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The basic theory of lattice scattering for electrons in a semiconductor heterolayer, and
resulting transport properties in two dimensions paraliel to the layer plane, are investigated,
specifically for polar semiconductors such as gallium arsenide. Because of polar coupling
of the electron states in this system to the lattice modes, the scattering functions are more
complicated than is found for the ordinary Bloch states in homogeneous semiconductors.
This is true of acoustic modes, as well as optical modes, in that piezoelectric coupling may
not be neglected. The ohmic mobility at moderately low temperatures is calculated, and
displayed for 150 K. It is a strongly increasing function of the layer thickness. An ap-
proximation scheme for higher temperatures is developed. More generally, and particularly
for hot electrons, computer calculation of transport properties is necessary. Use of pre-
tabulated and stored functions may be required for this. Monte Carlo simulation will
require special procedures, because of the large range of values of the scattering rates and
to accommodate the infinities in piezoelectric-coupled scattering. These are developed
here.

1. INTRODUCTION

The “heterolayer™ semiconductor materials, with alternating layers of differing
semiconductors tens to hundreds of angstroms thick, that can be grown by the MBE
technique [1] have systems of electron states which differ from the Bloch states from
which they derive, and the resulting electronic properties are of interest in several
respects: (a) electron motion in the direction normal to the layers (here, the X direc-
tion), associated with the formation of “‘superlattice bands™ [2]; (b) phenomena of
the energy levels due to quantization of the electron motion in the X direction, for
individual layers [3]; (c) transport properties of the two-dimensional systems of
itinerant electrons in the “ _” (Y, Z) directions parallel to the layer interfaces [4].
The present paper concerns the theory of the latter transport phenomena, in particular
for the “Type 1" layer systems, such as GaAs/(Ga, Al) As, in which the active carriers
are of one polarity only and layers functioning as barriers for these carriers alternate
with layers functioning as “square wells.” Dingle et al. [4] have reported that, by
controlled variation of doping concentration as well as of alloy composition in the
MBE process, ionized impurities can be excluded from the GaAs layers and their
neighborhood so effectively that the two-dimensional (¥Z) mobility is greatly enhan-
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ced—apparently to near the ion-free values, above about 100 K. The limiting mobili-
ties thus obtained invite comparison with the theoretical mobilities calculated by
assuming that the scattering between the electron states is only that due to absorption
or emission of a lattice phonon. It is assumed below that these phonons are the same
(have the same atomic motions) as for the layer semiconductor in bulk (i.e., bulk
GaAs in the case of Ref. [4]).

The system to be considered seems to be of considerable physical interest. It is
simpler than the analogous inversion layers in a way that allows the transport pro-
perties to more directly reflect its essential complexity. The latter introduces relations
between electronic structure and properties that are not found in the bulk: (a) the
dependence of scattering rates on adk, , where 4k is the change of (YZ) wavevector
and a is the layer thickness; (b) the dependence of the scattering on whether the
optical-mode quantum fiw, is greater or less than E,, , the separation of the first and
second quantum energy levels; (c) the dependence of scattering and electron transport
on «T compared to Ey, (here « is the Boltzmann constant).

In the numerical estimates made, below, in terms of bulk semiconductor quantities
for the “well” layers, the material assumed is GaAs. The numerical values used,
accordingly, for these constants are collected in Table 1.

2. Basic FormuLAS

The “well” electron wave function in a GaAs (or similar) layer may be expanded
as usual in the Bloch functions ¢, for normalization volume ¥:

=7y Cudy )]
k
and it is convenient to deal with the corresponding envelope function
¥ =3 CV 12 exp(ik - 1). 2)
X
TABLE 1
my[m* 15
€ 12.90
€» 10.92
To 420K
P52 1.40 x 102 erg/jcm®
ps? 0.48 x 102 ergfcm?®
D 7.0eV
hyy 1.2 x 10" V/cm

Note. These values are principally taken from
Rode (Ref. [8)) and Zook (Ref. [7]).
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Here i, the ¢, and ¥ are normalized in ¥, with 3 | C |2 = I. It is appropriate, at least

in the GaAs/(Ga, Al) As case, to assume the Bloch states of (1) to be in the range of
the parabolic energy function

En(k) = (#*]2m*) k2. (3)
Consequently, Ex(k) = Eg(k,) + Eg(k,), and ¥ is separable into factors:
¥ = F(x) A2 exp(ik, - 1)). (4)

Here A4 is the normalization area for the YZ plane (so that V = LA, where L is the
corresponding length for the X direction). Then

f{F;zdx:L (5)

The quantization in the X direction results in energy levels E, with envelope eigen-
functions F, (n = 1, 2,...), each level being the edge of a two-dimensional continuum
given by

E=FE, + Eglk)). (6)
In the “square well” case we have approximately [5]

F, = (2/a)\”* sin[n(m/a) x] (N
and

E, = n¥h*2m*)(m|a). (8)
Results are given below both for a general F,(x) and for (7) in particular.
In scattering by absorption or emission of a phonon of wavevector q, the YZ

wavevector k, must change by q,; but there is no such selection rule for the X
direction. Instead, the matrix element depends on

I(q,) = .{Fnz exp(iq,x) dx (9)
for scattering within the subband given by (6), and on
Ludq)) = meFn explig,x) dx (10)

for interband scattering. Obviously,

1,(0) =1,
1,n(0) = 0.

