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A New Approach to Analysis and Design of Electromechanical 
Filters by Finite-Element Technique 

YUKIO KAGAWA* 

Institute of Sound and Vibration Research, University of Southampton, England 

Finite-element method was originally developed for analyzing structures such as beams and shells. A 
flexure-type composite vibrator has been used as an example to illustrate the application of this method to 
vibration problems involving coupled mechanical and electrical systems [-Y. Kagawa and G. M. L. Gladwell, 
IEEE Trans. Sonics Ultrasonics SU-17, No. 1, 41-49 (1970); J. Acoust. Soc. Japan 26, No. 3, 117-128 
(1970) J. This paper develops and adapts this method for the analysis of electromechanical filters of complex 
shape and construction. The transmission characteristics of a filter are calculated directly without employing 
the usual method of an equivalent electrical circuit. Two examples of analysis are introduced for presentation. 
In the first one, the input and output electrodes are set up on the transducers of a composite vibrator, while 
in the second, two vibrators are coupled by a pair of bars. 

LIST OF SYMBOLS 

For a Composite Vibrator: 

Sll E 
ds• 
•33 T 

B 

X, y, g 

t 

( )' 
hm, ht 

bin, bt 
Pm• Pt 
L 

fb 

fh 

fy 

compliance at constant Es 
piezoelectric coefficient 
absolute dielectric constant at constant rbh 

stress (•0=8.855X10 -1•' in free space) 
longitudinally clamped permittivity Cm 

•aa•'(1--kal •') w, 
= ka12/da1 ( 1 --ks1 •') 
static longitudinal electromechanical cou- 

pling coefficient ka1•'=da1•'/eaa•'s11E 
=•B•'/Yt 

Cartesian coordinates 

angular frequency w= 2;rf 
time 

O/Ox derivative with respect to x 
haft-thickness of resonator and thickness of C• 

transducer (suffixes m and t indicate those 
of resonator and transducer) 

Young's modulus 
width 

density 
total length of vibrator 
total length of transducer Z0 
length of ith element R• 
=bt/bm A•,•, 
=hdhm 
= YdY,• 

VE 
Vi, Mi 

=h/L 
=bm/hm 
=wL/cm 
= 
w=we j•'t and •=•e j•t, flexural displace- 

ment and slope 
flexural displacement and slope•at the ith 

junction of two elements 
V•= V•e •t, applied voltage 
Vi = V•e i•t and M•=Mie •, shear force and 

moment of inertia at the ith junction of 
two elements 

electric charge of the ith element 
longitudinally clamped capacitance of the 

ith element (both sides of the transducers 
connected in parallel) 

Ii=O•=jwQi, electric current through the 
ith element 

motional admittance in electric terminals 
of the ith element 

characteristic impedance 
termination resistance 

insertion loss (decibels) 
= bmhmrb (1 +«r•) 
= bmhmar,ra (1 +ra +«ra •') 
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For a Bar Coupler: 

s coordinate in the axial direction of coupler 
Yc Young's modulus 
u. = Y./2(l+•.) 
pc density 
•c Poisson's ratio 
AYc flexural rigidity 
Cuc torsional rigidity 
ac radius of coupler 
L, total length of coupler 
1,s length of jth element 

rrc =Y•/Y,• 
ro e = P c/pra 
rLcj =I.j/L. 
r •:: = L,./L 
r, 
raz, =a,/L, 
c, = ( Y,/p,) } 
v, •, 0 v=vd •t, •=e •t, and 0=0e y•t, flexural •s- 

placement, slope, and rotation around the 
axis 

% •i, 0• displacement, slope, and rotation around 
the axis at the jth junction 

R•, N•, Gi Ri= Rid •, N•= Nie •, and 
shear force, moment, and torsion around 
the axis at jth junction 

INTRODUCTION 

The analysis and design of electromechanical vibra- 
tors and filters are usually carried out by obtaining 
their equivalent electrical circuits within their resonant 
frequency ranges) In the filters making use of the 
extensional or torsional vibrations of bars or cylinders, 
this treatment is noted for its simplicity. The equivalent 
electrical circuits in such cases can be written in terms of 

a four-terminal network, as long as their vibrational 
systems can reasonably be considered as one-dimen- 
sional. Thus, a well-established four-terminal network 
theory TM can be utilized. 

