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Note on the Stochastic Theory of Resonance Absorption
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The stochastic theory of magnetic resonance absorption developed
recently by P. W. Anderson is examined here further in some details.
The fundamental idea of the theory is that the resonating units suffer
transitions among their possible states each of which is characterized
by a proper frequency of the magnetic moment. The transition is
assumed to be described by a Markoffian process. The fundamental
equation for the auto-moment or the auto-correlation of the magnetic
moment is rederived and transformed. Some general properties of the
absorption spectrum are discussed on the basis of this equation. In
particular, the narrowed spectrum for the case of rapid transition is
proved to be Lorentzian with a half width determined by the equilibrium
distribution of the units and the transition matrix of the Markoffian
jumps. If the relaxation time of the transition is assumed to be com-
pletely degenerate, the resonance spectrum is given by

o= Lref PO /fy [ waPlolds )
m we+2(w—w') 0o+ w —w')
where P(w) is the intensity distribution in the limit of slow relaxation,
1/w, being the relaxation time. Although this idealization is not quite
physical, the result is useful for qualitative understanding of the changes
in line shapes due to the motional effect. The limit of Gaussian-Markoff

case is also discussed.

§1. Introduction

Recently P. W. Anderson® presented an
interesting theory of the motional effect in
magnetic resonance absorption. His model is
that the resonance frequency is modulated
randomly as a stochastic process. More speci-
fically it is assumed that the resonating units
make transitions between various states each
of which has a characteristic resonance fre-
quency. The transition process is assumed
to be described as a Markoffian process. If
the transition process is sufficiently slow, the
observed spectrum of the resonance must be
the set of those proper frequencies weighted
by the relative probability of finding an unit
in each of the frequencies. On the other
hand, if the transition is extremely rapid,
then the system will give rise to a sharp line
the frequency of which is a certain average
of the proper frequencies. Thus, the observ-
ed resonance spectrum will change between
these two extremes as the transition rate
varies. On this model, Anderson has deve-
loped a mathematical theory which affords at
least qualitative understanding ot such physi-
cal phenomena as the motional narrowing in

nuclear magnetic resonance or the exchange
effect in paramagnetic resonance absorption.
The purpose of this note is to examine a
little further some mathematical aspects of
this model and to discuss certain problems
which were left unsolved or untouched in
Anderson’s treatment.

§ 2. Fundamental Equations

Let us suppose that the possible states of
the resonating unit are finite and numbered
as Ey, E,----E,. Our fundamental assumption
is that the process in which the unit realizes
in the course of time the various states is
Markoffian, so that it is determined by the
transition probabilities Pj(#). It is assumed
further that this stochastic process is station-
ary, which means that the transition pro-
babilities depend only on the time interval #.
Furthermore, the following conditions are as-
sumed?®.

1) P;;t)=1—cjit+o0() , 2.1)

2) Pit)=ciput+o{) , (2.2)
where

$3;=0, and %Pjr@l . (2.3)
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If the number of the states is infinite, we
must assume that (2.2) holds uniformly with
respect to j for every fixed &®.

Under these assumptions, the Chapman-

Kolmogorov equation
ij(t)z% Pjin(t—1) Pmr(l) 0<n<t,

can be transformed into the differential equa-
tions

Pud)=—coPu(d)+ S Pin(@cnpme . (2.4)

which is the so-called forward equation. This
is a set of 7 equations for a fixed 7. We may
conveniently write this as

¢t)=—¢;D,

where ¢; is the row vector

¢;=(Ps, Py, --++ Py), (2.5a)
and D the matrix
Dmkzckakm_Cmpmk . (25b)

Eq. (2.5) determines the matrix of transition
probability (Ps(#)) with the initial condition

Py(0)=0jz. (2.6)
The adjoint equation of (2.5) is
d@)=—D(@) , 2.7

which corresponds to the backward equation,
¢ being a column vector. Eq. (2.7) has an
obvious solution

1
1

Sb(): ° >
1

D=0, (2.8)

as one seems from the condition (2.3). Cor-
respondingly Eq. (2.5) must have a stationary
solution ¢, which satisfies

¢,D=0 . (2.82)

The eigenvector ¢, must be unique and inde-
pendent of j provided that our Markoffian
process is ergodic, which we assume through-
out the following treatment. The components
of the eigenvector ¢, are the stationary dis-
tribution or the equilibrium distribution to
which the ensemble of our system must ap-
proach starting from any arbitrary distribu-
tion. The normalization of this equilibrium
distribution is expressed by

