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otherwise leaves the curve approximately unchanged. The {ull line
curves for R, and X; show that in the ideal case the iterative im-
pedance is pure resistance and pure reactance in the pass and stop
bands respectively, and that resistance smooths the abrupt transition
at the critical frequency.

The high pass wave-filter shown by Fig. 9 passes the band which
is stopped by the low pass wave-filter of Fig. 8, and vice versa. For
this reason the two wave-filters are said to be complementary.

Another set of two complementary wave-filters is shown by Figs.
10 and 11, one of which passes only a single hand of frequencies,
not extending to either zero or infinity, while the other passes the
remaining frequencies only. The single pass band of Fig. 10, em-
bracing a total phase change 2r on the B curve, is actually a case of
confluent pass bands, each of which embraces the normal angle .
The tendency of the two simple pass bands to separate, and leave a
stop band between them, is shown by the hump in the dotted at-
tenuation constant curve at 1,000 cycles. If, instead of the two
simple bands having been brought together, one of them had been
relegated to zero or infinity, the single remaining pass band would
have exhibited the normal angular range = in the B curve, and there
would have been no hump in the dotted 4 curve. The stop band of
Fig. 11 also illustrates peculiarities which are not necessary features
of a wave-filter with a single stop band in this position. This wave-
filter is obtained from Fig. 7 by making all bands vanish except
Ps, Sy, S;and Py,— Dby extending Ps to zero, Pj to infnity, and making
S; and S; coalesce, so that the attenuation becomes infinite in the
stop band without passing from a stop (—) to a stop (+) band.
The coalescing stop bands are responsible for the rapid changes in
the B, R,, and X, curves of Fig. 11 which would not have appeared
if, in Fig. 7, the same pass band had been obtained by retaining P,
S, and P, and making all other bands vanish.

An extreme case of complementary wave-filters is shown by Figs.
12 and 13, where no frequencies and all frequencies are passed re-
spectively. The first result is obtained by combining inductances
alone, which, as has been pointed out above, can give only an at-
tenuated disturbance devoid of wave characteristics. The wave-
filter shown for passing all frequencies has inductance coils in the
line, and capacities diagonally bridged across the line. This wave-
filter combines a constant iterative impedance with a progressive
change in phase which is sometimes useful.! An outstanding char-

¢ A theoretical use of the phase shifting afforded by the lattice artificial line was
made at page 253 of *Maximum Output Networks for Telephone Substation and
Repeater Circuits,” Trans. A. 1. E. E., vol. 39, pp. 231-280, 1920.
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Fig. 10—Single Band Pass Wave-Filter: L, = 20/%x, Lz = 9/80x,

C\ = 9/80r, Cz = 20/9r
Fig. 11—Complementary High and Low Pass Wave-Filter: L; = 9/20m,
Li = 5/97, C: = 5/9m, Cs = 9/20m
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acteristic of this type of artificial line is that it has, for all frequencies,
the same iterative impedance as a uniform line with the same total
series and shunt impedances. This artificial line will be considered
in more detail in the next section of this paper.

LATTICE ARTIFICIAL LINES

Up to this point we have considered the properties of artificial line
networks which were supposed to be given. In practice the problem
is ordinarily reversed, and we ask the questions: May the locations
of the bands be arbitrarily assigned? May additional conditions be
imposed? How may the corresponding network be determined, and
what is its attenuation in terms of the assigned critical frequen-
cies? These questions might be answered by a study of Fig. 7, in

Fig. 14—Lattice Artificial Line

all its generality, but it seems simpler to base the discussion upon
the artificial line shown in Fig. 14, which is to be a generalization
of Fig. 13 to the extent of making the two impedances Z; and Z,
any possible actual driving-point impedances. It is sometimes
illuminating to regard this artificial line as a nest of bridges, one
within another, as shown by Fig. 15.

On interchanging terminals 3 with 4 and 7 with 8 in Fig. 14 the
network of lines remains unchanged; thus, Z, and 4Z, may be inter-
changed in the formulas for the artificial line with no change in the
result, except, possibly, one corresponding to a reversal of the current
at alternate junction points. Another elementary feature of this arti-
ficial line is that it degenerates into a simple shunt or a simple series
circuit at the resonant or anti-resonant frequencies, respectively, of
either Z, or Z,, and these are the critical frequencies, terminating
the pass bands. At other frequencies, a positive ratio Z,/4Z, must
give a stop band, since the reactances are all of one sign. If a small
negative value of this ratio gives free transmission, as we naturally
expect, there will be identical transmission, except for a reversal of
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Fig. 15—Lattice Artificial Line Drawn to Show the Chain of Bridge Circuits

sign, when the ratio has the reciprocal value, which will be a large
negative quantity, since we may always interchange Z, and 4Z,.
The consequences of this and of other elementary properties of this
artificial line are brought together in the following table:

TABLE II
For Lattice Artificial Line, Fig. 14

UxNirorMm

ARTIFICIAL LINE

Critical Ratio LINE
Band Frel:lfjl:llcv é — —
Hency 1Z, T )
Y k T [ K
Stop (+) 1>>0 | 2>>0] imag. ~+ real <<l | imag.
Zi =10 0 0 0 0 1 0
Zy =@ 0 0 ®© 0 1 w
Pass <0 imag. | + real | imag. o0 + real
Zy = w0 w© ] iT -1 w
Z: ={) a = 2] 0 f':r -1 0
Stop (—) <1 <2 imag. | iw + real |—1< <0 imag.
Zy =42, 1 2 27, w0 0 2Z,

The cycle of bands: stop (+), pass, stop (—), adopted for the
table, carries the attenuation factor e—T around the periphery of
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a unit semi-circle; in the stop (4) band it traverses the radius from
0 to 1, in the pass band it travels along the unit circle through 180
degrees to the value —1, completing the cycle from —1 to 0 in the
stop (—) band. In this cycle there are four points of special interest,
corresponding to ratio values 1, 0, —1 and oo, for which the wave is
infinitely attenuated, unattenuated with an angular change of 0,
of 90, and of 180 degrees, respectively. It is at the 90 degree angle
that resonance of the individual section occurs; the iterative im-
pedance is then equal to 2|Z.|.

