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Symmetry-Protected Topological
Orders in Interacting Bosonic Systems
Xie Chen,1,2 Zheng-Cheng Gu,3 Zheng-Xin Liu,4,2 Xiao-Gang Wen5,2,4*

Symmetry-protected topological (SPT) phases are bulk-gapped quantum phases with symmetries,
which have gapless or degenerate boundary states as long as the symmetries are not broken.
The SPT phases in free fermion systems, such as topological insulators, can be classified; however,
it is not known what SPT phases exist in general interacting systems. We present a systematic
way to construct SPT phases in interacting bosonic systems. Just as group theory allows us to
construct 230 crystal structures in three-dimensional space, we use group cohomology theory
to systematically construct different interacting bosonic SPT phases in any dimension and with
any symmetry, leading to the discovery of bosonic topological insulators and superconductors.

For many years, the defining characteristic
of a phase of matter was thought to be its
symmetry, with different phases necessarily

having different symmetries (1). However, through
the study of high-temperature superconductors
and the fractional quantum Hall (FQH) effect,
it was discovered that there can be distinct quan-
tum phases—topologically ordered phases—that
cannot be distinguished by symmetry (2). A deep
connection between quantum phases and quantum
entanglement (3–5) indicates that topological or-
ders are characterized by patterns of long-range
entanglement (5). Recently, it was discovered that
even short-range entangled states with the same
symmetry can belong to different phases. These
symmetric short-range entangled states are said
to contain a new kind of order called symmetry-
protected topological (SPT) order, (6) which is
characterized by symmetry-protected gapless or
degenerate edge states despite the bulk gap. Just
like symmetry-breaking orders are described by
group theory, we show here that SPT orders are
described by group cohomology theory. This dis-
covery expands our original understanding of pos-
sible phases in many-body systems.

A central issue is to understand what SPT
phases exist. The first system known to have
SPT order was the spin-1 chain with antiferro-
magnetic Heisenberg interactions (the so-called
Haldane chains) (7, 8). This model has been gen-
eralized, leading to a complete classification of
SPT orders in one-dimensional (1D) bosonic/
fermionic systems (9–12). Topological insula-
tors (13–17) with gapless edge modes protected
by time-reversal symmetry and particle-number

conservation provided the first example of an
SPT order in higher dimensions. The noninter-
acting nature of fermions in these systems allows
a classification of this kind of SPT order (18, 19),
whereas no SPT order exists in noninteracting
bosonic systems.

However, understanding SPT orders in non-
interacting systems is not sufficient, because par-
ticles in real materials do interact. In this paper,
we present a systematic construction of SPT phases
for interacting bosonic systems in any dimen-
sion and with any symmetry. Our construction
leads to the discovery of many SPT phases in 2
and higher dimensions (see Table 1). For sim-
plicity, we are going to first present in detail the
case of the 1D Haldane chain and demonstrate
the emergence of its SPT order using the group
cohomology theory for time reversal symmetry.
The group cohomology approach allows us to
generalize the construction to higher dimensions
and to all other symmetries.

The fixed-point ground-state wave function of
the Haldane chain (6) takes a simple dimer form
(Fig. 1), where each site contains two spin 1/2’s
connected into singlet pairs j↑ri ↓liþ1〉 − j↓ri↑liþ1〉
between neighboring sites (20). Time-reversal

symmetry acts asM(T ) = isyK on each spin 1/2,
where K is complex conjugation and sy is the y
component of the spin operator. The wave func-
tion is invariant under the symmetry action. For
each spin 1/2, M(T )2 = −I, whereas on each site
with two spins, [M(T ) ⊗ M(T )]2 = I. So the
states on each site form a representation of ZT

2 ,
the symmetry group generated by time reversal
symmetry.

The wave function on a closed chain is the
gapped ground state of the Hamiltonian H ¼
∑is r

i ⋅ sl
iþ1, with antiferromagnetic Heisenberg

interactions between each pair of spin 1/2’s on
neighboring sites where s l

i and s r
i are spin op-

erators for the left and right spin 1/2 on each
site, respectively. The Hamiltonian is invariant
under time-reversal symmetry; the ground state
does not break any symmetry of the system, yet
the system is far from a trivial phase, which be-
comes evident when we put the system on an open
chain. When the chain is open, the dangling
spin 1/2 at each end forms a nontrivial projec-
tive representation of ZT

2 with M(T)2 = −I,
which does not allow a 1D representation (21).
Therefore, the degeneracy of the edge state is
robust under any perturbation as long as time-
reversal symmetry is preserved.

