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The lattice network of Fig. 18 has in each branch a one-point im-
pedance obtained by means of a duplicate of the given network N
and an ideal transformer. The two lattice branch impedances are
Z,+Z, =22, where the three impedances Z, Z, Z, are the
effective self and mutual impedances of the network N regarded as a
transformer. This lattice network has identically the same propaga-
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Fig. 17—Lattice Unit Equivalent to Two Sections of Fig. 1 Assumed to be
Symmetrical

tion constant as the single network N shown on the left. Since the
lattice cannot have different iterative impedances in the two direc-
tions, it actually compromises by assuming the sum of the two itera-
tive impedances presented by N. A physical theory of the equival-
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Fig. 18—Lattice Network Having the Same Propagation Constant as N and an
Iterative Impedance Equal to the Sum of the Two Iterative Impedances of N

ences shown in Figs. 17 and 18 has not been worked up; the analytical
proofs were made by applying the formulas given in the appendix
under lattice networks.

Without going to more complex networks it is, of course, not pos-
sible to get a symmetrical iterative impedance, but that is not necessary
for our present purposes where we are concerned primarily with the
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propagation constant. It has now been shown with complete gener-
ality that:

The lattice artificial line, with physically realizable branch impedances,
15 identically equivalent in propagation constant and mean iterative
impedance to the chain of identical physically realizable networks con-
nected together in sequence through two pairs of terminals.

To complete this simplification of the generalized artificial line it is
necessary to know the simplest possible form of the one-point im-
pedances employed in the branches of the lattice network. The
discussion of the most general one-point impedance obtainable by
means of any network of resistances, self and mutual inductances,
leakages and capacities will find its natural place, together with
allied theorems, in a paper on the subject of impedances. For the
present purpose it is sufficient to state:

The most general branch impedance of the lattice nefwork may be
constructed by combining, in parallel, resonant circuits having im-
pedances of the form R-iLp+(GH+iCp)~'; or they may equally
well be constructed by combining, in Series, anti-resonant circuits having

impedances of the form [G-I—T'CP-HR‘HLP)_I]'_[

SuMMARY OF PHYSICAL THEORY

The wave-filter under discussion approximates to a resistanceless
artificial line, and such an ideal artificial line is capable of two, and
only two, fundamentally distinct states of motion. In one state the
disturbance is attenuated along the line, and there is no flow of energy
other than a back and forth surging of energy, the intensity of which
rapidly dies out along the line. In the other state there is a free
flow of energy, without loss, from section to section along the line,
with no surge of energy between symmetrical sections. Each state .
holds for one or more continuous bands of frequencies; these bands
have been distinguished as stop bands and pass bands.

A high degree of discrimination, between different frequencies,
may be obtained, even if each section, taken alone, gives only a
moderate difference in attenuation, by the use of a sufficient number
of sections in the wave-filter, since the attenuation factors vary in
geometrical progression with the number of sections.

Any number of arbitrarily located pass bands may be realized by
means of the lattice artificial line; furthermore, the propagation
constant at one frequency, and the iterative impedance at one fre-
quency may both be assigned, while the location of zero phase con-
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stant and zero iterative impedance at the lower or upper end of each
pass band and stop band, respectively, is also optional. This com-
pletely determines the lattice artificial line. No additional condition,
other than iterative impedance asymmetry, can be realized by re-
placing the lattice network by any four terminal network.

APPENDIX
FORMULAS FOR THE ARTIFICIAL LINE

Formulas for the propagation constant and iterative impedance of
the generalized artificial line, expressed in a number of equivalent
forms, have already been given in my paper on Cisoidal Oscillations,®
but it seems worth while to deduce the formulas anew here from the
free oscillations of the detached unit circuit of Fig. 6, so as to complete
the physical theory by deducing the comprehensive mathematical
formulas by the same method of procedure.

LADDER NETWORK FORMULAS
Notation:
Zy, Zy = series impedance and shunt impedance of the section of
Fig. 4, which is equivalent to the general network N of
Fig. 1.
= A + ¢B = propagation constant per section.
Kl, K, = iterative impedances at mid-series and mid-shunt.
Yy=a+if = \/ZI/'ZQ = propagation constant for uniform distri-
bution of Z; and 1/Z,, per unit length.

k=77, = iterative impedance of this same uniform line.

