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A New Approach to Analysis and Design of Electromechanical
Filters by Finite-Element Technique

Yuxkio Kacawa*

Institute of Sound and Vibration Research, University of Southampton, England

Finite-element method was originally developed for analyzing structures such as beams and shells. A
flexure-type composite vibrator has been used as an example to illustrate the application of this method to
vibration problems involving coupled mechanical and electrical systems [Y. Kagawa and G. M. L. Gladwell,
IEEE Trans. Sonics Ultrasonics SU-17, No. 1, 41-49 (1970); J. Acoust. Soc. Japan 26, No. 3, 117-128
(1970)]. This paper develops and adapts this method for the analysis of electromechanical filters of complex
shape and construction. The transmission characteristics of a filter are calculated directly without employing
the usual method of an equivalent electrical circuit. Two examples of analysis are introduced for presentation.
In the first one, the input and output electrodes are set up on the transducers of a composite vibrator, while
in the second, two vibrators are coupled by a pair of bars.
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compliance at constant Ej

piezoelectric coefficient

absolute dielectric constant at constant
stress (eo=8.855X 10722 in free space)

longitudinally clamped permittivity
ésaT(l—k312)

=k3?/d31(1—ks:?)

static longitudinal electromechanical cou-
pling coefficient k32=ds:%/ €33 s1:*
=eB*/Y,

Cartesian coordinates

angular frequency w=2rf

time

9/« derivative with respect to

half-thickness of resonator and thickness of
transducer (suffixes m and ¢ indicate those
of resonator and transducer)

Young’s modulus

width

density

total length of vibrator

total length of transducer

length of ith element

=b t/ bm

= hl/ hm

=¥ t/ Ya
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rL;
L
Tvr
@*
Cm

w, ¥
Wi, ¥i

Ve

=pi/pm

=l.'/ L

=hw/L

=bm/lm

=wL/Cm

= (Y'm/pm)}

w=we’* and Y=ye™’ flexural displace-
ment and slope

flexural displacement and slope’at the ith

junction of two elements

Ve=V ge’t, applied voltage

Vi=Ve®t and M;=M e’*, shear force and
moment of inertia at the sth junction of
two elements

electric charge of the ith element

longitudinally clamped capacitance of the
ith element (both sides of the transducers
connected in parallel)

I:=Q:= jw(Q;, electric current through the
ith element

motional admittance in electric terminals
of the sth element

characteristic impedance

termination resistance

insertion loss (decibels)

=bmhmfb(1+%fh)

=bmhnirers(1+ri+-3n2)
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¥ =30mhm®[14-3rer v (1+7a+3r2) ]
) =pmbmhtm (147,7571)

For a Bar Coupler:

s coordinate in the axial direction of coupler

Y. Young’s modulus

e = c/ 2(1+0'c)

Pe density

o. Poisson’s ratio

AY, flexural rigidity

Cu, torsional rigidity

a. radius of coupler

L, total length of coupler

bei length of jth element
INTRODUCTION

The analysis and design of electromechanical vibra-
tors and filters are usually carried out by obtaining
their equivalent electrical circuits within their resonant
frequency ranges.! In the filters making use of the
extensional or torsional vibrations of bars or cylinders,
this treatment is noted for its simplicity. The equivalent
electrical circuits in such cases can be written in terms of
a four-terminal network, as long as their vibrational
systems can reasonably be considered as one-dimen-
sional. Thus, a well-established four-terminal network
theory?® can be utilized.

Filters making use of the flexural vibrations of beams
and plates are interesting because of their compact
construction.*® Konno and his colleagues® have de-
veloped an equivalent electrical circuit for flexural
vibration of a beam. However, the resulting eight-
terminal circuit is complicated, because it must include
rotations and slopes of the beam as well as the corre-
sponding stresses and displacements.

The author and his colleague’-® have developed a new
analytical technique for a flexure-type vibrator, making
use of the finite-element method. This technique turns
out to be a powerful means for the analysis and design
of electromechanical vibrators and filters of complex
shape and construction. This paper describes the appli-
cation of this finite-element technique to the electro-
mechanical filters. Two examples of analysis are

Electrical
output
terminals

Etectrodes

Electrical
input
terminals

F16. 1. An example of electromechanical filters with electro-
strictive transducers of partial electrodes.

