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let us consider the {ree oscillations of Fig. 6; first, with K, assumed
to be a pure reactance; second, with K» assumed to be a pure resist-
ance: and third, in order to show that this third assumption is con-
trary to fact, with K. assumed to be an impedance with both resist-
ance and reactance.

With K. a reactance, the circuit contains nothing but reactances,
and free oscillations are possible if, and only if, the total impedance
of the circuit is zero. The end impedances Z" and Z"" being different,
the potentials at the ends of the mesh will be different, and this means
that the corresponding wave on the infinite line will be attenuated,
since the ratio between these potentials is the rate at which the am-
plitudes fall off per section.

With K. a pure resistance, a free oscillation is possible only if the
dissipation in the positive resistance at the right end of the circuit
is exactly made up by the hypothetical source of energy existing in
the negative resistance — K. at the left end of the circuit. An exact
balance between the energy supplied at one end and that lost at the
other end is possible, since the equal positive and negative resistances
K., — K, carry equal currents. This continuous transfer of energy
from the left of the oscillating circuit of Fig. 6 to the right end is the
action which goes on in every section of the infinite artificial line, and
serves to pass forward the energy along the infinite line.

If K. were complex, —K» on the left of Fig. 6 and +K: on the
right would not carry the same fraction of the circulating current 1,
since they are each shunted by a reactance 2Z, which would allow
less of the current to flow through 4+ K. than through —K,, if 223
makes the smaller angle with +K,, and vice versa. No balance
between absorbed and dissipated energy is possible under these con-
ditions when the equal and opposite resistance components carry
unequal currents. A complex K., therefore, gives no free oscilla-
tion, and cannot occur with a resistanceless artificial line.

It is perhaps more instructive to consider the transmission on the
line as a whole, rather than to confine attention exclusively to the
oscillations of the simple circuit of Fig. 6 and so, at this point, with-
out following further the conclusions to be drawn directly from this
oscillating circuit, the fundamental energy theorem of resistanceless
artificial lines will be stated, and then proved as a property of an
infinite artificial line.

ENERGY FrLow THEOREM

Upon an infinite line of periodic recurrent structure, and devoid of
resistance, a sinusoidal e.m.f. produces one of two steady stales, viz.:
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1. A to-and-fro surging of energy without any resultant transfer
of energy; currents and potential differences each allenuated from
section lo section, but everywhere in the same or opposite phase and
mutually in quadrature, or,

2. A continuous, non-attenuated flow of energy along the line
to infinity with no emergy surging belween symmetrical sections;
current and potential non-attenuated, but retarded or advanced in
phase from section to section, and mutually in phase at mid-shunt
and mid-series points.

The critical frequencies separating the lwo states of motion are the
totality of the resomant frequencies of the series impedance, the anti-
resonant frequencies of the shunt impedance, and the resonant frequencies
of a single mid-shunt section of the line.

To prove the several statements of this theorem let us consider
first the consequences of assuming that the wave motion, in progress-
ing along the line, is attenuated, and next the consequences of assum-
ing that the wave motion changes its phase. If the wave is atten-
uated, however little, at a sufficient distance it becomes negligible,
and the more remote portions of the line may be completely removed
without appreciable effect upon the disturbance in the nearer portion
of the line. That part of the line which then remains is a finite net-
work of pure reactances, and in any such network all currents are
always in the same, or opposite, phase; so, also, are the potential
differences; moreover, the two are mutually in quadrature; there is
no continuous accumulation of energy anywhere, but only an ex-
change of energy back and forth between the inductances, the ca-
pacities and the generator. Continuously varying the amount of
the assumed attenuation will cause a continuous variation in the
corresponding frequency. The motion of the assumed character
may, therefore, be expected to occur throughout continuous ranges
or bands of frequencies and not merely at isolated frequencies.

The question may be asked—How far does the energy surge? Is
the surge localized in the individual section, or does the surge carry
the energy back and forth over more than one section, or even in and
out of the line as a whole? To answer this question, it would be
necessary, as we will now proceed to prove, to know something about
the actual construction of the individual section. If each section is
actually made up as shown in Fig. 6, and this is entirely possible in
the present case (since only positive and negative reactances would
be called for), then the section is capable of free oscillation, as explained
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above, and the surging is localized within the section; twice during
each cycle the amount of energy increases on the right and decreases
on the left. But we do not know that the section is made up like
Fig. 6; we only know that it is equivalent to Fig. 6 as regards input
and output relations. As far as these external relations go, the actual
network may be made exclusively of either inductances or capacities
with the connections shown in Fig. 4 or with the cross-connections
of Fig. 5, according as the current is to have the same or opposite
signs in consecutive sections. In any network made up exclusively
of inductances or of capacities, the total energy falls to zero when
the current or the potential falls to zero, respectively. Twice, there-
fore, in every cycle the total energy surges into this line and then it
all returns to the generator. With other networks, surgings inter-
mediate between these two extremes will occur. The theorem,
therefore, does not limit the extent of the surging.