Filters making use of the flexural vibrations of beams 
and plates are interesting because of their compact 
construction. •.• Konno and his colleagues ø have de- 
veloped an equivalent electrical circuit for flexural 
vibration of a beam. However, the resulting eight- 
terminal circuit is complicated, because it must include 
rotations and slopes of the beam as well as the corre- 
sponding stresses and displacements. 

The author and his colleague *.a have developed a new 
analytical technique for a flexure-type vibrator, making 
use of the finite-element method. This technique turns 
out to be a powerful means for the analysis and design 
of electromechanical vibrators and filters of complex 
shape and construction. This paper describes the appli- 
cation of this finite-element technique to the electro- 
mechanical filters. Two examples of analysis are 

h Electrical : output 
-_ terminals 

Electrodes 

Transducer-• 
E[ectrica[ 

• input V ibrat o•: t ermin ate 
i b 

Fro. 1. An example of electromechanical filters with electro- 
strictive transducers of partial electrodes. 

introduced for presentation: (1) a composite vibrator 
filter with the input and output electrodes on the same 
transducers and (2) a more advanced filter with two 
vibrators connected by a pair of bar couplers. The 
method is quite straightforward and can deal with 
filters of arbitrary shape and construction without 
considering the equivalent electrical circuit. It is 
suitable for use in computer-aided design. ø 

I. A FLEXURE-TYPE VIBRATOR SANDWICHED 

BETWEEN ELECTROSTRICTIVE 

TRANSDUCERS 

A. Stiffness Matrix 

The electromechanical filters to be analyzed here 
incorporate a flexure-type composite vibrator in which 
a beam is sandwiched between electrostrictive trans- 

ducers. A general view of a single vibrator filter is 
shown in Fig. 1. Figures 2 and 3 show a general view and 
details, respectively, of a coupled vibrator filter. P and 
Ea in the figure indicate the electric polarization and 
field, respectively, in the electrostrictive material. With 
electromotive force applied to the properly arranged 
electrodes, one transducer expands in the x direction 
while the other contracts. Thus, flexural vibrations 
develop. 

In the case of the vibrator filter shown in Fig. 1, the 
electrodes on the transducers are arranged into two 

Electrical • Electrical input output 
terminals terminats 

Transducers 

Vibrators 

FIO. 2. An example of electromechanical filters with electro- 
strictlye transducers, two vibrators coupled with torsional couplers 
(after Konno•ø). 
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(&) 1 2 3 

8 9 10l', I couplers 

' - I •, Itransduce• vibrators 

I 

•,ctric• 
Y 

Fro. 3. Top and cross-sectional views of the electromechanical 
filter in Fig. 2. 

parts so that one is input and the other output. When 
the vibrators are connected with bar couplers as shown 
in. Fig. 2, the rotation and the transverse vibration of 
one vibrator get transmitted to the other vibrator 
through torsional and bending motions of the bar 
couplers. If the couplers are connected at the flexural 
nodes of the vibrators, the vibrations are transmitted 
only through the torsion of the couplers. 

Referring to the previous analysis, 7,8 one may express 
the displacement in the ith element of the arbitrarily 
divided beam as follows' 

f•"'f4 are the displacement functions for the finite- 
element method (see List of Symbols and Fig. 4). 

The relation between the force vector P and the dis- 

placement vector d at the two ends of the ith element is 

where 

and 

P=S")d, (2) 

= I 

P = F -F V E [ M ,V: L j -F 0 V E / L (3) --aeBV•/LJ 

S(O=2L[-(-i•eB"+•,Ym)(1/Z•3)H-ooW•J']. (4) 

Matrices It and J, along with all others which follow 
in the text of the paper, are introduced in Appendix A. 
The first term F in Eq. 3 indicates the shear forces 
(Vi_x, Vi) and the moments (Mi_•,Mi) on the two ends 
(xi-x,xi) of the ith element. The second term Vr indi- 
cates the electromotive force applied works out as the 

moments on the two ends. In Eq. 4, S (•) is the stiffness 
matrix. The first term --/•eB" is caused by the piezo- 
electric effect of the transducers, which effectively 
reduces the stiffness of the composite beam. In elements 
without transducers, rh=rb=0. 