FILTERS

Ty, =V c/ Y. m

Tpe =pc/pm

TL; =l ci/ L.

rLL "—'L,,/ L

M =y¢/ym=fyc/2(1+o',,)

TaL = ac/ L,

Co =(¥ c./ po)? ] )

v, ¢, 0 v=ve™!, p=¢"? and 0=0e!, flexural dis-
placement, slope, and rotation around the
axis

v;, ¢j, 8;  displacement, slope, and rotation around

the axis at the jth junction

R;, N;, G; R;j=Rje*', N;j=N*, and G;=G;e™,
shear force, moment, and torsion around
the axis at jth junction

introduced for presentation: (1) a composite vibrator
filter with the input and output electrodes on the same
transducers and (2) a more advanced filter with two
vibrators connected by a pair of bar couplers. The
method is quite straightforward and can deal with
filters of arbitrary shape and construction without
considering the equivalent electrical circuit. It is
suitable for use in computer-aided design.?

I. A FLEXURE-TYPE VIBRATOR SANDWICHED
BETWEEN ELECTROSTRICTIVE
TRANSDUCERS

A. Stiffness Matrix

The electromechanical filters to be analyzed here
incorporate a flexure-type composite vibrator in which
a beam is sandwiched between electrostrictive trans-
ducers. A general view of a single vibrator filter is
shown in Fig. 1. Figures 2 and 3 show a general view and
details, respectively, of a coupled vibrator filter. P and
E; in the figure indicate the electric polarization and
field, respectively, in the electrostrictive material. With
electromotive force applied to the properly arranged
electrodes, one transducer expands in the x direction
while the other contracts. Thus, flexural vibrations
develop.

In the case of the vibrator filter shown in Fig. 1, the
electrodes on the transducers are arranged into two

Electrical o Electrical

input output

terminals ° terminats
Transducers

Vibrators

Fic. 2. An example of electromechanical filters with electro-
strictive transducers, two vibrators coupled with torsional couplers
(after Konno'),
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Fic. 3. Top and cross-sectional views of the electromechanical
filter in Fig. 2.

parts so that one is input and the other output. When
the vibrators are connected with bar couplers as shown
in Fig. 2, the rotation and the transverse vibration of
one vibrator get transmitted to the other vibrator
through torsional and bending motions of the bar
couplers. If the couplers are connected at the flexural
nodes of the vibrators, the vibrations are transmitted
only through the torsion of the couplers.

Referring to the previous analysis,”8 one may express
the displacement in the ith element of the arbitrarily
divided beam as follows:

w;_l/ L
Yol o
¥i

fi~fs are the displacement functions for the finite-
element method (see List of Symbols and Fig. 4).

The relation between the force vector P and the dis-
placement vector d at the two ends of the sth element is

w=LXTd=L[ fi,r1,fo, fs;*.f1]

P=S®4, )
where
Vi 0
P=F4Ve= MoV 4| BV |
M; /L —aeBVg/L
and

SO =2L[(—BeB*+v V) (1/15H—u?1T]. CY)

Matrices H and J, along with all others which follow
in the text of the paper, are introduced in Appendix A.
The first term F in Eq. 3 indicates the shear forces
(Vi_y, V) and the moments (M;_1,M;) on the two ends
(®i=1,x;) of the ith element. The second term Vg indi-
cates the electromotive force applied works out as the
1971
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moments on the two ends. In Eq. 4, S is the stiffness
matrix. The first term —BeB? is caused by the piezo-
electric effect of the transducers, which effectively
reduces the stiffness of the composite beam. In elements
without transducers, 7, =r,=0.

When the electrical terminals are short-circuited,

P=F, for Vg=0.

Also, when they are open,

I,=0.
The term of electric charge
Sp ) =2LaeB? (hihm/l¥) (14+1r,)D 5)

is to be added to Eq. 4 in this case.

B. Input Admittance

The input admittance of the sth element at the
electrical terminals is given as”-8

V= joCi+Vu, (6)
where

Y= — @ cnbmbihtnire(1+3571)k3:2Y C;

X L2(ij; 1)' @

This is a parallel circuit of the damped capacitance C;
and the motional admittance ¥y, for the ith element.
The total input admittance is

Y0=Z CH‘Z Y ue, (8)

where ; means the summation for all the elements
with the transducers provided.

II. COUPLERS
A. Potential Energy and Kinetic Energy

In coupled-vibrator filters as shown in Fig. 2, where
vibrators are connected with couplers, the latter may
be treated like the former. The jth element of a coupler
is shown in Fig. 5. In Konno’s case,? the couplers are

3 /
i-1 /, /V,

x-xi

F16. 4. Forces and moments on an element of a vibrator.
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connected to the flexural nodal points of the lowest
mode of the vibrator so that transmission is through
the torsion of the couplers. This paper deals with a
more general case, namely, when the couplers are
connected at arbitrary points on the beam, and both
torsional and bending vibrations must be taken into
account.