The ground-state structure giving rise to SPT
order in the Haldane chain can be generalized to
an arbitrary symmetry group after we relabel the
spin states with group elements and express sym-
metry actions using group cocycles. The time-
reversal symmetry group contains two elements:
ZT
2 ¼ fE,Tg with T ◦ T = E. For the left spin 1/2

on each site, label j↑〉=j↓〉 as jE 〉=jT 〉 , and for the
right one, label j↑〉=j↓〉 as jE〉= − jT 〉. The total
wave function becomes

jF〉 ¼ ∏
i
(jTr

i T
l
iþ1〉 þ jEr

i E
l
iþ1〉)

¼ ∏
i
∑
gi
jgri ¼ gi, g

l
iþ1 ¼ gi〉 ð1Þ

wheregi ∈ ZT
2 . Time-reversal symmetry then acts

on the right/left spins on each site as M (T )jE〉 ¼
−jT 〉 and M (T )jT 〉 ¼ jE〉, which takes the form
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Table 1. SPT phases in d spatial dimensions protected by some simple symmetries (represented by the
symmetry groups). Z1 means that our construction only gives rise to the trivial phase. Zmn means that the
constructed nontrivial SPT phases plus the trivial phase are labeled by m elements in Zn. Z means that
the constructed nontrivial SPT phases are labeled by nonzero integers, whereas the trivial one is labeled
by 0. ZT2 represents time-reversal symmetry, U (1) represents boson number–conservation symmetry, SO(3)
represents rotation symmetry, Zn represents cyclic symmetry of order n, and D2 represents the Klein
four-group symmetry. The first row corresponds to bosonic topological insulators and the second row to
bosonic topological superconductors.

Symmetry d = 0 d = 1 d = 2 d = 3
U(1) ⋊ ZT2 Z Z2 Z2 Z22
ZT2 Z1 Z2 Z1 Z2
U(1) Z Z1 Z Z1
SO(3) Z1 Z2 Z Z1
SO(3) � ZT2 Z1 Z22 Z2 Z32
Zn Zn Z1 Zn Z1
ZT2 � D2 ¼ D2h Z22 Z42 Z62 Z92
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Mr(g)jgr0〉 ¼ ns(g)2 (gr0, g
−1g*, g*)jggr0〉, g* ¼ E

Ml(g)jgl0〉 ¼ n−s(g)2 (gl0, g
−1g*, g*)jggl0〉, g* ¼ E

ð2Þ
where for g ∈ ZT

2 , n2 (E, T, E ) = n2 (T, E, T ) =
−1, and n2 (g0 , g1 , g2) = 1 otherwise. s(g) =
1 if g is unitary and s(g) = −1 if g is antiunitary.
Here, n2 (g

0 , g1 , g2) is the nontrivial 2-cocycle
of ZT

2 , which is a function from three group
elements to a U(1) phase factor satisfying (21)

ns(g)2 (g0, g1,g2) ¼ n2(gg0, gg1, gg2), g ∈ G

ð3Þ
and

n2(g1, g2, g3)n2(g0, g1, g3)
n2(g0, g2, g3)n2(g0, g1, g2)

¼ 1 ð4Þ

For an arbitrary symmetry group G, if the ground-
state wave function takes the dimer form as in
Eq. 1 and symmetry acts on each right/left spin
as in Eq. 2, then the edge spin forms a projective
representation of symmetry G (labeled by n2),
and the state contains an SPT order protected by
the symmetry (9, 12).

We can also use path integrals in (1+1)D to
describe the 1D SPT phases, which allow us to
generalize our result to higher dimensions. Be-
cause a 1D SPT phase is described by a cocycle
n2, we can use the very same n2 to construct the
path integral for the SPT phase. To do so, we
discretize the (1 + 1)D space time with a branched
triangulation (Fig. 2A). For the Haldane chain, we
associate a gi ∈ ZT

2 with each vertex of the space-
time complex. Time reversal acts as complex con-
jugation K together with a mapping from gi to

Tgi . The path integral for the SPT phase then
has the form

Z ¼ jGj−Nn ∑
fgig

e−s(fgig),

e−s(fgig) ¼ ∏
fijkg

nsijk2 (gi, gj, gk ) ð5Þ

|G| is the number of elements in G (|G| = 2 for
ZT
2 ), Nv is the number of vertices in the com-

plex; sijk = T1 depending on the orientation of
the triangle. Because v2(Tg0, Tg1, Tg2) = n2

−1 (g0,
g1, g2) (Eq. 3), the path integral is invariant un-
der time reversal. (Similar construction works
for any group.)

Because of Eq. 4, the path integral Eq. 5
actually describes a fixed-point theory, which
does not change under coarse graining and re-
triangulation (21). For example, the path integral
on the two triangulations (Fig. 2, A and C) is the
same if we fix gi ’s on the boundary. Using this
property, we can show that the action amplitude
is always 1 on any orientable closed space-time
surface, including the simplest discrete closed
surface—a tetrahedron (Fig. 2B). So, gi fluc-
tuate strongly and the path integral describes a
disordered phase that does not break the sym-
metry G.