GRAPH OF THE RaTIO Z,/4Z, FOR F1G. 14

If we plot Z, and 4Z, the pass bands are shown by the points where
the curves become zero or infinite, and the intersections of the two

2 T T
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Fig. 16-—Graph for Locating the Pass and Stop Bands of the Lattice Artificial Line,
where Z,/4Z, = [(.\f — %) (aF — a2 (af — .\."3)] . . . ,x =cycles/100, and the
resonant roots xy, ¥z, . . . are 0.650, 1, 2, 2,452, 4.442, 5, 6, 8.476 and the double
anti-resonant roots xq, &3, . . . are 0.766, 2.301, 4,585, 7.423

curves show the frequencies at which the attenuation becomes in-
finite. These intersections must be at an acute angle since each
branch of the two curves has a positive slope throughout its entire
length; for this reason it may be desirable to plot the ratio rather than
the individual curves; this is especially desirable in cases where the
two curves do not intersect, but are tangent. Fig. 16 is for a lattice
network equivalent to two sections of the ladder type illustrated by
Fig. 7, and so cannot include a stop (—) band. Accordingly, the
ratio does not go above unity, although it reaches unity at the two
frequencies 300 and 400, corresponding to the infinite attenuation
where stop (—) and stop (+) bands meet in Fig. 7. It is also
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unity at the extreme frequencies zero and infinity. The four pass
bands have, of course, the same locations as in Fig. 7.

Multiplying the ratio by a constant greater than unity introduces
stop (—) bands along with the stop (4) bands; multiplying it by
a constant less than unity removes all infinite attenuations; these
changes within the stop bands are made without altering the loca-
tions of the four pass bands.

WAVE-FILTER HAVING AssSIGNED Pass BANDs

In connection with practical applications we especially desire to
know what latitude is permitted in the preassignment of properties
for a wave-filter. If we consider first the ideal lattice wave-filter,
its limitations are those inherent in the form which its two inde-
pendent resistanceless one-point impedances® Z; and Z, may assume.
The mathematical form of this impedance is shown by formula (7)
of the appendix, which may be expressed in words as follows:

Within a constant factor the most general one-point reactance oblain-
able by means of a finite, pure reactance nelwork is an odd rational
Sfunction of the frequency which is completely determined by assigning
the resonant and anti-resonant frequencies, subject to the condition that
they alternate and include both zero and infinity.

The corresponding general expressions for the quotient and product
of the impedances Z; and Z, are shown hy formulas (8) and (9).
Definite, realizable values for all of the 2r+2 parameters and
2n+1 optional signs occurring in these formulas may be deter-
mined in the following manner:

(a) Assign the location of all n pass bands, which must be treated
as distinct bands even though two or more are confluent; this
fixes the values of the 2n roots py ... pan which correspond
to the successive frequencies at the two ends of the bands.

(b) Assign to the lower or upper end of each pass band propagation
without phase change from section to section; this fixes the
corresponding optional sign in formula (8) as 4 or —, respec-
tively.

(c) Assign a value to the propagation constant at any one non-
critical frequency (that is, assign the attenuation constant in a

5 A one-point impedance of a network is the ratio of an imgressed electromotive
force at a point to the resulting current at the same point—in contradistinction to
two-point impedances, where the ratio applies to an electromotive force and the
resulting current at two different points.
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stop band or the phase constant in a pass band); this fixes
the value of the constant G and thus completely determines
formula (8) on which the propagation constant depends.

(d) Assign to the lower or upper end of each stop band the iterative
impedance zero; this fixes the corresponding optional sign in
formula (9) as + or —, respectively.

(e) Assign the iterative impedance at any one non-critical fre-
quency (subject to the condition that it must be a positive
resistance in a pass band and a reactance in a stop band);
this fixes the constant I and thereby the entire expression (9)
upon which the iterative impedance depends.

The quotient and product of the impedances Z, and Z, are now
fully determined; the values of Z; and Z» are easily deduced and also
the propagation constant and iterative impedance by formulas (11)
and (12); Z, and Z. are physically realizable except for the necessary
resistance in all networks.

These important results may bz summarized as follows:

A lattice wave-filter having any assigned pass bands is physically
realizable; the location of the pass bands fully determines the propagation
constant and iterative impedance at all frequencies when their values
are assigned at one non-critical frequency, and zero phase constant and
zero iterative impedance are assigned to the lower or upper end of each
pass -band and stop band, respectively.

LATTICE ARTIFICIAL LINE EQUIVALENT TO THE (GENERALIZED
ArtiFicialL LINE oF FiG. 1

Since any number of arbitrarily preassigned pass bands may be
realized by means of the lattice network, it is natural to inquire
whether this network does not present a generality which is essen-
tially as comprehensive as that obtainable by means of any network
N in Fig. 1, provided the generalized line is so terminated as to equalize
its iterative impedances in the two directions. This proves to be
the case.

If network NV has identical iterative impedances in both directions,
the lattice network equivalent to two sections of N is shown by Fig.
17; each lattice impedance is secured by using an N network; the N's
placed in the two series branches of the lattice have their far terminals
short-circuited so that they each give the impedance denoted by
Zy; the N's in the two diagonal branches have their far ends open
and they each give the impedance denoted by Zw.



