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Normal Modes and Density of States
of Disordered Colloidal Solids
D. Kaya,1 N. L. Green,2 C. E. Maloney,3 M. F. Islam1,2*

The normal modes and the density of states (DOS) of any material provide a basis for understanding
its thermal and mechanical transport properties. In perfect crystals, normal modes are plane waves,
but they can be complex in disordered systems. We have experimentally measured normal modes and
the DOS in a disordered colloidal crystal. The DOS shows Debye-like behavior at low energies and an
excess of modes, or Boson peak, at higher energies. The normal modes take the form of plane waves
hybridized with localized short wavelength features in the Debye regime but lose both longitudinal
and transverse plane-wave character at a common energy near the Boson peak.

Normal modes provide a framework for
understanding the dynamical excitations
of a system in diverse fields ranging from

architecture to molecular biology. The normal
modes are those degrees of freedomwhich, at least
for small perturbations away from equilibrium, do
not interact with each other. Each mode oscillates
independently of the others with its own charac-
teristic frequency. The distribution of these frequen-
cies, known as the density of states (DOS), and the
structure of the modes are used as a starting point
to calculate the heat capacity, thermal conductivity,
and elastic constants in solids (1).

In a perfect crystal, due to the translational
symmetry, the normalmodesmust be planewaves.
Once disorder is introduced into a perfect crystal,
the modes become more complicated, and the
related DOS and thermodynamical properties be-
gin to deviate from those in the perfect system.

The disorder can be geometrical in nature, as in
the case of structural glasses (2). Even geomet-
rically perfect crystals can become disordered if
the interactions between nearest neighbors or the
masses of the particles are not uniform (3). In fact,
disordered crystals are often used as a simple the-
oretical framework to understand generic emer-
gent behavior in other types of disordered systems,
such as structural glasses (4–6). In theoretical
models of both disordered crystals and structural
glasses, the key features that emerge are a Debye-
like regimewith hybridization of localized regions
of low shear modulus with the low-frequency (long
wavelength) plane waves, and an excess in the

DOS at higher frequencies known as the Boson
peak (4, 5, 7–9). Normalmodes and theDOShave
not been directly measured experimentally in a
disordered system, in part because for the case of
disordered atomic systems, directly tracking the
dynamics of individual atoms is not experimen-
tally feasible.

Colloidal suspensions have been used as mod-
el systems to study various phenomena that occur
in other condensed matter systems, such as atomic
liquids, crystals, and glasses (10–15). In colloidal
systems, one may use optical microscopy to ob-
serve individual particlemotionswithin the interior
of a system (10, 14, 13). With traditional hard-
sphere colloidal particles such as silica spheres, one
may readily produce a crystal or an amorphous
structural glass. However, the perfect crystals
produced with these conventional particles show
spatially homogeneous fluctuations (16–20). Here,
we studied a face-centered-cubic (fcc) crystal made
of deformable microgel colloidal particles with es-
sentially perfect geometrical order yet strongly het-
erogeneous fluctuations. The heterogeneitymay be
caused by particle-to-particle variations in the
microgel stiffness and is a novel characteristic of
the deformable microgel colloids (15).

Normal mode energies of perfect colloidal
crystals are usually obtained by assuming a plane-
wave form for the modes and then measuring the
amplitudes of the planewaves (16,17,20),much as
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Fig. 1. Probability distribution of temporal
fluctuations in nearest-neighbor spacing Daij=aij.
The distribution is quite wide, with an average of
about 1.9% and an RMS width of about 0.23%.
(Inset 1) Probability distribution of nearest-neigh-
bor spacing in the equilibrium configuration,aij=a0.
The relative spatial fluctuations in aij were about
2.1%. The solid line is a Gaussian fit through the
data. The spatial fluctuations in Daij were ~5 times
as large as the spatial fluctuations inaij. (Inset 2)
MSD averaged over particles reaches a well-defined
plateau.
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one obtains the dispersion curves in an atomic
system through scattering experiments (1). How-
ever, for any disordered system with heterogeneity,
such as our system, one cannot assume, a priori,
that the normal modes are plane waves. Therefore,
we developed an approach to measure the cor-
relations in particle displacements to determine the
normal modes themselves and their DOS (21).
The anomalous normal mode structure and DOS
of our microgel colloidal system exhibited some
theoretically predicted universal features of both
disordered crystals (4, 5) and structural glasses
(7–9) and provided insights into the origin of the
Boson peak.Moreover, our approach is quite gen-
eral and can also be used to directly reconstruct the
normal modes of other colloidal systems such as
structural glasses, perfect crystals with isolated
point or line defects, and the like.