(1)



220 P. J. PRICE

Another identity following from the definition (9), which will be used below, is

[“1nipdg, =2m [0,2ax, (12)
where
¢n = Fn29 (]3)
b, = F,F,.

It is convenient to define
1/b, =2 j ®,2 dx (14)
so that

[ inrdn =3 (1s)

The analogous result for (10) is

f; [ Lons I dg, = J: X, dqy = 2x J' D2 dx
(16)

=2wf¢,,,q5,.dx;b" .

When F, is given by (7), the integral on the right of (12) and of (14) is equal to 3/2a,
and hence
b, = a/3

and on the same basis (n

being independent of # in (7). Equation (15) shows that 1/b gives an estimate of the g
value at which | /|2 falls off. Corresponding to (7) are the results from (9) and (10):

__ sin(Jag) n?
In(q) - .%aq n — (aq/27)2 P, (18)
sin
__cos(}3aq) 4mn(ag 7‘.)2
I..(qg) = lag  Amn® — [m® + m® — (ag/n )P P,

where the upper sin() is for m and »n both even or both odd, the lower cos( ) is for
one of them even and the other odd; and P is a phase factor, with | P | = 1 and phase
angle -+1agq.



TRANSPORT IN SEMICONDUCTOR LAYERS 221
3. SCATTERING RATES

For three-dimensional scattering between Bloch states, the appropriate matrix
element is

Ni TONTS N VE »
i = (Y22 g (19

where the upper (lower) sign refers to emission (absorption) of a phonon of wave-
vector q and energy #w, , the subscripts 1 and 2 refer to the initial and the final electron
states, N is the usual phonon occupation probability

N = [explliw[cT) — 171 (20)

and
812 = Suypte (21

is the Kronecker function giving the selection rule for k. Because of the latter, sum-
mation over phonons (of a given mode) and summation over final Bloch states amount
to the same. The scattering function W(l, 2), equal to the transition rate per unit
volume of k space, is then

I | C

Win(l,2) = Wiy + Wiy = Oy

41, 2), (22)

where C and N depend on +q =k, — k; and
A(1,2) = N 8(E(1) — EQ2) + hw) + (N -+ 1) (E(1) — EQ2) — fiw).  (23)

The scattering rate

1
(1)

— [ w1, 2) d%, (24)
depends on the three-dimensional density of states

gm = fS(E — E")Ydk' = 4wk® dk|dE

(25)
— [2ﬂ(2m*)‘3/2/h3] E]1;/2

by (3), and on the coupling constant C for each mode.

The matrix elements for two-dimensional scattering are obtained from (19) by
multiplying by I(g,), where I is given by (9) or (10), and applying the Kronecker
factor (21) to the | components only. Accordingly the transition rates, between
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discrete Bloch states, in three dimensions should be multiplied by | 7 |2 and summed
over g, . Then the two-dimensional scattering function is given by

Wa(l,2) = [ 1 Lgy)I* Wi dg,
(26)

:%ﬁquu | Ig )| C24(, 2).

In the usual model of the optical-mode processes, the phonon energy fiw is inde-
pendent of wavevector. Then 4( , ) may be taken outside the integral in (26); it is
given by (23) with E(1) and E(2) understood to be the two-dimensional energy
functions (6). We may express this result by writing

Ca® = [1CI* 1 a)P da, @7

for the factor which replaces | C |2, in (22), to give the formula for Wy . In the acoustic-
mode case, phonon frequency is propos rtional to wavevector in the range of interest,
and N(g) in (23) has an infinity which is cancelled in (22) by a zero because | C |2 is
proportional to w. Then

27 S

Win = S5 e DEWD — EQ)), (28)
where
s=+Licp. (29)
In place of (27) we have
Su = [ 811(g))P dg, (30)

for the two-dimensional case, replacing S in (28). The two-dimensional analog of (24)
is just the corresponding integral over k -space, and the equivalent of (25) is

gu = f 8E — E) d%, = 2nk, dk,|dE = 2mm*[H* 3D

by (3) and (6), a constant in each subband. Just as for three dimensions, in non-polar
electron-lattice coupling the scattering will to a good approximation be isotropic, and
the scattering rate and transport coefficients be accordingly given by closed expres~
sions, in terms of the density of states for scattering (31); but for polar coupling the
scattering is anisotropic, and in general only approximate closed-formula results can be
obtained.

For acoustic-mode scattering [6], in the “spherical parabolic” case (3), we have in

three dimensions
S = kTD?*2ps;?, (32)
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where D is the dilational deformation potential, p the mass density and s; the longi-
tudinal velocity of sound in the lattice, and hence there is a constant mean free path

= (2m)* (v/2gun) h'S
= (mht/m*?) ps,?/x TD2,

(33)

For the two-dimensional case, since S is independent of ¢, by (15) and (30) we have
Su = (=/b) S. (34)

Then, by (31) and (32), there is a constant scattering time

7 = 2b(#3/m*) ps,*/x TD?. (35)
Comparing (33) and (35),
hn _ h
711 o b 2m* (36)

The factor 7#/2m* on the right is equal to 27.3 cm?/sec for GaAs; for b = a/3 and
a = 10~% cm, the right-hand side equals 8.2 x 107 cm/sec.

