leaving S - a for each ion to govern the
electron scattering.

Thus, (3-2) becomes

p2
.n"o = - + U(r) + V(r) - 2J(r) SzG - ySzG

2m

Here, the a-direction is taken to be that of spontaneous magnetization.
We shall assume that the added s-dependent potential in~0 is sufficiently

accounted for by a shift ±LlE (corresponding to m; = ±t) in the bottom
of the conduction band, where LIE is now proportional to a (but of different
sign); a more painstaking approximation would not be consistent with our
simple model.

Just as in section 3 we may neglect the differences between n± and tn,
and between kp ± and k», (being of the order of LlEjEp ) , at least as long as a
is not too large (a ~ 5); that is to say, we exclude the low temperature
region (T ;S tTc. say) where our model is not satisfactory anyway and
should be supplemented by consideration of spin waves.

Application of section 3 is straightforward; with

(ms, MslszSz - szGI me. M s>= ms(Ms - a)
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(5-2)

and the other matrix elements remaining unchanged, it yields

1 mkpN +8 [
-- = --'3- 2: PM. J2(Ms - a)2 +
-rp± nn 101.=-8

+l'(S+M,)(S±M,+l) (_ ya )J
1 + exp + kBT

where N is the number of ions per unit volume and the scattering is taken
to be isotropic.

Taking into account that

PM. =

+8

a= 2:PM,Ms
-8

exp(yaMs/kBT)
+8
2: exp(yaM;/kBT)
-8

1 + exp( +ya/kBT)
= S(5 + 1) :+ a -----:-:=----;-:--::;:;;­

1 - exp( +ya/kBT)

+8

2: PjYI.M~ = 5(5 + 1) - a coth(ya/kBT) =
-8

(5-2) simplifies into

1 mkpN
- = 3 J2 {S(S + 1) - a2 - a tanh(yaf2kBT)} (5-3)
TF± nn

Nate that no difference is found between the two relaxation times. This
means that the resistivity becomes simply

m2kpN
p = --- J2 [5(5 + 1) - a2 - a tanh{3Teaf2T5 (5 + I)}] (5-4)

nne2f1,3

Although our assumptions are essentially the same as those introduced
by K a suy aw), our formula differs from his result in that the term
-a tanh(ya/2kBT) in (5-4) has been replaced by -a. Whereas Kasuya's
formula leads to an infinite value of dp/dT immediately below the Curie
temperature, (S-4) predicts a finite positive value which is in better agree­
ment with experiment.

In their discussion of the spin-disorder resistivity, De Gennes and
Er ie d e l ") concluded that for temperatures not too far below Te, the col­
lisions between the conduction electrons and the spin-lattice can be considered
elastic. In this approximation they find for the dependence of p on the
average spin a the following formula

p(a)fp(O) = 1 - a2f{5(5 + I)} (5-5)

We note that this formula can be obtained from (5-4) by omitting the last
term.
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80 120 160 300 240 380 330 360 400 440
'K

In figure 3 we give a comparison between the formulae of Kasuya, De
Gennes and Friedel and our formula (5-4) for the case S = 7/2. It should
be pointed out that actually none of these formulae can be applied to the
region of low temperatures.

f'
16 m3kFNJ3/Ttne31'l3
15

1G

1)

12

11
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6

5

4

J

2

1

o 0 0.1 0.2 0., O.G 0.5 0.6 0.7 0.8 0.9 10 1.1 1.2

Fig. 3. Comparison between the theoretical formulae of Kas u y a ej, De Gennes and
Fr i e d e l t) and the present authors for S = 7/2. It must be emphasized that none of
these formulae actually applies in the low temperature region.
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Electrical r.sistivity of Gd vs temp.rature

Fig. 4. The resistivity of gadolinium as a function of temperature according to Col vin,
Legvold and Sp ed d i n g sv).

In figure 4 we reproduce for comparison an experimental curve for the
resistivity of gadolinium (S = 7/2) as obtained by Colvin, Legvold and
Sp ed ding e-). We note that the shape of this curve in the vicinity of the
critical temperature deviates from that obtained from a simple molecular field
model. It is likelythat short-rangeorder plays a role in that temperature region ;
De Gennes and Friede17) have discussed certain aspects of this problem.



SPIN-DEPENDENT SCATTERING AND RESISTIVITY 937

This work is part of the research program of the "Stichting voor Funda­
menteel Onderzoek der Materie" (Foundation for Fundamental Research
on Matter-F.O.M.) and was made possible by financial support from the
"Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek"
(Netherlands Organization for the Advancement of Pure Research - Z.W.O.).

Received 9-2-63.

REFERENCES

I) Matt, N. F. and Jones, H.,Theory of the Properties of Metals and Alloys,Oxford,Clarendon
Press, 1936.

2) Schindler, A. 1., Smith, R. J. and Salkovitz, E. L, J. Phys. Chern. Solids, 1 (1956) 39;
Phys. Rev. 108 (1957) 921.

3) Ov erh a us e r, A. W. and Schindler, A. 1., J. appl. Phys, 28 (1957) 544.
4) Allison, F. E. and Pugh, E. M., Phys. Rev. 102 (1956) 1281.
5) Pugh, E. W. and Ryan, F. M., Phys. Rev. 111 (1958) 1038.
6) Kas u y a, T., Progr. theor. Phys, .japan, 10 (1956) 58.
7) De Gennes, P. G. and Friedel, J. J., Phys. Chern. Solids "I (1958) 71.
8) Coles, B. R. Phil. Mag. Supplement, 7 (1958) 40.
9) Gerritsen, A. N. and Linde, J. 0., Physica 17 (1951) 573, 584.

10) Pearson, W. B., Phil. Mag. "16 (1955) 911, 920.
11) Gerri tscn, A. N., Physica III (l953) 457.
12) Owen, Browne, K n i g 11 t and Kit tel, Phys, Rev. lu2 (1956) 1501.
13) For references see the relevant articles in the Proceedings of the Internationai Conference on

Electron Transport in Metals and Solids (Ottawa), Supp!. Can. J. Phys. 34 (1956) and of th a
CoUoque International sur les Solutions Solides Metalliques, held during the summer of 1962
in Orsay, published in the J. de Physique et Ie Radium 2:J (1962).

14) Brailsford, A. D. and Overhauser, A. W., Phys. Rev. Letters s (1959) 331; J. Phys. Chern.
Solids) 5 (1960) 140.

15) Dekker, A. ]., Physica 2" (1959) 1244; see also the proceedings of the Orsay meeting in ref. 13.
16) Dekker, A. ]., Physiea 24 (1958) 697.
17) Blandin, A. and Friedel, J., J. Phys, Rad. 20 (1958) 160; See also Blandin, A. and Daniel,

E. ]., Phys. Chern. Solids 10 (1959) 126.
18) Brailsford, A. D. and Overhauser, A. W., J. Phys. Chem. Solids 21 (1961) 127.
19) J ones, II., Theory of Electrical and Thermal Conductivity in Metals, in Encyclopedia of

Physics, S. FHigge ed., vol. 19 (1956) 227.
20) Condon, E. U. and Shortley, G. H., The Theory of Atomic Spectra, Cambridge, University

Press, 1953) en. rII.
21) Colvin, R. V., Legvo1d, S. and Spedding, F. H., Pays. Rev. 120 (1960) 741.