¢0§bo= 1 3y (2.9)
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which is
X PS=1,
k
where P are the components of ¢, ,
Po=(P°, PO,----- , PY). (2.8b)

Now let the proper frequency of the re-
sonating unit be denoted by w; in the state
E;. Thus the moment M(£) of the resonating
unit is assumed to be given by

M(#)=M(0) exp i Sa)(t’)dt’, (2.10)
where o(?) is a stochastic variable assuming
various values wi, wg,+----- , wr, as the unit
jumps to and fro according to the basic pro-
cess described by Eq. (2.4). Here we have
neglected other possible complications coming
from the variations in amplitudes and phases.
It is also possible to construct a theory taking
account of these, but we c¢hall here employ
the assumption (2.10) for the sake of simpli-
city. The problem we have now to solve is
the calculation of the auto-moment of M(Z),
which is the Fourier transform of the inten-
sity distribution of the resonance absorption.

We shall here adopt a formulation which is
a little different from that used by Anderson
to derive the fundamental equation. Let us
introduce a function Qu(#) which is defined
as the average of

pn(d)=expi S w(Hdt’, (2.10a)

on the condition that the unit is in the state
E; at the time #=0 and is found in the state
E;, at the time z. This definition yields, cor-
responding to the Chapman-Kolmogorov equa-
tion of Pu(®),

Qu(t+h)=% Qin(&)Qmx(h) .
We now see from the assumptions (2.1) and
(1.2) that
Qi) =1—c;h) e*i+oh) ,
Qi) =c;ipmh+oh) .

Therefore, going to the limit of 2—0 in Eq.
(2.11), we obtain the equation

Q)= (Gop—c)Qu(t) + > Qin(t)enbus »
(2.12)

(2.11)

which may be written as
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QW)=iQQ—QD , (2.13)

if we denote the matrix (@) by @ and the
diagonal matrix wid; by Q. Eq. (2.12) has
to be solved with the initial condition,

Q(0)=0s .

The auto-moment of M(z), Eq. (2.10), or
that of «(), Eq. (2.10a) is now given from
the fundamental solution of Eq. (2.13). Name-
ly we first take the average of @u(¥) with
respect to the initial states distributed with
the equilibrium probability (2.8b) and then
sum up over all of the possible final states.
Thus the auto-momemt of (), or the cor-
relation function of M(z) is

9@B)=2 Q)¢ - (2.14)
Or, defining the vector function

u(t)=9,Q() , (2.15)
we may write (2.14) as

g@&)=ut)do . (2.14a)

For the function #(z) we can set up the equa-
tion

u(t)=1u(t)Q—u@)D , (2.16)
which is imposed by the initial condition,
(2.17)

Eq. (2.16) is the fundamental equation of our
treatment.
The formal solution of (2.16) is

u(t)=9, exp {—(D—iQ)¢} , (2.18)
which gives
9(#t)=9o exp{—(D—iQ)t}¢y . (2.19)

This is, of course, identical with the basic
formula derived by Anderson®.

Since simultaneous addition of w, to all of
the frequencies w1, w,,----, @r, gives to u(?)
only an extra factor expimo we can choose
the frequencies in such a way that

3 Pfo;=0 (2.20)

or

Q=0 . (2.202)

This means that we are dealing with the
spectrum the center of which is now arbi-
trarily chosen to zero. This particular choice
is useful to simplify the calculation, so that
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we shall assume (2.20) in the following treat-
ment.

§3. Some Direct Consequences of the
Fundamental Equation

The auto-éorrelation, 9(#), and the normali-
zed intensity distribution, I{w), are mutually
connected by the Fourer transforms,

(@)= Sl I@)e“tde . 3.1
and
Iw)= %S: gt)e-iotd 3.2)
Thus we must have
H(—B)=9(@) . 3.3)

Now the moments of the distribution I{w) are
generally given by the derivatives of ¢(#) at
t=0 provided that those derivatives uniquely
exist. It is easy to see that the assumption
of Markoffian process forbids the existence of
the moments higher than the second. Ex-
panding Eq. (2.29) one gets

I(+0)=@y(Q+:D)*dy,
=¢DQ(Q+SD)n—ZQ¢0’ (3'4)

where we made the use of Egs. (2.8) and
(2.8a). Thus the second moment is

m2=¢oﬂz¢0=§, Plwsa, (3.5)

whereas Eq. (3.3) and (3.4) show that the
third derivative of ¢(#) at £=0 cannot be uni-
quely defined, the right and left limits being
generally different except when

20DQP =3, PPw ;D=0 .