Since only intra-subband scattering is represented in (34)-(36), they refer to the
lowest subband, associated with the lowest level E, (the subscript “1” on b having
been omitted). When T is appropriately small compared to Ey,/x, the acoustic-mode-
scattering mobility will be just er/m*, where T is given by (35). The ratio of two- to
three-dimensional mobility is therefore

B _ (m*KT)W?é

o - < (37)

At higher temperatures, u;; is decreased by scattering between the subbands for
electron energies £ > E, . By (16) and (30), the analog of (34), (35), (36) applies for
acoustic-mode scattering between each pair of subbands. One can get some insight by
considering the idealized model in which (7) and (8) apply up to large values of #: The
acoustic-mode scattering rate at energy E, with E, < E < E, . is proportional to

gu (—bl:_ + Z _b%—) = gn (%72 + (-1 —Zal) (38)

in the ith subband where i/ < n. For large values of n, the coefficient of g;; above is
~(2m* Eg)'/2 2/#, which equals g15;/g11; so the expression (38) /gy , and the scattering
rate tends to the three-dimensional value. Realistically, we need to include optical-
mode scattering and consider one or a few subbands.

Polar optical mode scattering [6] is given by

2mefiw, (_L 1 )

IquZz qz

(39)

€x €y
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in (19), and in (22) for three dimensions, where w, is the optical mode frequency, and
€, and ¢, are the dielectric functions at frequencies >w, and <w, . The denominator
q® is the sum of || and | components squared, so that (27) depends on

1= 5, “0)

1334 6C_ 9

where means “a” or “mn”, and where q and Q stand for ¢, and +(k; — k),
from here on. The two-dimensional scattering function is then

2
Wl 2) = 2 (]

2 (o — ) (@ 4.2, @

where J is J,, or J,,,, , and the E(1) and E(2) in 4 are the functions (6).
Corresponding to (40) is the exact formula

TQ) = 5 J] s dve @(x) Do) exp(~0 1 51 — 321 “2)

in terms of (13). We will make use of simpler resuits for two extreme conditions. If Q
is small compared to the g values at which I, falls off to zero, then in (40) | 7, |2 can
be taken outside the integral with argument g = 0; hence by (11)

Jo ~7wlQ [©Q small].
Similarly, (43)
_2a m*+n?
Jmn(o) - s (mz - n2)2
for (7) in particular, (This latter result is obtained from (42), by expanding the expo-
nential factor of the integrand: 1 — Q| x; — x, | -+ **-.) In the other extreme, Q is
large compared with the ¢ values at which | 7 {2 falls to zero, and ¢ may be neglected
in the denominator of the integrand of (40). Then by (15), and similarly by (16),

J, ~ wlb,Q?

I 44
S b2 @

Obviously, the right-hand sides of Egs. (44) and the first of Egs. (43) are rigorous
upper bounds of J,(@). From numerical results such as are plotted in Fig. 2, it is
evident that the second of Eqs. (43) gives the maximum value of J,,,(Q). The inter-
polation formula

Ja7[[Q(1+5,0)] (45)

is convenient, even if not accurate. (It corresponds to taking | [,]*> equal to
1/(1 + b6,%9®).) Figure 1 shows representative curves of | 7, |2 and J,/ma, and Fig. 2
similarly for | I,,., |* and J,,,/7a.



TRANSPORT IN SEMICONDUCTOR LAYERS 225

-

| = 3
g i
¥ A 1
r 1
P 4
107 4
- ol
: ]
L -
i ]
-2
Y 10 10
FiG. 1. Intraband scattering functions. Curves A and B are | , | and | I, %, respectively, versus

aq. Curve C is J,/(ma) versus aQ.

The wavevector change, Q, in general will have a wide range of values in the
scattering process. At temperatures small compared to

Ty = fiwg/x (46)
however, the @ values for intra-subband scattering will be close to the wavevector

ko = Cm*wy/h)L2 47
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Fic. 2. Interband scattering functions. Curves A and B are | I,,,'* and ' I,,; i®, respectively,
versus ag. Curves C and D are Jy,»/(ma) and J,,3/(ma), respectively, versus aQ.
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for which #iwy, = Eg(k,). If E,, exceeds fiw, by several times «7T,, scattering between
subbands will be inappreciable. Then, substantially, the optical-mode scattering will
be given by replacing J by Ji(k,), and 4 by the first term of (23) with N equal to
N, = N(w,), in (41). The scattering rate will be

1 et 1 1
O e B (48)
By (8) and (47),
L) 7 o
(3 ako) =3 - (49)

Taking the left-hand side of (49) as (bQ)?, the condition fw, < E,, allows bQ to
range from zero to #/v/3 = 1.814; the scattering rate will depend on J; in (48), a
function of ak,. For GaAs, the value of &, is 2.52 x 10% cm—2, so that in practice
we are liable to be between the limits (43) and (44). The length 1/k, , compared to the
layer thickness, has a governing role apart from that of the energies E,, compared to
kT and fiw, .