Under the second assumption, the phase difference between the
currents at two given points, separated by a periodic interval, is to
be an angle which is neither zero nor a multiple of ==. The assumed
difference in phase can only be due to the infinite extension of the
artificial line since, as previously noted, no finite sequence of induct-
ances and capacities can produce any difference in phase. That
infinite lines do produce phase differences is well-known; in particular,
an infinite, uniform, perfectly conducting, metallic pair shows a
continuous retardation in phase. If the infinitely remote sections
of the artificial line are to have this controlling effect on the wave
motion, the wave motion must actually extend to infinity, that is,
there can be no attenuation. The wave progressing indefinitely to
infinity without attenuation must be supplied continuously with
energy; this energy must flow along the entire line with neither loss
nor gain in the reactances it encounters on the way. This continuous
flow of energy can take place only provided the currents and poten-
tials are not in quadrature; they may be in phase. In considering
the free oscillations of Fig. 6 it was shown that K, is real if it is not
pure reactance. That is, for the mid-shunt section the current and
potential are in phase. It is easy to show that they are also in phase
at the mid-series point which is also a point of symmetry.

This flow-of-energy state of motion thus necessarily characterizes
a phase-retarded wave on a resistanceless artificial line, regardless
of the amount of the assumed positive or negative retardation, which
may be taken to have any value between zero and exact opposition
of phase. Continuously varying the retardation throughout the 180
degrees will, in general, call for a continuous change in the frequency
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of the wave motion. The second state of motion occurs, therefore,
throughout continuous ranges or bands of frequencies.

No other state of motion is possible. With given initial amplitude
and phase any possible wave motion is completely defined by its
attenuation and phase change. All possible combinations of these
two elements have been included in the two states, since the excluded
conditions on each assumption have been included as a consequence
of the other assumption. Thus, the exclusion of no attenuation in
the first assumption was found necessarily to accompany the phase
change of the second assumption; currents in phase or opposed,
which were excluded from the second assumption, were found to be
necessary features accompanying the first assumption. There remains
only to consider the critical frequencies separating the two states of
motion. At these frequencies there can be no attenuation and lag
angles of multiples of ==, including zero, only. At symmetrical
points the iterative impedance of the line must be a pure reactance
to satisfy the first state of motion, and a pure resistance to satisfy
the second state of motion. The only iterative impedances which
satisfy these conditions are zero and infinity.

Some details relating to the pass and stop bands and the criti-
cal frequencies are brought together in the following table, where
““stop ( = )" refers to stop bands, the current being in phase or op-
posed in successive sections, and wherey and & refer to the line obtained
by uniformly distributing 1/Z, with respect to Z,.

TABLE L.
For Ladder Artificial Line, Fig. 4

Ratio LTLI;;PER‘“ ARTIFICIAL LINE
Critical 7
Band F ! _ —
requency -
4Zs -r
¥ k r e K, K,
Stop (+) >0 +real | imag.| +real | 0< <1 |imag. |imag.
Z1 =0 0 0 0 0 1 0 0
Zs = @ 0 0 o] 0 1 ® -]
Pass 0>>—1| imag. [+real | imag. e8| 4real |+real
Zi+ 472, =(| —1 2 |22, | in -1 0 ®
Stop (—) < —1 |imag.|+real | ix + rea!|—1<<(| imag. | imag.
Z, = —o w © w 1] w© 2Z,
Z, =10 — s} u w© 0 1 0
74
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It is not necessary to check the table item by item, many of which
have already been proven, but it will be instructive to check some of
the items by assuming that Z,/4Z., called the ratio for brevity, is
positive to begin with, and that a continuous increase in frequency
reduces the ratio to zero and back through = oo to its original posi-
tive value. This cycle starts with a stop (4) band since the artificial
line is in effect a network of reactances, all of which have the same
sign; there is attenuation and the iterative impedances are imaginary.
When the ratio decreases to zero, there must be either resonance
which makes Z, = 0, or anti-resonance which makes Z, = o ; in
cither case the artificial line has degenerated into a much simpler cir-
cuit: it is a shunt made up of all Z5's combined in parallel, or a simple
series circuit made up of all Z,'s, respectively; the iterative imped-
ances are 0 and @, respectively; there is no attenuation in either case.