Thus, the third moment of I{w) will not be
convergent and the distribution falls off at in-
finity to allow only the existence the second
moment, (3.5), which is independent of D,
namely of the relaxation process. It is, how-
ever, to be remembered that the non-existence
of higher moments just mentioned is utterly
a mathematical consequence of our Markoffian
assumption, which will certainly break down
for very small time interval if our system is
really a physical one. The dynamical co-
herence is always dominant for small time
interval either in classical or quantum-mecha-
nical systems so that the correlation function
9(¢) must behave quite regularly in the neigh-
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borhood of #=0. Therefore, the Markoffian
theory as a physical theory is doomed to fail
to describe correctly the wings of the re-
sonance curves. But it is correct near the
center and can give valuable conclusions if it
covers the most of the frequency range which
is practically important. The criterion of the
validity or the usefulness of the Markoffian
theory is actually pretty complicated depend-
ing on the dynamical nature of physical sys-
tem of interest. Thus more detailed discus-
sion of this point is beyond the scope of the
present article.

The extreme limits of very slow and very
rapid relaxation are, of course, to be seen at
once from Eq. (2.19). If D is negligible, we

have
Q(i)—:jZ Pletest . (3.6)
Thus, the spectrum is simply
I(w)=§: Po(w—wy) , 3.7

as it ought to be. On the other hand, when
D is so large that Q can be neglected, Eqgs.
(2.19) and (2.8) or (2.8a) shows that ¢(#)=1,
which gives

Kw)=8(0) . (3.8)

The approximation from the side of weak
relaxation can be made with the aid of per-
turbation method, which has been discussed
by Anderson.

The approximation from the other side, that
is from the limit of strong relaxation, needs
somewhat more caretul investigation. For
this purpose and also for a general treatment
of the problem, we may conveniently rewrite
Eq. (2.16) as we shall see in the following
section.

Method of Solution of the Fnndamental
Equation

§ 4.

Noticing that the operator D has the parti-
cular eigenvalue zero, we now want to elimi-
this particular eigen-space R, and set up the
equation for the rest of the whole vector
space. Let us put the solution () of Eq.
(2.16) in the form

ut)=co@)Po+v(t) , (4.1)

where v(#) is orthogonal to the zero-eigenvec-
tor of D, namely,
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v(t)gb(,:; vi()=0. (4.2)
Inserting (4.2) into Eq. (2.16) we get

Eo@)Po+ () =2co()PoQL+iv@)Q—v(@)D ,
4.3)
which can be separated into two equations:

co@)=2vt)Q¢y , (4.4a)
WE) =2¢0PeQ+2(vQ—vQR))—vD , (4.4b)

where R, is the projection operator defined by
Ry= ¥, - 4.5)

This is easily seen by making scalar product
of the vector Eq. (4.3) with the eigen vector
¢y from the right. It gives Eq. (4.4a) by
virtue of Egs. (2.8), (2.9), and (2.20a). Eq.
(4.4b) is obtained by subtracting (4.4a) from
(4.3).

The most convenient way of treating Eq.
(4.4) is the method of Laplace transformation.
The Laplace transforms of ¢(#) and »(#) are
defined as

Cy(s)= S”co(ﬁe—udt, (4.62)
0

Vis)= S: v(b)e-stdt, (4.6b)

Then Egs. (4.4a) and (4.4b) are transformed
into
sCy(s)—1=2V(s)Q¢y , (4.7a)
sV(s)=2Cy(s)PQ+2V(s)Q(1—Ry)— V(s)D ,
(4.7b)
because, by the initial condition (2.17), we
have

c(0)=1, and 2(0)=0.