The degree of geometrical order of the equi-
librium configuration and the spatial heterogeneity
of the fluctuations away from equilibrium in our
system are shown in Fig. 1. Time-averaged po-

sitions, r
→

i, of the particles were computed from the
tracks, and particle displacements were calculated
as u

→

iðtÞ ¼ r
→

iðtÞ − r
→

i . The resolution in particle
displacements was less than 5 nm (22, 23). Single-
particle displacement distributions were Gaussian,
with an anisotropy of less than 0.07. The nearest-
neighbor separations, aij ¼ j r→i− r→j j, between the
time-averaged positions of the centers of all par-
ticles were more or less homogeneous through-
out the system (fig. S2). The spatial average value
of aij, denoted as a0, was 1.18 mm. The normal-
ized probability distribution of aij=a0, shown in
inset 1 of Fig. 1, had a relative root mean square
(RMS) variation of 2.1%. This demonstrates the
relatively high degree of geometrical order in our
system. The average mean squared displacement
(MSD) with a clear plateau indicating solid-like
behavior and the absence of diffusion are shown
in inset 2 of Fig. 1.

We then focused on the temporal fluctuations
in the instantaneous nearest-neighbor separations,
aijðtÞ ¼ jr→i ðtÞ − r→j ðtÞj, to determine the degree of

disorder in our system. The time-dependent fluc-
tuations of aij(t) for four random pairs of particles
are shown in fig. S3. Because the fluctuations in
aij(t) (fig. S3) and the average RMS particle dis-
placements (inset 2 ofFig. 1)were significantly larger
than the experimental resolution in particle dis-
placements, our subsequent analyses are not limited
by experimental resolution (24). The temporal RMS

fluctuations for eachpair,Daij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaijðtÞ − aijÞ2

q
,

are shown in fig. S4, and the probability distribution
of the normalized values,PðDaij= aijÞ, is shown in
the main plot of Fig. 1. Without heterogeneous
interactions between the particles, in a geometrically
ordered colloidal crystal like ours, the Daij would
necessarily be identical and PðDaij= aijÞ would be
very narrow. It is the internal degrees of freedom
corresponding to the stiffness of individual hydrogel
particles that can allow for these particle-to-particle
variations in our system. The values of Daij for any
given pair defined over intermediate time windows
were relatively steady over the entire duration of
data collection and did not depend on time-
averaging. The average Daij= aij was about 1.9%,
and the width of the distribution was 0.23%,which
shows that the spatial fluctuations in Daij were
approximately five times as large as the spatial
fluctuations in aij. We verified that there was vir-
tually no correlation between Daij and aij for any
given pair (i.e., there was little correlation between
figs. S2 and S4), indicating that the heterogeneous
dynamics was due to nonuniform interactions
between particles rather than geometrical irregu-
larities in the crystal. The localMSDs of individual
particles were also spatially heterogeneous, giving
further indication of the presence of nonuniform
interactions. We have performed molecular dy-
namics simulations with crystals of soft particles of
spatially uncorrelated stiffness that showed regions
of correlated dynamical fluctuations (fig. S5)
similar to the ones observed here (fig. S4), despite
the underlying uncorrelated particle stiffness (21).

Next, we determined the normal modes from
the observed particle displacement fields (25). In a
harmonic system governed by equipartition of en-
ergy, the two-point correlations, Giajb ≐ 〈uiauib〉
(where the Latin letters index particles and the
Greek letters index Cartesian components with
an implicit Einstein summation convention),
are given in terms of the normal modes as (26):
Giajb ¼ ∑pðy p

iay
p
jbÞkBT=lp, wherey p

ia is the p-
th normal mode, lp is the p-th energy eigen-
value, kB is the Boltzmann constant, and T is
the temperature. That is, the normal modes are
those degrees of freedom that appear uncorre-
lated with a mean squared amplitude of kBT/lp.
We emphasize that no assumptions are made
about the underlying dynamics beyond that
they give the appropriate probability for observ-
ing a given fluctuation away from the equilibri-
um configuration. If one knows the structure of
the y p

ia a priori, for example in a homogeneous
perfect crystal where the y p

ia must be plane
waves, one may decompose uia onto the known

Fig. 3. (A to D) Four
normal modes taken from
various regimes indicated
in Fig. 2. For each mode,
we show the normalized
mode vectors in real space
alongwith the squaredam-
plitude of the projection
onto transverse and longi-
tudinal plane waves. In
the Debye regime, the in-
tensity is peaked in Fourier
space around a character-
istic wavevector, q0. Above
the Boson peak, the inten-
sity distribution is uniform
throughout the Brillouin
zone.
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y p
ia and use these mode amplitudes to estimate

(17) lp=kBT ¼ 〈ð∑iuiay
p
iaÞ2〉−1.

When one does not know the y p
ia a priori,

such as for disordered systems like ours, other
methods are necessary to estimate the lp and the
yip themselves. To do this, one may diagonalize
the observed two-point correlations, %Gij, the so-
called sample covariance, to obtain the yip. This
procedure has been used to infer normalmodes in
simulations of small molecular systems (27), but
care must be taken when applying it to larger
systems. It is known that the procedure is highly
sensitive to the number of independent observa-
tions (28). However, we have observed that the
spectrum of energy eigenvalues converged by
about 20,000 independent observations of the
displacement field.