For sufficiently thin layers (43) will apply and (48) will become

1
— kg —————)No. (50)

For GaAs the coefficient of N, on the right of (50) is 1.22 x 10¥ sec'. At T = 300 K,
we have Ny = 0.327 and 1/7 = 3.99 x 102 sec!; at T = 100 K, we have N, = 0.0152
and 1/ = 1.85 x 10 sec”’. From (35), the corresponding figures for 17, if a =
0.5 x 10~%cm, are 0.579 x 10*2sec! and 0.193 x 10%sec™l. The acoustic-mode
rate is greater, at this layer thickness, for temperatures below about 100 K. With
increasing thickness the optical-mode rate will decrease more slowly at first, and so
will be relatively greater. The acoustic-mode scattering for Eq. (35) is isotropic, and
for the situation of Eq. (48) the optical-mode scattering is isotropic, and therefore
these 7 are the relaxation times proper to the mobility.

In calculating the scattering due to the acoustic-mode phonons, we should consider
the piezoelectric coupling as well as the deformation-potential coupling of Eg. (32).
It is shown below that the former can become important at temperatures below 100 K,
for GaAs, and so might be of interest in the future if not at present. The scattering
due to piezoelectric coupling may be calculated separately from the scattering due
to deformation coupling, even though for the longitudinal acoustic modes both
contribute to each scattering event, because the ratio of the two contributions to the
matrix element is imaginary.

Zook [7] has given a detailed account of the piezoelectric scattering in polar semi-
conductors, including the “zincblende” crystal symmetry that applies to the III-V
compounds, and calculated the resulting mobility. His results for the scattering
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matrix elements, compared with deformation coupling, are equivalent to the sub-
stitution

D? — (ehi)* A[(Q* + q¥), (sh

where hy, is the basic piezoelectric tensor component (see Egs. (4) and (21) in Ref. [7]),
Q and g are the phonon wavevector components as in Eq. (40), and 4(Q, ¢) is a
dimensionless anisotropy factor that depends on the direction of the phonon wave-
vector in the crystal lattice. For deformation-coupled scattering, the result of (30) is
(34), since S is constant in the integral. In the present case, the factor | I {? of the
integrand may be set equal to 1, since the wavevectors @ for (intraband) acoustic-
mode scattering are small and the other factor in the integrand will fall off before
i 71? has changed significantly. Then

DA(m[b) — (ehy,)* (W/Q) B, (52)
where
@ A
= —% » -—-————Qz T f]2 dq (53)

Both the longitudinal and the two transverse modes contribute, and the constant B
has distinct values, B, and B, , for these, so that

«T(ehy)?: 7 [ B, B,
Su=""g"" 7 (}787 2 m) . (54)

It is assumed in Ref. [7] that the elasticity tensor components are isotropic with
respect to the direction, in the crystal, of the axes of their coordinate system. The same
approximation is implicit in the separation of the B and s? factors in (54) (and similarly
in (32), of course). The coefficients 4, , 4, in (51) and (53) nevertheless depend strongly
on the direction of the phonon wavevector. By Eq. (23) of Ref. [7],

Ay =36A2u2?,
Ay + 24, = 42 + ph? 4 VA%,

(55)

where A, u, v are the direction cosines of the phonon wavevector relative to the three
(1,0, 0) crystal axes. Because of this anistropy, B; and B; depend on the orientation
of the layer planes. We assume here that the normal to the layer planes is in the
(0, 0, 1) direction—this ‘“cubic” orientation being the practical one for the
(Ga, Al) As/GaAs layer materials. In converting (55) to (g, Q) variables, we replace
A2 4 p? by [2 =1 — % the square of the “radial” direction cosine to the X'V plane,
and on averaging over the azimuthal directions of the XY plane we replace A%u? by
{4/8. Then

9 __¢¢
SR e
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and

8 2N2 4
Al—|—2At—>2—€(Iq-2Q—+—tQ—2Q)—2. (57)

On substituting (56) and (57) in (53), we have

B, =9/32,
(58)
2B, == 13/32.
Since acoustic-mode intraband scattering may be taken to be elastic,
0 = X1 — cos 0) K, (59)

where 0 is the angle between initial and final k| vectors, and & is their common length.
The scattering rate is then

i m*

T = i Sn (60)
where the bar here means the average over 8. The mobility depends, however, on the
rate with the scattering function weighted by (1 — cos 6):

| m* ————
jr—, = ;h‘s‘ (1 — COS 0) S" . (61)
The two-dimensional scattering function for the piezoelectric case, given by (54), is
proportional to 1/Q. The angle average in (61) then depends on

(k/Q)(1 — cos 8) == sin 18 = 2/,
Then
k
= 7'rﬁ3 (QSII) (62)

T

with QS); given by (54) and (58).
Collecting up these formulas, we find for the ratio of 7, given by (54), (62) to 7ger
given by (35):

k Tget ehyy
i [Bz + 2Asifso B (LY’ (63)
The right-hand side of (63) is 2.74 x 10" cm~2 for GaAs. Since 74¢; is independent of
E while 7y, is proportional to E'/2 (where E here, and below, is the two-dimensional
energy hitherto denoted by Ej , given by Eq. (3)), we have for the ratio of mobilities
obtained with each scattering contribution

piez 3 \/7T 1/2 Tf)iez
Hdet ( T) ’l'dei’El/2 ) (64)
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FiG. 3. Drift mobility versus layer thickness for electrons in a GaAs heterolayer, at 7 = 150 K.
The upper curve is for polar scattering by optical-mode phonons and deformation-coupled scattering
by acoustic-mode phonons. The lower curve includes a correction for piezoelectric-coupled acoustic-
mode scattering. The arrow indicates the three-dimensional mobility.