When the electrical terminals are short-circuited, 

P=F, for V•=0. 

Also, when they are open, 

Ii =0. 

The term of electric charge 

Sz)(i)=2LaeB2(hth,•/l•a)(l+«rh)D (5) 

is to be added to Eq. 4 in this case. 

B. Input Admittance 

The input admittance of the ith element at the 
electrical terminals is given as 7,8 

Y•= jwC,+ Y.,u,, (6) 
where 

Y.,u, = -- j (fi)ic•b•hth•'r•, (1 +-}r•)•'k3z•'Y 

liL•'\m m / 
(7) 

This is a parallel circuit of the damped capacitance Cg 
and the motional admittance Y• for the ith element. 
The total input admittance is 

Yo=E c+E (8) 
i i 

where Y'.• means the summation for all the elements 
with the transducers provided. 

II. COUPLERS 

A. Potential Energy and Kinetic Energy 

In coupled-vibrator filters as shown in Fig. 2, where 
vibrators are connected with couplers, the latter may 
be treated like the former. The jth element of a coupler 
is shown in Fig. 5. In Konno's case, •ø the couplers are 

wi-1 

Id i . t•-••••• 

•'5-• /,9•,. 
:X =X i 

Forces and moments on an element oœ a vJbrator. 
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connected to the flexural nodal points of the lowest 
mode of the vibrator so that transmission is through 
the torsion of the couplers. This paper deals with a 
more general case, namely, when the couplers are 
connected at arbitrary points on the beam, and both 
torsional and bending vibrations must be taken into 
account. 

When a coupler is very thin, however, the torsional 
and bending vibrations could be treated without con- 
sidering their mutual coupling.:: Then the potential 
energy and the kinetic energy are expressed as follows' 

1•i• • /0%\2 Uc= Uc/+ Uct =- A Yc[-•s•) ds 2 

+- Ct•, ds (9) 
2 •_: 

and 

The first term represents the bending energy and the 
second the torsional energy. A Y, is ben•ng rigidity, 
Cu, torsional rigidity, I0 the cross-sectional area, and 
I** the moment of inertia about the axis. 

B. Stiffness Matrix 

The displacement of the flexural vibration of the 
jth element of the bar is written as follows- 

v=L*XV•=LcEh'rLcJf•'fa'rLc:f•[ vffLo /' (11) 
The potential energy is then 

Uo• = •A Y, (L,a/I,/)•*H•, (12) 

where H,= U,HU•. The torsional angle for the same 
element is 

O=Xo%=[$o•,fo,•[ Os-•] (13) 
kOi 

where fo•=l-y and fo2=y; y=(s-si-•)/los (see Ref. 
12). One has the torsional energy 

1 

= ( /l o* Ro. 

Similarly, the kinetic energy of the flexural motion is 

Toz = x• I w•L •z •*• • (15) 2•c c c •cj• 
where 

J,=U•JUo, 

and the kinetic energy of the torsional motion is 
1 2 T T**= =p,I,,• l,•0 MO. (16) 

Fro. 5. Forces, moments, and rotations on an element of the 
coupler of thin rod. 

The work done by the external forces at the boundary 
ends of the jth element is 

• R•_• • 

L,VL=L, I (17) 
L •ffœ• J 

•o• •e •e•uml •ofio•, •d 

L• J 

for the torsional motion. Therefore, the relations 
between the force vectors and the displacement vectors 
are 

Fc=Sog (19) 
and 

G=S00; (20) 

S• and So are the stiffness matrices for the flexural and 
torsional motion respectively, that is, 

and 
( ' ) Sa=L• A Y,•H,-pd•co2loiJ, (21) 

' ' ) So =-(Cu •--K- p d •too•l,•M . (22) 
2\ l• 

The total stiffness matrix for the coupler is 

Sa [ 0 g 
I 

Equation 20 can be written as follows' 

(23) 

[G•_:q -So• So•.qFO•_• q G• J=[ (24) 
If the bar coupler is symmetrical with respect to the 
cross section, So:•=So2• and Son=So•.•. Therefore, the 
static stiffness (at co =0) is 

G•_:-G• 1 
S• --- =So•-So•.=C•--. (25) 

0•_•--0• 
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z 

•"•• f Uo= wi • s 

Coupter 

v i brat or 

FIO. 6. Connection of the coupler to the vibrator. 