In conventional studies of disordered systems,
one generally normalizes the observed DOS by
the Debye prediction (4, 5, 7–9), where a plateau
is obtained at low energy. Because we observed a
two-dimensional (2D) slice of a 3D system, we
first determined the appropriate normalization
factor for our observed DOS. At low w, where
w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSDl=ðkBTÞ
p

, the DOS, gw = dN/dw,
exhibited a power-law regime for almost a decade
where dN/dw ~w2 andN is the index of the mode.
We therefore normalized gw by w

2. Here, we intro-
duce w to make connections with theoretical work
where one usually works with

ffiffiffi
l

p
rather than l.

In Fig. 2, we show gw/w
2. Each histogram cor-

responds to a sample covariance obtained using a
different total number of independent displacement
field observations: 4000, 8000, 12,000, 16,000, and
21,500, indicating that the spectrum has converged.
Below w ≈ 1.2, gw/w

2 shows a Debye-like plateau.
At higherw, gw/w

2 rises to a Boson peak atw ~ 1.7
before rapidly falling. This general behavior is
consistent with that seen generically in numerical
models of structural glasses (29, 7, 8, 30, 31, 9)
and elastically disordered lattices (5, 4).

To analyze the spatial structure of the modes,
we decomposed them onto longitudinal and trans-
verse plane waves using standard Fourier analysis
techniques. Figure 3 shows four modes taken from
various regions of the spectrum, as indicated in Fig.
2. In theDebye regime, themodes, shown in Fig. 3,
A and B, were composed primarily of plane waves
with a single dominant wavevector, q0, which
were hybridized with localized short-wavelength
features. On approach to the Boson peak, q0
saturated at qBP, which corresponds to about five
to six particle diameters for the transverse plane
waves and about twice that wavelength for the

longitudinal plane waves. Above the Boson peak,
the intensity was distributed broadly throughout
the Brillouin zone, and all plane-wave character
was lost (Fig. 3, C and D, and movie S1). Near
the Boson peak, the effects of the lattice became
noticeable, and the mode shown in Fig. 3C had
pronounced broken symmetry with intensity accu-
mulating around the six-fold symmetric crystal
axes.

Our observation of the gw ~ w2 scaling of the
DOS at low w implies a relationship between q0
and w. Simply counting the number of plane
waves in 2D gives dN/dq ~ q (1). Then dw/dq ~
(dw/dN)(dN/dq) ~ w−2q, which gives q0 ~ w3/2.
To test this prediction and to quantitatively deter-
mine q0 nearqBP, we determined q0 as a function of
w. We first averaged the Fourier decompositions
along transverse and longitudinal plane waves over
a small range (~10%) of w. Then the w-averaged
Fourier decompositions were averaged over angles
(again, ~10% in q) to obtainET (w, q) andEL(w, q),
where subscripts T and Lwere contributions along
the directions of transverse and longitudinal plane
waves. For each w, we found that, below the
Boson peak,ET (w, q) andEL(w, q) could be fit to a
Lorentzian profile. Several of these ET (w, q) and
EL(w, q) with the Lorentzian fits (solid lines) at
various w are shown in Fig. 4, A and B. The
location of the Lorentzian peak then gave q0 for a
given w. Our analysis showed that q0 ~ w3/2, as
shown in Fig. 4C. We also found that the point at
which a Lorentzian fit became unfeasible was at an
w near the Boson peak, and this was true for both
the longitudinal and transverse contributions.

In numerical models of structural glasses (9),
only the transverse plane waves become over-
damped near the Boson peak, and there was little
correlationwith the longitudinalmodes. In contrast,
in our system of disordered crystals, the sharply
peaked contribution to the normal modes goes
away for both longitudinal and transverse plane
waves at the Boson peak. This raises the question
of how the emergent properties of various kinds
of disordered solids depend on the nature of the
disorder.

In conclusion, we have determined the nor-
mal modes and DOS of a strongly disordered
colloidal crystal composed of deformable micro-
gel particles. This type of disorder is similar to that
used in theoretical models. We have established
that Debye-like behavior at low energy with a
Boson peak at higher energy are generic features
of disordered solids, whereas the nature of the
vanishing of the plane-wave character near the

Boson peak may depend on particular details of
the disorder. The general procedure presented here
will be an important tool to identify the impacts, at
a particle-scale level, of different types of disorder
on the structure of the normal modes and elasticity
that are present in various atomic, molecular, and
colloidal crystals and glasses.
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Fig. 4. The w and q-
averaged Fourier decom-
positions of the normal
modes along (A) the trans-
verse (T) and (B) the lon-
gitudinal (L) plane waves
versus q for a few w val-
ues. The solid lines are
Lorentzian fits through the data. (C) q0, obtained from the Lorentzian peak location, plotted against w shows
that q0 ~ w3/2.
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