When a coupler is very thin, however, the torsional
and bending vibrations could be treated without con-
sidering their mutual coupling® Then the potential
energy and the kinetic energy are expressed as follows:

1 pe 0%\2
U0=U¢f+Ugt=_‘/ AY,,(—)ds

§j-1

1 e 96\?
+- ] Cuc(—) ds (9)
2/ ds
and
1 p& 07\ 2
To=Tos+Tor=— f p,,z,(—)ds
2)on ot
1 po 00\2
+ f pczc,(—) ds. (10)
2J. ot

The first term represents the bending energy and the
second the torsional energy. AY. is bending rigidity,
Cu, torsional rigidity, I. the cross-sectional area, and
I,; the moment of inertia about the axis.

B. Stiffness Matrix

The displacement of the flexural vibration of the
jth element of the bar is written as follows:

%-1/Le
v=LXTg= Lcl:f l)rLcjf 5f 3’rLcjf 4] vf;—Llc (1 1
, "
The potential energy is then ’
Uoy=34Yo(L3/1:f)g"H.8, (12)

where Hc=UcﬁU¢. The torsional angle for the same
element is

0=Xs"0=[fo1,f 02][37:-1]’

7

(13)

where fou=1—y and foo=v; y=(s—s;_1)/l:; (see Ref.
12). One has the torsional energy

U.i=1Cuo(1/1.;)67Ko. (14)

Similarly, the kinetic energy of the flexural motion is

T,= %PJ w? L¢2lc.1‘gTJ o8, (15)
where _
J.=UJU,,
and the kinetic energy of the torsional motion is
Tor=3pcl cs®lc;67Me. (16)

Sssj

Fic. 5. Forces, moments, and rotations on an element of the
coupler of thin rod.

The work done by the external forces at the boundary
ends of the jth element is

Rj_1
N;i/L,
chTFc =Lc[vj—l/Lc,¢j—l,vj/Lc,¢j] J.RIJ/ (17)
N i/ La
for the flexural motion, and
Gi1
07G=[06;-,, 0:‘][ G (18)

J

for the torsional motion. Therefore, the relations
between the force vectors and the displacement vectors

are
(19)
G=50; (20)

S, and S, are the stiffness matrices for the flexural and
torsional motion respectively, that is,

F.=S,¢

and

1
S, =L0(A YG—SHG— pel ¥ oiJ a) (1)
and N
1 1
Se =~(Cp.c~K— pcl cthlch). (22)
2 lcj
The total stiffness matrix for the coupler is
F. (S, i 0 g
U ol IR S Y (23)
G L0 I S, 0
Equation 20 can be written as follows:
I:Gj—l:l _ [Se11 S 012:":0;_1]. 24
G; LSo21 Soa2-IlB;

If the bar coupler is symmetrical with respect to the
cross section, Sg11=Sp2e and Sp12=Sss1. Therefore, the
static stiffness (at w=0) is

Gi1—G; 1

S =¥=5911_5012=Cﬂc_- (25)
0j—1—0; o
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Vibrator

F16. 6. Connection of the coupler to the vibrator.

When the coupler is of the circular cross section,
S.=%mau.(1/1:;). (26)
As one would expect, this agrees with Konno’s results.1®
III. COMPATIBILITY

The compatibility at the sth junction between two
elements I and II of the vibrator is

wi=wsr, Ya=vir (27
for the displacement vector, and
Va+Vin=0, Ma+Mn=0 (28)

for the force vector.

o

0.4

013 0% Ja

(a)

o o
N&
L

o “lon 012 013 044 Iy

-0
o
(®)

F16. 7. Normalized input admittance of vibrator filter. (a) Out-
put terminals short-circuited. (b) Output terminals open.
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Similarly, at the jth junction of the coupler,

vr=v1, @a=d¢, Oix=0, (29)

and
R;'I'I'lel =0, N_-,'I +NJ11 =0, Gj1+G,"n =0, (30)

At the connection of the coupler to the vibrator, as
shown in Fig, 6,

O1=vi=v¥in (31)

V1=Wsi1 =W;11,
and
RiAVatViu=0, GiH+Mat+Mx=0. (32)

Furthermore, one has to consider the boundary con-
ditions for ¢ and N of the coupler, that is, (1) when the
coupler is built into the vibrator,

¢1=0, (33)
and (2) when the coupler is hinged to the vibrator,
N 1= 0. (34)

IV. TRANSMISSION CHARACTERISTICS
BETWEEN INPUT AND OUTPUT
TERMINALS

With the compatibility and the equilibrium con-
ditions being applied to the connections between the
elements, one has simultaneous algebraic equations
with a coefficient matrix, that is, the stiffness matrix
of the whole system which is built up from S®, §,,
and Sy discussed above. By solving the equations on
proper boundary conditions, one may obtain the dis-
placement vectors for an arbitrary frequency parameter
. Then the input admittance ¥, is calculated by means
of the ; obtained.