When the coupler is of the circular cross section, 

S, = «,ra,4•, (1/l,j). (26) 

As one would expect, this agrees with Konno's results. 1ø 

III. COMPATIBILITY 

The compatibility at the ith junction between two 
clements I and II of the vibrator is 

w•i=wm, •k•i =•m (27) 

for the displacement vector, and 

Vii+ Viii =0, Milq-Mili =0 (28) 

for the force vector. 

jO.? 
0..6 

0.2 

o (s) 0 
-0.2 

i 

-0.4 

-0.6 

jO.7 
0.6 

0.2 

•o•ø> o 

-0.4 

-0.6 

-jo-? 

i 

ii 

. 

•1 i 

(a) 

I 
I 
I 

l o.,a o.{• ,• 0.11 I I 
I I 
I I 
I I 
I I 
I I 
I i 
I • 
I I 

(b) 

FIG. 7. Normalized input admittance of vibrator filter. (a) Out- 
put terminals short-circuited. (b) Output terminals open. 

Similarly, at the jth junction of the coupler, 

vjz=v•n, •z=•n, 0•'z=0jn, (29) 
and 

Riiq-R•ii=O, Niiq-Nin=O, Gjiq-G•n=O. (30) 

At the connection of the coupler to the •brator, as 
shown in Fig. 6, 

v•=wiz=win, 0•=•iz=•m (31) 
and 

Rz+ Vii+ Viii =0, Gz+Mii+Miii =0. (32) 

Furthermore, one has to consider the boundary con- 
ditions for • and N of the coupler, that is, (1) when the 
coupler is built into the hbrator, 

(33) 

and (2) when the coupler is hinged to the vibrator, 

=0. (34) 

IV. TRANSMISSION CHARACTERISTICS 

BETWEEN INPUT AND OUTPUT 

TERMINALS 

With the compatibility and the equilibrium con- 
ditions being applied to the connections between the 
elements, one has simultaneous algebraic equations 
with a coefficient matrix, that is, the stiffness matrix 
of the whole system which is built up from S(o, So, 
and So discussed above. By solving the equations on 
proper boundary conditions, one may obtain the dis- 
placement vectors for an arbitrary frequency parameter 
9. Then the input admittance Y0 is calculated by means 
of the • obtained. 

Electromechanical filters (as shown in Figs. 1 and 2) 
form a four-terminal network with respect to their 
input and output terminals. The transmission char- 
acteristics are then determined by the image impedance 
and the propagation constant obtained. The input 
admittances of the vibrator when the secondary 
terminals are short-circuited and open, respectively, 
are as follows: 

and (35) 
Y0<0) =C•+• y•<0), 

where Ce is the total damped capacitance in the primary 
terminals, and Y•t• (•) and Y•t• © are the motional 
admittances of the ith element when the secondary 
terminals are short-circuited and open, respectively. 
As it is well known, the image impedance at the primary 
terminals is 

Z0• = 1/Y0• = 1/(Y0• <•) Y0•cø))L (36) 

The same procedure can be followed for the secondary 
terminals (Z0e). If the system is symmetrical, as in the 
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FIo. 8. Normalized characteristic impedance 
and propagation constant of vibrator filter. 

1• III - 
I•1 

12 - Imaginary lo- II 

2 

0.:I! 0.12 ß 

0 2- • I I / ' 

• - Xl/l• I• I 
o, I rl I 

o• o.12 •o.15 O.li 

present case, Z01=Z02=Z0, Y0• © = Y02 © = Y0 ©, and 
¾0[ (ø)= ¾02(ø)= Y0 ©. The propagation constant is then 

O=ao+j•o=tanh_lFYo (O)• LY0(•)_] , (37) 
where ao is the attenuation constant and #0 is the phase 
constant. 