Eliminating C, from Ex. (4.7a) we arrive at
Vis){s*+sD—isQ(1—Ry) + QR Q} =792 .
(4.8)
Since V(s) and 7¢,Q belong to the space 1—
R,, we may write (4.8) in the form,
V() (A—Ry){s?+sD—isQ(1—Ry)+QR,Q}
=7¢,Q , (4.8a)
using the relations,
RQDZR():R[)QR():O .
The operators appearing on the left hand side
of Eq. (4.8a) are essentially matrices in the

spase 1—R, with —1 dimensions. Eq. (4.8)
can also be written as
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V(s)(s—2Q) [s(1—Ry)+(s—20Q) " 'sD+iR, (1]
=1¢,Q , (4.8b)
or as
V()1 —Ry)(s—iQ)[s(1—Ry)+(s—iQ)~1sD
+iR Q=790 , (4.8¢c)
since
Ry(s—2Q)[s(1—Ry)+(s—2Q) ~1sD+iR;Q]=0.

From Eq. (4.8c) we see easily that, in the
limit of vanishing D, the solution of (4.8) be-
comes

V(s)=¢y(s—iQ) " (1—Ry) ,

as it must be.

If Eq. (4.8) is solved after V(s), Eq. (4.7a)
gives Cy(s) which is nothing but the Laplace
transform of ¢(2), i.e.,

4.9

Cols)= S: g(De-stdt (4.10)

because Egs. (4.1) and (2.14a) give

9= ,

by virtue of (4.2).
distribution is

But the required intensity

I(0)= —217; S“ g()e ot dt

~1Re r g()e~tdt
m o

L Re[Co(s)ls-to-

T

(4.11)

Il

Therefore our problem 1is generally reduced
to the solution ot Eq. (4.8) or (4.8a) in the
space 1—R,. With the obtained solution V(s)
the intensity distribution is given explicitly by

Iw)=1/7) Re 1+iV({iw)Qdy)/(fw) . (4.12)
Perhaps it should be noticed here that the
function Cy(s) has no pole at s=0. This can

be seen from Eq. (4.8), because for s=0 it
becomes

V(S)Q(/Jogooﬂ = Z‘{ﬂoﬂ s
which gives V(0)Q¢y=z. Thus
[14+2V($)QPols-0=0 .

§5. Narrowing for Rapid Relaxation

Eq. (4.8) can easily solved tor the limit of
strong narrowing, that is for the case where
the relaxation effect is overwhelming. Let us
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denote the orders of magnitudes of D and Q
by 7z.7! and w,. Then the orders of magni-
tudes of the four terms in the bracket on
the left hand side of Eq. (4.8) are

@?, olty, O, and ws: (s=iw)
respectively. Therefore, if we are interested

in the frequencies satisfying the condition

o<l 6.1
and if we assume that
W, <1, (5.2)

the first and the third terms can be neglected,
so that Eq. (4.8) becomes approximately

V(S)[sD+QR Q=790 , (5.3)
or '

V(s)D=s5"1¢,Q(Z—VQ¢y) . (5.4)
Here D is understood as (1—Ry)D(1—Ry),
which is an operator in the space 1—R, and
has no zero-eigenvalue. Thus the inverse D!
of D can be defined in the space 1—R,. Eq.
(5.4) now gives

V(S)Q(}"g =S_1¢OQD_1Q¢0(Z'— VQ¢Q) .

Hence we get
_1sTI0 QD0
1+s"10,QD"1Q4¢, ’
Inserting this into Eq. (4.12) we find

1 1
fw)=Ret — 1
o) =Re 0D 10,

VQ‘I’O =

(5.5)

where both ¢,Q and Q¢, are vectors in the
space 1—FR, so that the quantity ¢,QD-1Qd,
has a definite meaning. If the eigenvalues
of D in the space 1—R, are all degenerate
(see the next section), that is, if the relaxa-
tion time of the system is single, we have

D i=(1—-Ry)r(1—Ry) ,

and
20D 0y=3, Plo i, =, . (5.6)
More generally we may write
P QD10 ¢y — S: 2oQe- POyt
= W’Tefr, 5.7

and express the intensity distribution as

1 "0 Tt
lo)=——"2
(@) T 0+ (0 Tefr)’

(5.8)
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Thus the narrowed spectrum is generally a
Lorentzian curve centered at the average fre-
quency of the proper frequendies each of
which is weighted by the equilibrium pro-
bability. The width of this Lorentzian curve
is given by Eq. (5.7).