Then for GaAs, on taking b = a/3 in (63), we find

Uptez T 172 [0~ cm .
paet 1'79( 1001() a (65)

As i1s illustrated by Matthiessen’s Rule, the combined mobility tends to the smaller
of the two separate mobilities.

Figure 3 shows the ohmic mobility for phonon scattering, versus layer width a, at
T = 150 K. The upper curve is the mobility given by (35) and (48); the lower curve
includes a correction for piezoelectric scattering, as calculated above, on the lines
indicated in Section 4. (The arrow indicates, for comparison, the phonon-scattering
mobility for the ordinary three-dimensional case, in GaAs at 150 K, calculated by
Rode [8].) These ohmic mobility values are much greater than the experimental
mobility values at 150 K, for modulation-doped material, reported by Dingle ez al. [4].

4. MoBILITY
In the system considered here, where 1 the generalized mean free path is (appro-
ximated to be) parallel to v the electron velocity, the mobility is given by the relaxa-
tion time [9]
7 = v (66)

The ohmic drift mobility ¢ and Hall mobility puH are

p = (e[m*)K7'EY[{E} (67)
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and
pH = (e[m*K(v'}* E>[{T'ED, (68)

where the angle brackets signify the thermal average. For two dimensions,
e —E
CFE) == fo exp () FdE. (69)

For deformation-coupled acoustic-mode scattering, +* is equal to = because the
scattering is (near enough) isotropic. In two dimensions 7’ (= 7) is independent of
energy E and consequently the mobilities juj; and py ¥ are equal; but in three dimensions
it is proportional to E-1/2, and hence gy ®/piy is equal to 4! 3! = 37/8 and for Hall
mobilities (37) has a different coefficient accordingly [10]. For piezoelectric-coupled
scattering, in two dimensions, 7’ is proportional to E'/2 and hence u/p! for this case is
equal to 3(3!)® = 97/32, and the coefficient in (64) differs accordingly for Hall mobi-
lities.

At low temperatures the phonon scattering consists of acoustic-mode scattering
due to deformation coupling and to piezoelectric coupling. Since this scattering is
virtually elastic, 1/+" is equal to the sum of the values it would have from each of the
scattering contributions alone: 1/rge; and 1/7p;e, given by (35) and (63). Then

p= f exp(—u)[(3!/upien) + (2 /paen)] ™ 1** du (70)
0

(where u is E[xT). With deformation scattering predominant, this is approximated by
p =~ paetll — 3! 3! paet/tpies)], (71)

where the coefficient of the mobility ratio in the second term is 3#/8 = 1.178. If,
instead, #'/2 in the denominator of the integrand, in (70), is replaced by the constant,
21, which makes the integral correct in the absence of any piezoelectric scattering,
we obtain an instance of Matthiessen’s Rule,

1 H«defll'piez/ (I"def + Ilvpiez)- (72)

In the expansion of (72) corresponding to (71), the coefficient of the mobility ratio is
one instead of the correct value 37/8. The lower curve in Fig. 3 gives the mobility
calculated as pgetppioz/{paet+(37/8) ppiez).

The treatment of polar optical-mode scattering is more complicated because
the scattering is both anisotropic and inelastic. The J factor in (41), and hence
the scattering function Wy, has in general a complicated dependence on E, 6 and
on the layer thickness. Scattering between sub-bands is involved, except for
sufficiently narrow layers compared to 1/k, andfor sufficiently low temperatures
compared to T,, as discussed in Section 3. The low temperature limit repre-
sented by Eq. (48) or Eq. (50) may be somewhat extended, and acoustic-mode
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scattering included together with the optical-mode, in a treatment that amounts to
expansion in powers of N, , and should provide a realistic account of the lattice-
scattering mobility at relatively low temperatures. This is developed in the following
paragraphs.

Since the energy change in scattering is taken to be zero (acoustic mode) or --F,
(optical mode) we have a ladder of equations, for /(E), connecting /, v, etc., values at
energies differing by a multiple of E,. Let these be /;, ly,..., v, s ,..., €tc., where
subscript i refers to E in the range (i — 1) E, , iE,). Then [9]

L = 11 + Proly s (73)
Iy = 7305 + Borly + Posly (74)

with the higher equations like (74), where j3;; is the average of cos 8, in the (i, /)
scattering mode, multiplied by the relative frequency of that mode in the total rate
1/7; . The elastic (acoustic-mode) process is being taken to be wholly deformation-
coupled, and hence isotropic. The critical truncating approximation is to drop the
[, term from the solution of (73), (74) for /;:

I, = (my01 + Brematy -+ BrafBesly)/(1 — B1aBar)- (75)

Then we substitute

=7 1 + (79vs/7y01) Bra (76)

1— /812321

in (67) or (68), where the range of E in (69) can be formally taken as (0, co) rather than
(0, E,). Because By, tends to zero like E'/%, the second term in the numerator of (76)
has a finite limit, proportional to the limit of B,/v, , at E = 0. We need to appro-
ximate (76) on the basis of the smallness of N, and of E/E,.