When the input and the output are terminated with 
the resistance Rv, the transmission loss 2 is given below 
(in decibels): 

Rv+Zo 

2(RvZo) • A vv=8.686[ao-•2 log• 
1-- •-2ø(Zø--Rv• 2 

\Zo+Rv/ 
-+-1og• (38) 

In our present example, the normalized input admit- 
tance of the filter for the left-hand side (in Figs. 1 and 
2) is 

2L (•p•l ••)] 
where (39) 

C,=Y'. C,=Y'. (2ebtl•/ht), 
i 

the damped capacitance at the input terminals for the 
half-length of the vibrator and r•=m/hmbmYm. Thus 
the input admittances Y0 © and Y0 © can be calculated. 

V. COMPUTED RESULTS 

The accuracy of the natural frequencies of the 
composite vibrator (two-terminal device) was discussed 
for the cases of 2 and 10 elements in a previous paper. 8 
The maximum percent error of the two-element case 
is only 0.83 for the fundamental mode of interest here. 
Therefore, if one divides the half-length of the vibrator 
into three elements, it will bring satisfactory results. 

dB 

2O 

.• 11, 

12 

x / 
x / 
x / 

/ 

/ 
/ 

2 

0 I I i 
0-12 0i13 0,14, 

Fro. 9. Transmission characteristics of vibrator filter. 
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0.2 

-0.6 
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jO.7 
0.6 
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-jO.5 

: / 
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I 
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I 

i 

i 

(b) 

I 
i 

i i 
i 
I 
I 
I 
I 

I 
I 

I 

Fro. 10. Normalized input admittance of the filter of two vi- 
brators coupled by torsional rods. (a) Output terminals short- 
circuited. (b) Output terminals open. 

The characteristics of the vibrator filter (as shown in 
Fig. 1) are first computed, where the electrodes on the 
transducers are divided into two parts so that one is 
input and the other output. The vibrator is divided 
into six elements, three for the left-hand side and three 
for the right. The dimension of the stiffness matrix is 
14X14 for the free-free boundary conditions. The 

dimensions of the vibrator are as follows' rb=l.0, 
rh =1.5, rhL=0.004903, ro=0.962, rr=0.381, k31=0.31, 
It/L=0.7, l•/L=O.15, 12/L=0.15, and 13/L=0.2. The 
normalized input admittances Y0 (8) and Y0 © when the 
secondary terminals are short-circuited and open are 
shown in Fig. 7. No stray bridge capacitance between 
the input and output electrodes is taken into account. 
The characteristic impedance (image impedance) and 
the propagation constant calculated are shown in Fig. 
8, in which the solid lines indicate the passband and 
the broken lines the stop band. The insertion loss is 
calculated by Eq. 38 for the resistance termination 
Rr=RrL/c,,,Ce. This is shown in Fig. 9, which shows 
the double-peak characteristic. This could be made less 
peaky by employing a tuning-circuit termination. This 
is, however, beyond the scope of the present discussion. 

The electromechanical filter as shown in Fig. 2 
remains to be discussed. Since the system is symmetrical 
with respect to y-y' axis in Fig. 3, only the left-hand 
side is considered for computation. The vibrator is 
divided into three parts at the points indicated with 
arrows in the figure. The numbers associated with these 
arrows are used for the suffices of the shear force, the 
displacement, and other quantities at these points. The 
length of the coupler is so short that it is treated as one 
element. The boundary conditions are free at one end 
and sliding at the other (at the center of the vibrator); 
that is, 

V•=Mi=Vs=Ms=O 
and 

V4 =l•/a = VII = 1•/11 =0o 

On the other hand, the coupler may be built into the 
vibrator as in ordinary construction. Then, 

•3 =•10 =0o 

On the above boundary conditions, the dimension of 

1/, F Rear 
12• ---- Imaginary 
10 

2• •-• 
o/ • 

0.12 0.13 

0.12 0.13 

\1/1•1 

o.1/, i I I 
I I I 
I I I 
I I i 
I I I 
I I ! 
I [ I 

I I 
I • • / 

• I 

I ,/ 
• / i•\•/ 

.,,! / i•/ 

o .1/, 0'15 •'• 

FIG. 11. Normalized characteristic impedance 
and propagation constant of the filter of two 
vibrators coupled by torsional rods. 
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dB 