With a somewhat further increase of the frequency the ratio will
assume a small negative value with the result that the artificial line
will have both kinetic and potential energy. An analogy now exists
between the artificial line and an ordinary uniform transmission line,
which possesses both kinetic and potential energy, and is ordinarily
visualized as being equivalent to many small positive reactances, in
series, bridged, to the return conductor, by large negative reactances.
The fact that uniform lines do freely transmit waves is a well-known
physical principle, and it is not necessary to repeat here the physical
theory of such transmission merely to show that the same phenomenon
occurs with the identical structure when it is called an artificial line
or wave-filter.

In order to determine just how far the ratio may depart from zero,
on the negative side, without losing the property of free transmission,
we look for any change in the action of the individual section of the
artificial line which is fundamental; nothing less than a fundamental
change in the behavior of the individual section can produce such a
radical change in the line as an abrupt transition from the free trans-
mission of a pass band to the to-and-fro surging of energy in a stop
band. Now as the ratio is made more and more negative by the
assumed increase of frequency, the value —1 is reached, at which
frequency the symmetrical section (Fig. 6) of the artificial line is
capable of free oscillation by itself. This is well recognized as a
most fundamental change in the properties of any network, and it
affords grounds for expecting a complete change in the character of
the propagation over the artificial line. The change must be to a
stop band with currents in opposite phase, since at resonance the
potentials at the two ends of a section are in opposite phase.
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Further increase in the frequency cannot make any change in the
absolute difference in phase between the two ends of the other section,
since opposition is the greatest possible difference in phase; the wave
now adapts itself to increasing frequency by altering its attenuation.

Upon continuing the increase of frequency, so as to reduce the
ratio to — o, we arrive at either anti-resonance corresponding to
Z, = % grresonance corresponding to Z; = 0; the artificial line has
now degenerated into a row of isolated impedances Z., or into a series
of impedances Z, short-circuited to the return wire; in either case
the attenuation is infinite since no wave is transmitted. Passing
beyond this critical frequency the ratio becomes positive, according
to our assumption, and we are again in a stop (4) band.

While in this rapid survey of what happens during this frequency
cycle little has been actually proven, it should have been made
physically clear why abrupt changes in the character of the trans-
mission occur at the frequencies making the ratio equal to 0, —1 or
o, since the line degenerates into a simpler structure, or the phase
change reaches its absolute maximum, on account of resonance, at
these particular frequencies.
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Information as to the location of the bands is often obtained most
readily by plotting both Z; and —4Zs, as illustrated in Fig. 7, and
determining the critical frequencies by noting where the curves cross
each other and the abscissa axis, as well as where they become in-
finite. Any particular band is then a pass band, a stop (4+) band
or a stop (—) band, according as Z,, the abscissa axis, or —42Z, lies
between the other two of the three lines. In Fig. 7 the pass bands
are P,, P, Ps, Py the stop (+) bands are Ss, Ss, Ss; and the stop
(=) bands are S, S;, S;, S7, and they illustrate quite a variety of
sequences. By altering the curves the bands may be shifted, may
be made to coalesce, or may be made to vanish.

WAVE-FILTER CURVES

The pass band and stop band characteristics of wave-filters are
concretely illustrated for a few typical cases by the curves of Figs.
8-13, which show the attenuation constant A4, the phase constant B,
and both the resistance R and reactance X components of the itera-
tive impedance for a range of frequencies which include all of the
critical frequencies, except infinity. The heavy curves apply to the
ideal resistanceless case, while the dotted curves assume a power
factor equal to 1/(20x) for each inductance which is a value readily
obtained in practice. This value is, however, not sufficiently large to
make these small scale curves entirely clear, since considerable por-
tions of the dotted curves appear to be coincident with the heavy line
curves; but this, as far as it goes, proves the value of the present dis-
cussion which rests upon a close approximation of actual wave-filters
to the ideal resistanceless case.

The low pass resistanceless wave-filter, as shown by Fig. 8, pre-
sents no attenuation below 1,000 cycles; above this frequency the
attenuation constant increases rapidly, in fact, the full line attenuation
curve increases at the start with maximum rapidity, since it is there
at right angles to the axis. The dotted attenuation curve, which in-
cludes the effective resistance in the inductance coils, follows the
ideal attenuation curve closely, except in the neighborhood of 1,000
cycles, where resistance rounds off the abrupt corner which is present
in the ideal 4 curve. The phase constant B is, at the start, propor-
tional to the frequency, as for an ordinary uniform transmission line;
its slope becomes steeper as the critical frequency 1,000 is approached
where the curve reaches the ordinate w, at which value it remains
constant for all higher frequencies. As shown by the dotted B
curve, resistance rounds off the corner at the critical frequency, but
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Fig. 8—Low Pass Wave-Filter: L = 1/x Henry, C = 1/ Microfarad
Fig. 9—Complementary High Pass Wave-Filter: L = 1/4x, C = 1 /4=