§6. Simple Relaxation

An interesting example which allows exact
treatment is provided by the system with a
single relaxation time. This is defined by a
particular assumption for the elements of
stochastic matrix involved in Eq. (2.2) such
that

ci=w(1—P5%) , (6.1a)
and
Dux=P*(1—PP)"", piy=0. (6.1b)
with the condition
? Po=1. (6.2)
Thus the explicit form of D is
Dijp=0e0js—w P’ . (6.3)

With this matrix D one finds at once that
any deviation from the equilibrium distribu-
tion (2.8b) relaxes as exp(—w.#). This ex-
ample was discussed by Anderson®, but he
did not give the complete solution of the pro-
blem. Although the model is not quite physi-
cal, it can still give qualitative understanding
of the changes of line shapes as the rate of
relaxation varies. Hence an exact solution of
this model is not without physical interest.
For the sake of generality we shall consider
here continuous cases rather than the discrete
cases. Corresponding to Eq. (6.3) we may

write the kernel of D as
D(w, 0")=w.d(w,—o0")—w.P'(v’), (6.3a)

for continuous cases. In this expression P’(w)

is normalized as
SP”(w)dco=1 . (6.2a)
More rigorously we may write

GDD.:_‘S(ﬁ(w)de(a), )

— e {¢(w')——P° (w’)S(o (w)dw} . (6.42)
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ngEED (w, ®)do P(w")

~ o {gb(w)—SP“(w’)dw’gb(w’)} . (6.4b)

The equilibrium solution for D is provided by
P%w), that is

SPO(a))D(a), @ )dw=0
and

SD(w, o) xconst. do’=0,

Any function f(w) which is orthogonal to the
stationary solution, that is

g f(w)dw=0,
satisfies

fD=w.f, (6.5)

which means that any deviation from the
equilibrium distribution decays with the re-
laxation time 1/we .

Now the fundamental Eq. (2.16) is

(nw, =tou(w, t)—vulo, t)

—!—P"(a))gu(w’, Hdow'. (6.6)

Egs. (4.4a) and (4.4b) are explicity written as

SCo(S)—1=iSa)V(w, sdw , (6.7a)
and
(sF+w.—iw)V(w, s)
=7 P%w)Cy(s)—{sCy(s)—1}P%w). (6.7b)
The latter equation gives
Viw, s)
={(w—s)P*0)Co(w)P"(w)}/(s+w.—iw)
=—Po(w)Co(s)—l—wePO(w)Cf’(s) PO(CU). .
S+w.—iw stw,—t0
(6.8)
Hence we get from Eq. (6.7b)
1 _I_Sz'a)Po((u)flw
Cils)= St — 10 6.9)

—cr
Stwe—iw

We define the characteristic function of P%w)
by
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Q”(t)ESlP"(w)e“"dw , (6.10)
from which we find
R<S>ES: Q) exp{—(@e+3)t)dt
=S: % : 6.11)

and

r L@ exp (—(otsiat
_ S iwP®(w)dw

stw.—iw

=" (£) exp {—(we+s) t}:lw

+ (@ +s)SNQ°(t) exp {—(w.+s)t}dt
0

=—14(w.+S)R(s) . (6.12)
Thus Eq. (6.9) can be written as
__ R
Co(s)= T—w0.R(s) ° (6.13)

This assures that the function »(w,#) or
V(w, s) is zero when integrated over w, be-
cause we get Eq. (6.13) from Eq. (6.8) if we
integrate both sides of (6.8) over w. There-
fore Eq. (6.13) is the exact solution of our
problem, from which we can find the spec-
trum J(w) using Eq. (4.11):

S PYw")dw’

1 w+i(w—w’)

I(w)=Re—
w

= paae - O
—w | A
we+i(w—o)
It is interesting to note here that the rela-
xation has no effect if the original distribu-
tion P%w) is Lorentzian. Namely, a Lorent-
zian function
PY0)=(1/m)b/(0*+b%) ,
will give
Q(t)=exp (—bl¢]),
and
R(s)=1/(s+w.+b) ,
which leads to
Cy(s)=(s+b)"', and I(w)=P%w).