In Fig. 6, the current is indicated as / and the potentials at the
ends of the section as V,Ve~I. In order that the free oscillation may
be possible the total impedance of the circuit (Z, + Z' + Z”') must
vanish; this determines the iterative impedance K.. In addition to
this condition it is sufficient to make use of two other simple relations:
the proportionality of the potential drops in the direction of the current
across Z' and Z” to Z' and Z", since they carry the same current
(this determines the propagation constant I'); and the equality of

8 " Cisodial Oscillations,” Trans. A. L. E. E., vol. 30, pp. 873-907, 1911, In the
lowest row of squares of Table I, the iterative impedances and propagation constant
of any network are given in five different ways, involving one-point and two-point
impedances, equivalent star impedances, equivalent delta impedances, equivalent
transformer impedances, or the determinant of the network. The only typo-
graphical errors in Tuhle I appear to be the four which occur in the first, third and
fifth squares of this row: in the values for K, replace (5, — S5,) by (S, — 5,) and
place a parenthesis before U7, — I7.); in the first value Df K, replace .S,,, by~ S‘,r'l; in
the last value for T,, add a minus sign so that it reads cosh—!
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K,, the mid-series iterative impedance of the artificial line, to the
total impedance on the right of the mid-point of the series impedance
Z.. These three relations, which can be written down at once, are:

47,K*
L N [kl S
21 Z Z = Z[ 4222 Kgg O,

VB_F_ _Z_”_ 2ZJ—K2
Vo Z T 2Z, 4+ K,

- 1 1 2Z.K,
K, = 321 +2Z" = 521 + m.

from which the formulas for T, Ky, and K., in terms of Z,, Z,, are
found to be:

T = 2sinh™! |41 = 2 ginh—! %‘Y, (1)

Z
K — Ziy =L S =L . . | series
K.;% = ’\/leg (1 + 4712) 2 =k (1 + e ) 2 at mid j! Shunt, (2)
and the formulas for Z; and Zs in terms of I and K, or K, are likewise
found to be:

Z, = 2K, tanh %1“ = K,sinh T, (3)
. . 1 1
Zys = K,/sinh T' = 3 K coth 5 T. (4)

Formulas (3) and (4) are in the nature of design formulas in that
they determine the impedance Z; and Z., at assigned [requencies,
which will ensure the assigned values of T' and K at these frequencies.
In general, however, it would not be evident how best to secure these
required values of Z, and Z.; complicated or even impossible net-
works might be called for, even to approximate values of Z, and Z,
assigned in an arbitrary manner. Fortunately, practical require-
ments are ordinarily satisfied by meeting maximum and minimum
values for the attenuation constant throughout assigned frequency
bands. Formulas (8) and (9) may be employed for this purpose as
explained below.

It is convenient to have formulas (1) and (2) expressed in a variety
of ways, since no one form is well suited for calculation throughout
the entire range of the variables. Accordingly, the following analyti-
cally equivalent expressions are here collected together for reference:
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I' =142 sin™! 21! = icos™! (1 + %), (5)
Y
. 2 ¥?
= 1Y = - -1___ = = sh—! L
2 sinh ) 2 tanh 1 — cosh (1 -+ 2)
A

Y
=2 lt)g[% Ty +%:| (5a)

= ir + 2 cosh™! Y —ir + cosh™! (— 1— ‘%)

2 =
| B

= ir + 2 log l:% - \ —1- %]. (5h)
= ig — sinh™! (1 -}-%){, | (5¢)

RN SUVSITR: SOV B Y 9 5
= 9 cosh1g 4 i2sin 2, (5e)

2¢

. Cran? B\" e B\

wherey=atis,2e= (5 ) + (1+5) +{ (3) * ~5)
= cosh=1 i + i cos™ Y (5h)

h

where 1 4 % v =ux+ iy, 2h = VEF Dy V= 1)+,

g;; - k(l+j]1:72)i%: k(COShg)il -k (Sin‘ll 1‘)&1

) 1 £l Jseries
-} (57 coth§ T) at mid | shunt.

(6)

The formulas leave indeterminate the signs of v, &, T', and K, and
also a term =i27n in v and T. The signs are to be so chosen that
the real parts are positive, or become positive when positive re-
sistance is added to the system. The indeterminate = i27n can
be made determinate only after knowing something of the internal
structure of the unit network of which the artificial line is composed;
the conditions to be met are—absence of phase differences when all
branches of the unit network N of Fig. 1 are assumed to be pure
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resistances and continuity of phase as reactances are gradually intro-
duced to give the actual network.