16 

10- 

8 ß 
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2 

/ 

RT: 1.75-•.4 

/ 
/ 
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! 
/ 
I 
I 
I 
I 
! 
I 
I 

I 

0,• 0,.13 .0-1& 0.IS ,r"j'j'j'j'j'j• 

1710. 12. Transmission characteristics of the filter of two vi- 
brators coupled by torsional rods. 

the stiffness matrix is finally 14X 14. In the particular 
case when the couplers are connected to the vibrators 
at their nodal points, the element So can be neglected. 
With reference to Kusakabe's findings, •a the dimensions 
of the filter are chosen as follows, except for those in 
our previous case: (1) rhr,=0.005171, rbh=25.0, 
l•/L=O. 113, and 13/L=0.237 for the vibrator, and (2) 
rzc•=l.0 (one element), rzr,=0.1608, rat,=0.0643, 
rpc=l.0, r,=0.381, and rrc=l.0 for the coupler. 

The input admittances when the secondary terminals 
are short-circuited and open are shown in Fig. 10. (The 
values shown have been doubled for full length of the 
vibrators.) The characteristic impedance, the propa- 
gation constant, and the insertion loss are shown in 
Figs. 11 and 12. The passband is wider than the previous 
example, as expected. 

VI. DISCUSSION 

As seen in Fig. 10, there are two resonances for each 
of the cases (a) and (b). The frequency parameters are 
(f•)• =0.1331 and 0.1408 for the former and (f•)• =0.1348 
and 0.1440 for the latter. The vibrational modes at 

these frequencies are shown in Figs. 13 and 14. When 
the output terminals are short-circuited, the vibrators 
move in phase in the lower resonance. The resonant 
frequency is not affected by the presence of the couplers. 
The motion is out of phase in the higher resonance and 
the resonant frequency increases because of the stiffness 
of the couplers. The modal shape is symmetrical for 

Vibrator 

(a) 

(b) 

FiG. 13. Mode shape of the filter at resonances when output 
terminals (Vibrator B) are short-circuited. (a) In phase, (fl)l 
=0.1331. (b) Out of phase, (fl)•=0.1408. 

both input and output vibrators. When the output 
terminals are open, on the other hand, the modal shape 
is not symmetrical and the resonant frequencies slightly 
increase for both in-plane and out-of-plane modes. 

Comparison was made between the two transmission 
characteristics obtained by neglecting and including 
the flexural stiffness of the couplers. No noticeable dif- 
ference was found. This is explained by the particular 
positions of the coupler's connection to the vibrators. 

•' Vibrator A 

Vibrator B 

(a) 

(b) 

Fro. 14. Mode shape of the filter at resonances when output 
terminals (Vibrator B) are open. (a) In phase, (fl)•=0.1348. 
(b) Out of phase, (fl)•=0.1440.j 
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All the dimensions of this filter were taken from the 

work of Kusakabe, •3 who intentionally chose the flexural 
nodes of the vibrator for the coupler's connection. In 
our computation, the displacements at these points are 
of the order of 10 -2 times the maximum displacement. 
This effectively makes these points the flexural nodes 
of the vibrator. From the transmission characteristics 

in Fig. 12, the center frequency parameter and the 
bandwidth are (ft,)«=0.139 (0.1405)and Aft=0.01 
(0.0093); then (/•f/f,)=[A•/(•,)«•=O.072 (0.667). 
The figures in the brackets show corresponding results 
obtained by Kusakabe employing equivalent electrical 
circuit treatment. (His computation, however, utilizes 
the measured values of the effective mass of the vibrator 

and the force factor.) 
The technique reported in this paper for calculating 

the characteristics of electromechanical filters by the 
finite-element method is straightforward. Theoretically, 
the electromechanical filters of any complicated shape 
and construction could be treated by this method by 
dividing the physical configuration properly. The 
method is not directly suitable for synthesis, but is 
adaptable for iteration technique. 
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