Electromechanical filters (as shown in Figs. 1 and 2)
form a four-terminal network with respect to their
input and output terminals, The transmission char-
acteristics are then determined by the image impedance
and the propagation constant obtained. The input
admittances of the vibrator when the secondary
terminals are short-circuited and open, respectively,
are as follows:

Vo =C,+3 Vi,

and (35)

Vo ®O=Ct+32 Vi@,

where C. is the total damped capacitance in the primary
terminals, and V¥ and V,® are the motional
admittances of the ith element when the secondary
terminals are short-circuited and open, respectively.
Asitis well known, the image impedance at the primary
terminals is

Za=1/Yu=1/(Y 1PV ;)% (36)

The same procedure can be followed for the secondary
terminals (Z¢s). If the system is symmetrical, as in the
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present case, Zn=Zpp=2Z, Y@=V pu®=V,®, and
Y@ =Ypu®=Y,®, The propagation constant is then

Y, O
Q=ag+j/30=tanh_1|: :| , (37)

)4 o (8)
where a4 is the attenuation constant and B is the phase
constant.

When the input and the output are terminated with

the resistance Rr, the transmission loss? is given below
(in decibels):

Rr+2Z,
2(RpZy)}

Zo—RT 2
1—6_”(2 = ) ] (38)
0 T -

In our present example, the normalized input admit-
tance of the filter for the left-hand side (in Figs. 1 and
2) is

App= 8.686[a9+2 log.

+log.

YoL 1\2
Y0= =](Q)%|:1 +rernr thL2k312(1 +57’h)
Cmle
2L 1 Wi
)
I s\m m
where (39)

Co=2 Ci=X (2ebidi/h1),

the damped capacitance at the input terminals for the
half-length of the vibrator and % =m/hnbnY n. Thus
the input admittances Y and Y@ can be calculated.

V. COMPUTED RESULTS

The accuracy of the natural frequencies of the
composite vibrator (two-terminal device) was discussed
for the cases of 2 and 10 elements in a previous paper.?
The maximum percent error of the two-element case
is only 0.83 for the fundamental mode of interest here.
Therefore, if one divides the half-length of the vibrator
into three elements, it will bring satisfactory results.

Attenuation

1
014

F16. 9. Transmission characteristics of vibrator filter,
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Fic. 10. Normalized input admittance of the filter of two vi-
brators coupled by torsional rods. (a) Output terminals short-
circuited. (b) Output terminals open.

The characteristics of the vibrator filter (as shown in
Fig. 1) are first computed, where the electrodes on the
transducers are divided into two parts so that one is
input and the other output. The vibrator is divided
into six elements, three for the left-hand side and three
for the right. The dimension of the stiffness matrix is
14X14 for the free—free boundary conditions, The

%
Zo 10

S ——

—— Real
—=—=— |maginary

N

S N o ®
I

dimensions of the vibrator are as follows: r,=1.0,
rn=1.5, 7, =0.004903, r,=0.962, ry=0.381, k3;=0.31,
1/L=0.7, l,/L=0.15, I,/L=0,15, and I;/L=0.2. The
normalized input admittances ¥¢® and ¥,® when the
secondary terminals are short-circuited and open are
shown in Fig. 7. No stray bridge capacitance between
the input and output electrodes is taken into account.
The characteristic impedance (image impedance) and
the propagation constant calculated are shown in Fig.
8, in which the solid lines indicate the passband and
the broken lines the stop band. The insertion loss is
calculated by Eq. 38 for the resistance termination
Rr=RyL/cuC.. This is shown in Fig. 9, which shows
the double-peak characteristic. This could be made less
peaky by employing a tuning-circuit termination. This
is, however, beyond the scope of the present discussion.

The electromechanical filter as shown in Fig. 2
remains to be discussed. Since the system is symmetrical
with respect to y—y axis in Fig. 3, only the left-hand
side is considered for computation. The vibrator is
divided into three parts at the points indicated with
arrows in the figure. The numbers associated with these
arrows are used for the suffices of the shear force, the
displacement, and other quantities at these points. The
length of the coupler is so short that it is treated as one
element. The boundary conditions are free at one end
and sliding at the other (at the center of the vibrator);
that is,

V1=M1=V3=M8=0
and
Vi=¢u=Vu=y¢nu=0.

On the other hand, the coupler may be built into the
vibrator as in ordinary construction. Then,

¢3=¢10=0.