To show that this path integral describes
the SPT order in the Haldane chain, we need
to calculate the ground-state wave function from
the path integral that describes the imaginary
time evolution from time −∞ until time 0. In our
formulation, this is equivalent to an imaginary
time path integral on a space-time geometry with
a boundary (at time 0). Denote the boundary as
M and the whole manifold (a disk) as Mext (Fig.
2A). As we are considering a fixed-point path
integral, it does not matter how big the interior
of Mext is, and we can reduce it, for example, to
just one point (Fig. 2C).

To obtain the ground-state wave function, we
fix the degrees of freedom {gi }M on M and find

Y(fgigM )º ∑
g*

∏
i
n2(gi, giþ1, g*)

º ∏
i
n2(gi, giþ1, g* ¼ E), ð6Þ

where ∏i is the product over all triangles on
Mext and, for simplicity of notation, we have
chosen all triangles to be oriented clockwise.

The wave function on M does not depend on
the choice of g∗. Time reversal acts as complex
conjugation K together with a change of basis
jE〉→jT 〉, jT 〉→jE〉 on each gi, and the wave
function is invariant under this action.

To show that the wave function Eq. 6 corre-
sponds to the dimer state Eq. 1 (Fig. 1), we first
expand each gi into two degrees of freedom hri and
hliþ1 such that hri ¼ hliþ1 ¼ gi (Fig. 3) and the
amplitude of each configuration in the wave func-
tion remains unchanged,Yðfhri ¼ hliþ1 ¼ gigÞ ¼
∏in2ðgi; giþ1; g*Þ. We then combine hli and hri
into one site and apply a change of basis on
each site

jhli , hri 〉′ ¼ n2(h
l
i;h

r
i , g*)jhli , hri 〉

¼ n2(gi−1, gi, g*)jhli , hri 〉

The amplitude of all configurations in the new ba-
sis becomes 1,Y′(fhri ¼ hliþ1 ¼ gig) ¼ 1, which
can be equivalently written as a product of di-
mers between neighboring sitesY′ ¼ ∏i∑gi jhri ¼
gi,hliþ1 ¼ gi〉. In this way, we have mapped each
degree of freedom gi into a dimer and the total
wave function takes the same form as Eq. 1. More-
over, time-reversal symmetry acts on the edge de-
gree of freedom as given by Eq. 2 (20). Therefore,
our path integral Eq. 5 provides a proper descrip-
tion of the SPT order in the Haldane chain.To
generalize this path-integral formulation to all
spatial dimensions d and all symmetry groups G,
we note that the two cocycles n2 (g0 , g1 , g2)
used in the construction have higher dimensional
analogs: the (d + 1) cocycles nd+1 (g0 , ..., gd+1),
which are maps from d + 2 group elements to a
U (1) phase factor and satisfy

ns(g)dþ1(g0, g1, :::, gdþ1) ¼
ndþ1(gg0, gg1, :::, ggdþ1Þ, g ∈ G

and

∏
dþ2

i¼0
n(−1)

i

dþ1 (g0, ::, gi−1, giþ1, :::, gdþ2) ¼ 1

We use each (d + 1) cocycle nd+1 to construct
a fixed-point path integral to describe an SPT
state in d dimensions. The path integral is con-
structed by (i) discretizing the (d + 1)D space
time with triangulation [triangle in (1 + 1)D,
tetrahedron in (2 + 1)D, etc.]; (ii) assigning group
element–labeled degrees of freedom to the verti-
ces; and (iii) assigning action amplitude to each

Fig. 1. Dimer form of the ground-state wave
function in Haldane chain. Each site (big oval)
contains two spin 1/2’s (small dot), which are
connected into singlet pairs (connected dots)
between neighboring sites.

Fig. 2. (A) A branched triangulation of space time (21). Note that s607 = −1. (B) A tetrahedron, the
simplest discrete closed surface.∏n sijk (gi,gj,gk ) = 1 on a tetrahedron is guaranteed by Eq. 4. Note that
s123 = s013 = 1 and s023 = s012 = −1. (C) Discretized space-time manifoldMext on an open disk with boundary
manifold M. gi ∈ M, g∗ is in the interior of Mext .