Thus the spectrum remains unchanged.
General expansion formulae of Eq. (6.14)
for small w. and large . can be derived as
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follows. For large w,, we expand Q°(#) exp (—st)
in power series of £ to obtain

R(s)= zj [ 2 te- s¢@°<z>}] exp (—wu)dt

_y 1 i_
_§w6n+1|: dt S

=1 (we)~ "z —s)™ . (6.15)
Inserting this into (6.13) an explicit expression
of I(w) can be obtained. Thus we have

" @) ] 3

R(iw)zl__z- ‘09 _ “"";"“ deenn,
We [OFs We
so that
1 R(io)
I(w)=— Re ———~—
(@)= Re1—  Riw)
i WP+

7 (@ 0Pt otodt -

which is simplified to
E/a»

I(a))_7r PRy

(6.16)

in accord to Eq. (5.8) for practically important
frequencies

o~w*w, .

Next we shall derive an approximation for
small o, assuming the distribution P%w) to
be continuous. Noticing that

Rlio)= S: Q(#) ext {—ilw—iwt)dt ,
(Eq. 6.11), we introduce
S:Qﬂ(t)e-wdt=n(xo"(w)—z'xo’<w)>, 6.17)
which means that
1 ()= Reﬂ: Qe widi=PYw),

and

2 (0)=—HW- SP———(“’ Mo’
w —
are the absorption and dispersion for the
limiting case where w,=0. Therefore we may

write

Riw)=n{Xy (0—iw,)—i%y (w—iwe)} , (6.18)

where we have assumed that the functions
%’ and %’ can be analytically continued to
complex values of the argument. These two
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functions are mutuaily connected by the
Kramers-Kronig relations, so that the know-
ledge of P%w), for instance, allows us to
construct its complementary part %,'(w). By
the assumption of the regularity, we can then
expand R(w) in powers of .. Thus the
intensity I(w) can be calculated in power series
of w, provided tha %,/ (w) and %,"(») are con-
tinuous and differentiable. To the first order
of w., we get

l(0)=P%w)
—I—a)e[—%'l'W{Po(w)z—xo/@)z}]‘l' e

(6.19)

One finds easily that this first order term
vanishes if P%w) is Lorentzian. It would be
interesting to examine the condition that the
relaxation will result in the narrowing, or
more roughly, in the enhancement of the peak.
For this, let us assume the particular case
where PY%w) has a single maximum at o=0
(which is the center of the gravity of the
distribution P%w)) and further that %,"(0)=0.

Then
d%l),(w) 2
a)e[_{ d(U }m=0+7TPD(O> ]

:%{[S:Q"(t)dzf]z——S:tQ"(t)dt}, (6.20)

is the first order change of the intensity at
the peak. Evidently, this is equal to zero for
the Lorentzian case, @°@®=exp(—bl]). If
the decrease of @°%) is slower than the sim-
ple exponential decay for small values of ¢
and faster for large ¢, then we may expect

{S“ @) dt}2>§:tQ"(t>dt ,

and the narrowing will take place as the re-
sult of the relaxation. If Q%) behaves in
the opposite way, then we may except
broadening rather than narrowing at least in
the first order of w,. Thus, in a sense, the
Lorentzian form is a stable distribution against
the effect of random modulation of the reso-
nating frequencies, which seems certainly of
some physical interest.

§7. Remark on the Gaussian-Markoffian
Limit
As we mentioned in §2, the resonance fre-
quency o of a resonating unit is considered
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as a stochastic variable. If the random vari-
able o(), o), ---- w(t,) for any set of
arbitrarily chosen » time points (z being
arbitrary) are distributed with a Gaussian
(normal) distribution function (naturally we
assume here every w(f) realizes continuous
values),

f<w<t1>7 w(tz)" M) w(t%))
1
=C — w0 (@)oe)
exp{ 5 %%akw( o )}
( S T S” Flot), -+ ot)do(t)- - - - der(tn)
),

then the stochastic process of w(f) is called a
Gausstan process®. If the stochastic process
o(?), which is stationary, is Gaussian, it is
easy to see that

g(t)=exp {_SZ<¢_T><w<t'+T>w<¢'>>df} ,

(7.1
as has been pointed out by Anderson and
Weiss®.