On the above boundary conditions, the dimension of

oso()jp

Fi1c. 11. Normalized characteristic impedance
and propagation constant of the filter of two
vibrators coupled by torsional rods.

1
012 013
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F16. 12. Transmission characteristics of the filter of two vi-
brators coupled by torsional rods.

the stiffness matrix is finally 14X14. In the particular
case when the couplers are connected to the vibrators
at their nodal points, the element S, can be neglected.
With reference to Kusakabe’s findings,® the dimensions
of the filter are chosen as follows, except for those in
our previous case: (1) 7,=0.005171, 7r4,=25.0,
l,/L=0,113, and I3/L=0.237 for the vibrator, and (2)
77,=1.0 (one element), rrz=0.1608, 7r,.=0.0643,
7p¢=1.0, 7,=0.381, and ry.=1.0 for the coupler.

The input admittances when the secondary terminals
are short-circuited and open are shown in Fig. 10. (The
values shown have been doubled for full length of the
vibrators.) The characteristic impedance, the propa-
gation constant, and the insertion loss are shown in
Figs. 11 and 12. The passband is wider than the previous
example, as expected.

VI. DISCUSSION

As seen in Fig. 10, there are two resonances for each
of the cases (a) and (b). The frequency parameters are
(2)¥=0.1331 and 0.1408 for the former and (2)}=0.1348
and 0.1440 for the latter. The vibrational modes at
these frequencies are shown in Figs. 13 and 14. When
the output terminals are short-circuited, the vibrators
move in phase in the lower resonance. The resonant
frequency is not affected by the presence of the couplers.
The motion is out of phase in the higher resonance and
the resonant frequency increases because of the stiffness
of the couplers. The modal shape is symmetrical for

Lol

Vibrator A

Relative displacement

Vibrator B

(®)

Fic. 13. Mode shape of the filter at resonances when ou
terminals (Vibrator B) are short-cu'culted (a) In phase, 51)’
=0.1331. (b) Out of phase, (2)?=0.1408.

both input and output vibrators. When the output
terminals are open, on the other hand, the modal shape
is not symmetrical and the resonant frequencies slightly
increase for both in-plane and out-of-plane modes.
Comparison was made between the two transmission
characteristics obtained by neglecting and including
the flexural stiffness of the couplers. No noticeable dif-
ference was found. This is explained by the particular
positions of the coupler’s connection to the vibrators.

N >

Vibrator A

Relative displacement

Yibrator B

(b)

Fic. 14. Mode shape of the filter at resonances when output
terminals (Vibrator B) are open. (a) In phase, (2)¥=0.1348.
(b) Out of phase, (2)}=0.1440.

1355

The Journal of the Acoustical Society of America



Y. KAGAWA

All the dimensions of this filter were taken from the
work of Kusakabe,"® who intentionally chose the flexural
nodes of the vibrator for the coupler’s connection. In
our computation, the displacements at these points are
of the order of 1072 times the maximum displacement.
This effectively makes these points the flexural nodes
of the vibrator. From the transmission characteristics
in Fig. 12, the center frequency parameter and the
bandwidth are (2,)*=0.139 (0.1405) and AQ=0.01
(0.0093); then (Af/f.)=[AQ/(Q,)¥]=0.072 (0.667).
The figures in the brackets show corresponding results
obtained by Kusakabe employing equivalent electrical
circuit treatment, (His computation, however, utilizes
the measured values of the effective mass of the vibrator
and the force factor.)

The technique reported in this paper for calculating
the characteristics of electromechanical filters by the
finite-element method is straightforward. Theoretically,
the electromechanical filters of any complicated shape
and construction could be treated by this method by
dividing the physical configuration properly. The
method is not directly suitable for synthesis, but is
adaptable for iteration technique.
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Appendix A
1 _ and
H= f (X"X""7)dy=UHU, (A1) 1 0 0 0
0 0 0 0
where U= 0 rg‘ 1 ol (AS)
12 6 —12 6 0 0 0 7y
— 6 4 —6 2 and
H=|_13 6 12 —6 (A2) D=E7E, (A6)
6 2 -6 4 where
and E=[0; —7rL;, 07 rLi:l; (A7)
1
I- f (XX7)ay=TJ, (A3) Ue=Ulre=reay (a8)
0 1 1 —1
where K= f (X,,’X,’T)dy=|: ], (A9)
. 156 22 54 —13 and 0 -1 1
‘T=ﬁ gi lg 1;2 —_2; (A4) M=fl (XoXaT)dy='1—|:2 I:I. (A10)
—13 —3 —-22 4 0 6L1 2
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