Fig. 3. Duality transformation between wave
functions in Eq. 1 and Eq. 6.
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simplex with the corresponding cocycle. The path
integral then takes the form

z ¼ jGj−Nn ∑
fgig

∏
fij:::kg

n
sij:::k
dþ1ðgi; gj; :::; gkÞ ð7Þ

where sij...k = T1 depends on the orientation of the
simplex ij...k. Similar to the (1 + 1)D case, it can
be shown that the path integral is symmetric
under symmetries in group G, and the action am-
plitude is in a fixed-point form and is quantized
to 1 on a closed manifold (21). The ground-state
wave function can be obtained from the action
amplitude on an open geometry as discussed
before Y(fgigM ) ¼ ∏fi:::j*gndþ1(gi, :::, gj, g*),
where {gi}M is on M and g∗ is inside Mext.
∏fi:::j*gis the product over all simplices. An ex-
actly soluble Hamiltonian can be constructed to
realize this state as the gapped ground state (21).

The nontrivial SPT order of the system can
be seen explicitly from its boundary. The path
integral of the degrees of freedom on the bound-
ary can be obtained by putting the path inte-
gral on an open geometry as shown in Fig. 2C
for (1 + 1)D. The manifold M now corresponds
to the space-time manifold of the boundary de-
grees of freedom. The path integral for the
boundary then reads

Zb ¼ jGj−NM
v ∑
fgig

∏
fi:::j*g

n
si:::j*
dþ1 (gi, :::, gj, g*) ð8Þ

which only depends on {gi}M on the bound-
ary M and does not depend on g∗, which is in-
side Mext.

This term can be thought of as a discretized
version of the Wess-Zumino-Witten (WZW)
term (22, 23) in nonlinear s models because
(i) it is a path integral of (d − 1) + 1 dimensional
systems written on an extended (d + 1)D mani-
fold with a boundary; (ii) the action amplitude
does not depend on how the extended field in
the interior of the (d + 1)D manifold is chosen;
and (iii) its field takes value in a group G, and
the path integral is invariant under the action
of g ∈ G. On the other hand, this term is more
general than the original continuous WZW term
because it applies to discrete groups likeZT

2 while
the continuous WZW term only works for con-
tinuous groups. We expect that the boundary states
described by such a discretized WZW term will
be gapless/degenerate as long as symmetry is
not broken, similar to systems described by con-
tinuous WZW terms. This has been firmly estab-
lished in (1 + 1)D and (2 + 1)D. In (1 + 1)D, as
with the example of Haldane chain, symmetry
action on the edge degree of freedom does not
have a 1D representation; therefore, the edge
state will always be degenerate. In (2 + 1)D, it
has been proven using the tool of matrix product
unitary operator that the boundary must be gap-
less as long as symmetry is not broken (24, 25).
Therefore, the boundary of the systems we con-
structed carries gapless/degenerate states protected
by certain symmetry, which reflects the nontrivial
SPT order of the system.

The numbers of nontrivial SPT phases con-
structed using cocycles for some simple sym-
metry groups are summarized in Table 1. We
find one kind of bosonic topological insulator in
2D and three kinds in 3D with boson number–
conservation symmetry U (1) and time-reversal
symmetry ZT

2 . If boson numbers are not con-
served but time-reversal symmetryZT

2 is preserved,
then we find one kind of bosonic topological
superconductor in every odd spatial dimension.
Our construction is nonperturbative and works
for strongly interacting bosonic systems. There-
fore, it contributes to a more complete understand-
ing of the topological phase diagram in strongly
correlated quantum systems.
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Sign-Problem–Free Quantum
Monte Carlo of the Onset of
Antiferromagnetism in Metals
Erez Berg,1,2* Max A. Metlitski,3 Subir Sachdev1,4

The quantum theory of antiferromagnetism in metals is necessary for our understanding of
numerous intermetallic compounds of widespread interest. In these systems, a quantum critical
point emerges as external parameters (such as chemical doping) are varied. Because of the
strong coupling nature of this critical point and the “sign problem” plaguing numerical quantum
Monte Carlo (QMC) methods, its theoretical understanding is still incomplete. Here, we show
that the universal low-energy theory for the onset of antiferromagnetism in a metal can be
realized in lattice models, which are free from the sign problem and hence can be simulated
efficiently with QMC. Our simulations show Fermi surface reconstruction and unconventional
spin-singlet superconductivity across the critical point.

The presence of an antiferromagnetic tran-
sition in a metal is common to compounds
such as electron-doped cuprates (1), iron-

based superconductors (2), and heavy fermion
Kondo lattice systems (3). Whereas our understand-
ing of quantum antiferromagnetism in insulators
has seen major advances (4), analogous prob-
lems in metals are far more complicated because
of the subtle interplay between the low-energy
fermionic quasiparticles on the Fermi surface, and
the quantum fluctuations of the antiferromagnetic
order parameter. In addition, the presence of the
Fermi surface has hampered large-scale numer-
ical studies, because quantumMonte Carlo (QMC)
algorithms are afflicted by the well-known fermion
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