Let the right-hand side of (48) be Ny, , defining the basic optical-mode scattering
rate vo; and let vy be the acoustic-mode rate, equal to 1/r where = is given by (35).
Then

lim) = vae -+ NoKiavy N
1//7'2 = vae + ((No + 1) Koy + NoKog) vy (78)
N ’
Bi; = (N“ _g 1) Kiygrs {79)
where
Kii = J(Q:)Ni(ky) (80)
and
5 = J1(Qsy) cos 8/Jy(ky). (81

595/133/2-2
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The bar in (80), (81) means average over 0, as before. We have
K =Ky, Kji=Kj. (82)

The expansions of K;, , Kj, in ascending powers of E begin

Ko =1 4 Gy + v XEIE) + -+, (83)
K1,2 = - %Yl(E/Eo)llz + o (84)
where
_ (O d"],
Yn = ( J, dgor )ogko ’ ®5)

We have to apply (83), (84) to three terms of (76). In the denominator,

BraBar = (371)* No(No + Dvem)(vo7s) E/E, . (86)

In further estimating this quantity, we note that

v = (1 — TlV&c)/NoKlz ~ 1[N, &7
and
l . KIZ ~
oo Ko + Ny (m + Kza) ~ 1. (88)
Then (86) becomes
BraBar = (3y)* (1 — 74(0) vac) E/E, . (89)

We have found in Section 3 that the acoustic and optical terms of 1/7, should be
comparable in a temperature range that normally lies near 100 K; the value of the
middle factor of (89) will be 51 accordingly. Since —7, will lic between 1 and 2, a
typical value of the coefficient of E/E, in (89) should be somewhat less than one.
Similarly

m(E)71(0) =1 — (1 + 1yl — 72(0) vac)(E/E,) + - (90)
Again, the coefficient of E/E, is ~1. For the B;, term of (76), we have
(7903/7301) Bra =~ — 3y1NgvoTs .
Then by (88)
(7305/710) Pra = (— 3y) N, . 1

On substituting from (89), (90) and (91) in (76), we can obtain an estimate for the
lattice-scattering mobility at relatively low temperatures where N, is small, and
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optical-mode scattering and deformation-coupled acoustic mode scattering are both
appreciable but piezoelectric-coupled is not:

= r(0) (1 - % nho) [1 -+ %— (72 — 3y — ya)(1 — 7(0) ),1“ 0 (I‘)z]

where 7(0) is the same as 7,(0).

In general we have a more complicated situation. For optical-mode scattering
within a subband, the product of maximum and minimum @ values, for given initial
and final k values, is k,?; hence Q ranges from <k, to >k, when the initial or final k
is not €k,. We also have to consider scattering between subbands, and want to
calculate hot-electron as well as ohmic transport properties. It seems clear, therefore,
that we need to pass from analytic solution of the Boltzmann equation to Monte
Carlo methods [11]. The following section discusses the application of Monte Carlo
to the scheme developed in Section 3; but actual Monte Carlo computations are not
reported in the present paper.

5. MONTE CARLO CALCULATIONS

Suppose that our model electron system consists of the first » subbands, with their
itinerant states represented by the energy scheme (8). For an electron in a given
subband, the scattering processes are in one of # possible categories: to a final state
in the same subband or to a final state in any one of the (n — 1) others. For each
of these, we have the three lattice-scattering possibilities of acoustic-mode (taking
absorption and emission of the phonon together) and optical-mode absorption or
emission. The maximum number of scattering “channels” is then 3n. If an upper
bound can be established for the scattering rate in each channel (as we shall in fact do,
below), say A; for the ith, then we have a maximum total rate I" = Y ; A, which can
be used in the now standard procedure to generate the *“paths” between scatterings.
with durations s having the distribution function

Iexp(—sI). (93)

Computer-generated random numbers are then used to assign a given scattering to
one of the possible channels or to a “‘self-scattering”™ (representing the difference
between I' and the actual total scattering rate out of the particular initial state), and
to a specific final state for the selected channel, with the correct relative frequencies.

Of course, for a large part of the range of the energy F of the initial state in scatter-
ing, the number of active scattering channels will be less than 3r and for these YA
will have some value, I, less than I". The difference corresponds to a contribution
(I' — I'")/T" to the self-scattering probability, which is just a step function of £ since
TIV(E) is a step function. Whether a given scattering, out of the total rate I'. is one
of this category of self-scatterings should be the first alternative decided, in the Monte
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Carlo scattering algorithm; the contribution of these events to the total computer
time, in simulating a particle “history” of given length, will then be small.

For polar optical-mode scattering, upper bounds of the scattering rates are easily
found. Since, if k; and k, are the initial and final wavevector lengths,

Q2 = k12 + k22 - 2k1k1 COS 0 (94)

we have for intraband scattering

1 1 1
(o) = =T = 9

Therefore, since the right-hand side of (44) is the upper bound of the left side, the
intraband rates are less than

AS?’L—(N0+ + )2’; ‘;12(1 —eio) (96)

For the interband scattering we take the maximum rates as given by J,,,(0). Then for
the case of Eq. (7) they are, by the second of Egs. (43),

op ake® € (1 1y m?4 n?
/\"i~(N°+ + ) T h( __é;_)(mz—ilz)2' O
For a total of » bands, the upper bound of the optical-mode interband rate for
scattering from the mith band will be obtained by replacing the final factor of (97) by

the sum

~ 3 A m s (08)

The contribution to I" will then be given by the maximum of L,,, with respect to m.