Formula (5) is adapted for use in the pass bands, since the ex-
pressions arc real when +* is real, negative and not less than — 4;
similarly, formulas (5a) and (5b) are adapted for use in the stop (=)
bands, that is, when «? is positive and less than — 4 respectively.

From the theory of impedances we know that any resistanceless
one-point impedance is expressible in the form '

: p o (pi—p) ... (ph_s—p?)
Z = D 6 C) b 7
’ (pi—p% (p3—20% . .. (pruy—2Y) @

where the factor D and the roots pi, po, . . . pa, are arbitrary positive,
reals subject only to the condition that each root is at least as large
as the preceding one. This enables us to write down the forms which
the quotient and product of two resistanceless one-point impedances
may assume, which are as follows:

Z' pi—p\ Tl bt ! Praoi—p%\ !
=G5 T DT 8
(PE'_'P-) (pl_Pu) PSn_p- ) ( )
. P\ Flpi—py T R A -1
YAVAE R 3 SRS (Y 9)
(pi—zbﬂ) (pg-p?) (ps.,fi—pﬂ) P9
where G, H and the roots p;, p», . . . P2, are arbitrary positive reals,

subject only to the condition that each root is at least as large as the
preceding one, and the 2n-+1 and optional = signs are mutually
independent. Conversely, il the relations (8) and (9) are prescribed,
then the required individual impedances Z’ and Z' are each of the
form (7) and thus physically realizable.

If in formulas 1, 2, 5 and 6 we substitute for Z;/Z, = 4* and
Zy Zy = k* the right-hand side of formulas (8) and (9), respectively,
we obtain formulas for the propagation constant and iterative im-
pedance of an artificial resistanceless line in terms of frequencies at
which the propagation constant becomes zero or infinite. Ordi-
narily, however, we are more interested in having expressions in
terms of the frequencies which terminate the pass bands. To secure
these the substitutions should be 4[8]/(4 — [8] ) and [9] (1 — [8]/4)*",
where [8] and [9] stand for the entire right-hand sides of formulas
(8) and (9). This substitution amounts to obtaining the lattice net-
work giving the required pass bands, and then transforming to the
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ladder network having the same propagation constant and the same
iterative impedance at mid-series or mid-shunt.

LarricE NETwork Formuras Fic. 14

The impedances of a single section between terminals 1 and 2, with
the far end of the section 3 and 4 either short-circuited or open, are
readily seen to be

YAVA
1 .
§21 + 22,

(10)

Zo = 2o =5 (5 20+ 22)

Since V' ZoZ» and \/Zu,-’Z:o are the iterative impedance and the
hyperbolic tangent of the propagation constant for any symmetrical
artificial line, we have the following analytically equivalent formulas
for the lattice network where v = \/Zl/Zg, and k =V Z,Z, as for
the ladder type.

Lattice Formulas

1 |Z, 1
_ A Ed anh-12
{I‘—Ztanh 3\ 7, 2 tanh~1 5, (11)
= ‘\,/Z] Zy = k. (12)
%Zl= 2K tanhéI‘, (13)
1 1 .
Zg = QK COthQI‘. (14)
1,
1+ 1 e
I =42 tan“ll. =1 cos! - (15)
24 1 — 1.,
1 Y
1 1,
57 L+3
= 2 tanh™Y = 2 sinh™! ———— = cosh™!
2 1 ., 1 — l 2
Ni-37 7
1
1+357
= log —, (15a)
1
-5
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1

1+172
:i1r+2colh—’g:i1r—|-cosh“‘
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1
1+§'Y
=1'1r+10g—1—,
— _l
1+2'y
1
LS L
=1 '2- — Slnh#lﬁ 1,
I’Y
=‘Y+"1—’Y3+i75+—1-‘77+- |yl <2
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2 8\ 2
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where v = a + ¢ 8.

(15b)

(15¢)

(15d)

(15€)

In these formulas Z,/Z. = 4* and Z, Z, = k* might be expressed
in terms of the resonant and anti-resonant complex frequencies of
Z, and Z, the frequencies being made complex quantities so as to
include the damping. Where there is no damping, that is, where all
network impedances are devoid of resistance, the simplified forms
of these expressions are given by formulas (8) and (9). The use of
these formulas for designing wave filters having assigned pass bands

is explained at page 23.