Now we shall remark here that under a
certain conditions Markoffian process we have
assumed in the above treatment approaches
to a Gaussian-Markoffian process. Let us
suppose that the resonance frequency of the
resonating unit in each of its states is con-
structed from a number of small contributions.
ie.,

w(t)=1§:: don(t) . (7.2)
For instance, the resonance frequency of an
unit can be conceived as determined by a
local fied which is the resultant of small dis-
turbances exerted by a number of surrounding
atoms. The state of an unit is now charac-
terized by the states of the surrounding atoms
which are specified by set of numbers (ji, fa,
--jx). For simplicity we further assume
that each of these atoms will realize its vari-
ous states independently of the others. The
stochastic process of the component dwq(Z) is
thus assumed to be Markoffian which is due
to random jumps of the z-th atom. Cor-
responding to our treatment in §2, we de-
scribe this by the matrices D, and 4Q,. The
zero-eigenvectors of D, will be denoted by
@on and ¢y,. Then we see at once that the
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correlation function ¢(#) for a resonating unit
is given by

N

where

9n(8)=Pon €Xp{ —(Dn—2dQn)t}Pon , (7.4)

is the correlation function for the component
dwn(t). Now we expect there exists a gene-
ralization of the central limit theorem of pro-
bability theory which states that under some
conditions the stochastic process of w(?), (7.2),
becomes Gaussian. A rigorous examination
of this assertion is out of space, but we may
say that if

. r N
lim 3 {(dwn—<{dwny)*>=lim >, Cou(dQn)2Pon
N> n=1 N—= n=1

— 2
=Wy~ ,

(7.5)

exists and if the distribution of every down.
satisfies a certain condition such as the Linde-
berg condition to prevent too wide a spread
of its distribution function, the correlation
function, (7.3) approaches to the form (7.1),
for which we now have

N
o' +)o@)=lim > €eundQne= 22" 4Qndon

nroco n=1

=J\lrim Qe P70y, (7.6)

where Q, D, ¢, and ¢, now refer to the
whole configuration space for all of the com-
ponents.

With the use of the expansion formula for
an exponential operator function,

1
ea+b=ew+g e(l—s)abesads
0

1
+S Sse(l—swbe(s-s')abes'adsds’+ e
0Jo
we get

0

t
mf)=<"on|:e-”nc +S o Putt =t AOne= Putidty

0ty
—{—SS e~ PnCt =040 e~ Pult1= 020540 e~ Pnle
0

0
X dt1dt2+0(dw2):| Sbon
=1 +it¢ondﬂn¢on_ St (t—7>¢0ndﬂne— Dy T
0
X AQn()bOndT + O(sz)
—exp {-_ SL (t—r)(dwn(T)Aa)n(ODd‘r—]—o(Acoz)} ,
0
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where
{Awny = PondQndon=0,

can be assumed without loss of generality.

Inserting the above expression into (7.3) and
omitting the sum of the residual terms, we
get

g<t>=exp[—S:a—rxw@)ww»dr], @.7)

where {w(t)w(0))> is identical with (7.6). The
correlation function (7.7) or (7.1) is equivalent
to the Fourier transform of the absorption
spectrum derived by Kubo and Tomita® with
the use of second order perturbation theory.
In particular, the strongly narrowed width of
the spectrum is determined by

S“ (@) (0)> dr= S“ 0,Qe-P"Qdodr
(1] 0

in agreement with Eq. (5.7). It should be
noticed that this limit of strong narrowing is
independent of the Gaussian assumption.

If the relaxation times or the eigenvalues
of D (except the zero eigenvalue) are all de-
generate (see §6), we may write Eq. (7.7) as

g(t)=exp [——a) pzr exp (—w,t) (zf——r)dr:l
0

=exp [—wpXexp (—wd)—1+wb)] .

(7.8)
This should be compared with Eq. (7.25a) of
Kubo and Tomita’s paper. As was discussed
by these authors (7.8) is a typical function to
describe the narrowing process of a Gaussian
spectrum with the second moment w,* in the
presence of a Markoffian motion characterized
by the relaxation time 1/w.. This is the basis
of the theory of motional narrowing of adia-
batic broadening in nuclear magnetic resonance
spectrum first discussed by Bloembergen, Pur-
cell and Pound®.

A particularly simple example of Eq. (7.8)
is the case where every 4w, takes only two
values o1 and —w; and the stochastic matrix
of each component is

— 3w,
%we> ’

D1=(_L}"we
Then ¢,(¢) is easily calculated to be

30
o= [ (e ool -(5-+)1}

20

(- (+)41]
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(02 =wd—w,?) .
Taking the limit of Nw,*>—w,* as N increases
indefinitely, it is easy prove directly Eq. (7.8).
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