For those scatterings in which one of these optical-mode channels was selected, the
Monte Carlo scattering procedure could be completed as follows. For given k&, , k,
(i.e., for given initial energy E, and channel) the scattering rate is actually propor-
tional to

To=(m) [ I4(0) b 99)
where Q is given by (94). Then the event should be taken to be a physical scattering if

I > (w/bk®) R
or (100)
Jin > Jma(0) R
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(for an intraband or an interband process respectively) where R is the usual random
number from a population uniformly distributed in (0, 1); else it is to be yet another
“‘self scattering.” For a physical scattering, a scattering angle § may then be found by
(a) generating an angle § = 7R belonging to a uniform distibution in (0, ), and hence
a value of Q by (94) {12]; (b) applying

Jl(Q) > Jull by — k2 ) R (101)

as the condition for accepting this scattering angle as the actual one for the scattering
event; (c) if (101) is not satisfied, repeating (a—c). In implementing the foregoing, the
J, could be tabulated as a function of E and the J,, tabulated as a function of Q% in
the initialization phase of the computation(s), and values obtained by a “look up”
procedure during the actual Monte Carlo simulation.

For the acoustic-mode scattering, so long as the piezoelectric contribution is
disregarded, nothing so complicated is required. The scattering is isotropic and the
rate for each channel is independent of E. Then the contributions to I, corresponding
to (96) and (97), are just the 1/r given by (35) with either intraband or interband &
value. When a particular acoustic-mode channel is selected, the scattering angle is to
be a member of a uniform distribution in (0, 7)—or, equivalently, a final-state angle
can be chosen from a uniform distribution. As we have seen, however, the piezo-
electric-coupled scattering may not necessarily be neglected. For hot electron condi-
tions in particular, we accordingly need at least a means of estimating, and possibly
of accurately calculating, its effect. The remainder of the present section concerns the
unusual problems that this entails. For piezoelectric-coupled (intraband) scattering,
the quantity given by (60) is infinite—the integral of the scattering function Wy( . )
over final states diverges [13]. The scattering rate of change of f

[ @) W', k) — f(&) Wik, K)] &K' = Gf (102)

is finite, but the inscattering and outscaitering parts (given by the first and second
terms of (102), respectively) are not separately finite in the present case. The finiteness
of the combination, corresponding to the finiteness of (61), comes from the vanishing
of f(k') — f(k) as Q =k’ — k tends to zero [14].

The Boltzmann equation

F-(@lepf=0Gf (103)

(where F is the force on a carrier particle due to the electric field, or electric and
magnetic fields, and p is #k) can normally be written

[L+F f——]f o, (104)

T

where the integral operator £2 is the inscattering part of the scattering operator G,
giving the first term of (102), and hence as

=119, (105)
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where the integral operator I1, the inverse of { ] on the left of (104), is the “path”
operator transforming the distribution of states after the scatterings into the distribu-
tion of states preceding the scatterings [15]. The form (105) represents the computa-
tional method developed especially by Rees, in which scattering and path operators
are applied alternately to a grid-based numerical representation of f, and a solution
generated by iteration; and it also corresponds to the Monte Carlo procedures, in
which a stochastic sequence of particle variables is generated by alternating scattering
and path events.

When intraband acoustic-mode piezoelectric-coupled scattering is to be taken into
account, we can separate W, and hence G, into a nonpiezoelectric part and a piezo-
electric part, to be denoted here by subscripts “0” and ““1”°, respectively. Then (104)
may be replaced by

[+ F s =+ s (106)
and (105) by
=0 + G/, (107)

One would expect to be able to compute the right-hand side of this equation for a
grid-based numerical representation of f and hence proceed in the same manner as for
(105). To implement (107) by Monte Carlo simulation, however, it is evident that we
must elaborate the usual procedures [11] in two ways, to take account of the singular
and nonpositive nature of individual “scattering functions” on its right-hand side:

(a) The three terms of (107), consisting of the inscattering given by £, and the
inscattering and outscattering parts of G, , should be represented by three alternative
channels for the scattering event. For both the second and the third of these the
scattering angle is to be generated as a random variable, and a numerical value for the
scattering probability (i.e., for Sy) obtained for the actual selected angle (the Q
value).

(b) A weight, w, should be included, together with k and the band index, in the
set of particle variables; it will be constant along the path trajectories, but in general
be changed in scattering events. The weight variable (which can be initialized w = 1)
will accommodate both the 1/Q singularity of Wy, and the negative sign proper to
the outscattering term. It is, of course, to be included in the estimators for computing
expectations or distributions from the sequence of states generated in the Monte
Carlo simulation.

An appropriate weighting function P( , ) can be separated out of the scattering
function: i.e.,

w(l,2) = P(1, 2) W(1, 2), (108)

where the quotient W( , ) does not have the singularity and is to be used in place of
W{( , ). In a transition 1 — 2, the particle weight is multiplied by P(1, 2), and by
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another factor to be specified below. For a transition representing the outscattering
term of G, , the P value would be taken negative and w would change sign. In the
choice between the three channels representing the right-hand side of (107), an arbi-
trary channel weight z < 1 can be assigned to the first and weights 4(1 — z) accord-
ingly to the second and to the third. (One may regard (1 — z)/z as the frequency with
which the piezoelectric scattering process is “‘sampled” in generating the distribution
of particle states.) Then the ratio of final w value to initial w value in a scattering
is to be 1/z for the Q, term of (107) and (+)Py/(7 (1 — z)) for the G, terms. If we
take for W the acoustic-mode deformation-coupled scattering function, then

P= %’;"; - (—e’li)l"—)2 (B +2 (%:—)2 B,) % (109)

and 7 IS Tgef -

The interband piezoelectric-coupled scattering is evidently small and could, if
taken into account, be handled in a way similar to that of the polar optical scattering
above. It is not investigated here.

6. DiscuUssION

Phonon scattering of electrons in a two-dimensional “heterolayer” system—in
particular for a layer of the polar semiconductor GaAs—has been analyzed. It was
found to be complicated, and to result in a two-dimensional electron transport system
which may be treated theoretically by specially adapted computer methods. Even so,
the scattering theory developed above is incomplete in scope and idealized in assump-
tions.

1. Equation (7)—in conjunction with Egs. (1), (2), and (4)—does not adequately
describe the electron wavefunctions. This has been discussed in Footnote [5]. In
addition, the states with quantization energy near the band edge for the barrier
material, and in the itinerant range above it, need further consideration.

2. The lattice modes of the scattering phonons have been assumed to be
those of the homogeneous layer material (specifically, bulk GaAs). The modification
due to the well-and-barrier layer structure, and the possible contribution of phonon
modes associated with the interfaces themselves, has not been discussed here. (An
“electrostatic” addition to the effective deformation potential, from the coulomb
interaction of electrons in the well layers with donor ions in the barrier layers, will be
numerically significant only at the highest doping levels.)

3. A screening of the electric field of the polar lattice modes, peculiar to this

system and due to the polarizability of the quantized electron states in the x direction
(normal to the layer plane), may be important at electron concentrations of interest.

4. We have assumed the electron systems of the “well”” layers (when we in fact
have more than one, as in a superlattice) to be independent; but there are possible
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interactions between them. A possible mode of interaction is the “hybridization”
effect of the overlap interaction between the states of neighboring layers which gives
the superlattice band width. There could also be a phonon drag effect from phonons
emitted in an electron scattering in one layer and absorbed in scattering in another
layer, and similarly the currents in neighboring layers could interact by mutual
coulomb scattering of their electrons.

A normally important mode of scattering, in the materials considered here, is
coulomb scattering by donor and acceptor ions, also a more complicated pheno-
menon than in homogeneous semiconductors [16, 17]. Another kind of scattering,
which a sufficiently complete analysis of the two-dimensional electron transport
properties might need to include, is that due to “roughness” of the interfaces [17].

A large, and somewhat repetitive, journal literature exists on the analogous pheno-
menon of two-dimensional electron transport for the inversion layer in Si at an
interface with silicon oxide. This differs from the system considered here especially
in that the electron states differ (on account of the inversion-layer field), silicon is
nonpolar, and the silicon conduction band has a many-valley band edge with ani-
sotropic minima. There is much less published work on the system considered here.
Ferry [18] gives a result for polar optical-mode scattering which evidently is equi-
valent to the case of Eqgs. (44), (96) above. Hess [16] gives a formula for the acoustic-
mode scattering rate which is one half of the present result, from Eq. (35), for the
deformation-coupled. rate. (The former may represent emission or absorption alone,
therefore.) From the work of the present paper, it appears that phenomena of interest
are not correctly described by conveniently simple formulas except in some special
cases.

Reduction of the ion density to the level where it does not significantly affect
transport properties would be desirable not only for device applications, but also to
further investigation of the physics of these heterolayer systems, by isolating the
phonon scattering for study. Although this lattice-mode scattering alone, for polar-
semiconductor heterolayers, evidently requires numerical calculation by computer,
possibly using pretabulated functions, for analysis of electronic transport properties
of interest, there are more parameters that it depends on, and that might be deliber-
ately varied in experimental investigations, than in ordinary homogeneous material.
One can, obviously, vary the layer width. It may also be feasible to vary the density
of the initerant electrons (per unit area of a heterolayer) virtually independently of
other quantities, providing a means of experimental study of the effects of electron
degeneracy and of screening by the itinerant electrons as mentioned above. Conse-
quences of various alloy profiles in a layer — not just a constant concentration —
would be of interest. Interaction between currents in neighboring layers could be
another subject for experimental and theoretical study. This incomplete list will help
to indicate that the physics of the semiconductor “mesostructures” that one can
expect to-be provided by MBE growth techniques should be rich in new and interesting
features.
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Note added in proof. An investigation of the effects of screening (J. Vac. Sci. Tech., in press) shows
that for phonon scattering these normally are important only at high electron concentrations. It is
also found that the effects mentioned as point 3 above, ‘“‘secondary screening,” are not normally
important.
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. Even assuming perfect layers of the two crystals alternating at perfect interfaces, with no macro-
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