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Scattering of Two-Dimensional Electron Gas
on the Semibounded Three-Dimensional Electron Gas

By
I. I. Boiko and Yu. M. SIRENKO

From first principles, basing on the averaging of the equation for exact fluctuating distribution functions,
the classical kinetic equation is derived for a two-dimensional electron gas (2DEG), interacting with
a random potential of an external system. Using the approximation of a Fermi function with a shifted
argument for the 2DEG distribution function the frequencies of energy and momentum relaxation
are obtained. In the case of equilibrium external system the frequencies are expressed in terms
of the dielectric functions of the 2DEG and external system. Energy and momentum relaxation
frequencies of 2DEG, scattered on the three-dimensional electron gas, are calculated.

W3 nmepBeiX OPHHUMIIOB, METOIOM YCPEAHEHHS YPaBHEHUH Ut TOUHBIX (QIIyKTyHpyommx GyHkumi
pacipeeieHus, BHIBEJCHO KJIACCHYCCKOE KMHETHYECKOE YPAaBHEHHE JUIS JBYMEPHOTO 3JEKTPOHHOTO
raza (2MOT'), B3auMOZEHCTBYIOWIETO CO CNYYAHHBIM MOTCHUMANIOM BHEIIHedl cucrembl. B mpu-
6amxeHun hepMHUEBCKOM (PYHKIINH CO CIBHHYTHIM apryMEHTOM A GYHKLHUH pacripeAeIcHUs HalAeHbI
44CTOTHI pejlaKcalyy 3Heprud 1 umitybca 2MOI. B cinyyae paBHOBECHO# BHEIIIHER CHCTEMEBI YaCTOTHI
BBIpAXEHB! Yepe3 AudaekTpyyeckue (yHkuun 2MOI H BHemHe# cucreMbl. PaccyHTaHbl 4acTOTb
pejakcaudu JHepruM u ummnyssca 2MOD mpH paccessHUM Ha TOJyOTPaHUYCHHOM TPEXMEPHOM
JJIEKTPOHHOM Tra3se.

1. Intreduction

Electron—electron collisions in a closed system of charges cannot be responsible by
themselves for energy and momentum relaxation, but have only an indirect influence on
kinetic coefficients. The interaction between electrons, which belong to different systems
and take different parts in energy and momentum transfer, can provide an efficient relaxation.

In this paper we consider the scattering of a two-dimensional electron gas (2DEG) on
the semibounded three-dimensional electron gas (3DEG). Particles of the 3DEG occupy a
halfspace separated by a distance [ from the region of the 2DEG disposition. Such a situation
occurs, for example, in heterojunctions and MIS structures, where 2DEG is separated by
a depletion layer or oxide from the 3DEG. Another case is a thin layer of a narrow-gap
semiconductor in a wide-gap one.

Intricate geometry of the system, presence of polar medium, and several kinds of mutually
screening and scattering charge carriers makes the problem of complete and consistent
allowance for all relevant effects nontrivial. Therefore, in Section 2 we derive the kinetic
equation for 2DEG interacting with some external system. The equation is derived from
first principles after the fashion of Klimontovich and Silin [1 to 3] and Rostoker [4]. In
Section 3 we obtain the frequencies of 2DEG momentum and energy relaxation. For an equi-
librium external system the frequencies can be expressed in a convenient form in terms of the
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dielectric function of the system. The latter is determined in Section 4 for a rather general
model of an external system, in particular, that with the semibounded 3DEG. Calculation
of the relaxation frequencies of the 2DEG scattering on 3DEG is performed in Section 3.

The 2DEG is supposed to occupy the lowest subband; transitions to other subbands are
out of consideration. Both 2DEG and 3DEG are treated classically.

2. Kinetic Equation for 2DEG

For convenience in the beginning we consider an extremely thin layer of 2DEG (z = 0
plane). The generalization to the case of a finite extension ion z-direction will be given below. -

We start with introducing the exact, fluctuating microscopic distribution function of the
2DEG,

m
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ofr, v,) = 5( ~ ) Y 8(r — ri(0) 30 — v(0),

where r = (x, y), r;(t) and v;(¢) being coordinate and velocity of the i-th individual particle,
the sum is taken over all 2DEG particles. The function ¢ satisfies the equation
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Here ¢(r, t) is exact random potential, created by 2DEG particles and external system in
z = 0 plane. We divide ¢ and ¢ into averaged (over a statistical ensemble) and fluctuating
parts '

olr,v,0) = f(r,v, 1) + 8g(r, v, 1), o t) = ¢(r 1) + dolr,1).

Taking an average of (1) we obtain the kinetic equation for the 2DEG one-particle
distribution function f(r, v, 1) = <e(r, v, 1)},
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where the collisional term is .
e /08¢ 659>
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Subtracting (2) from (1) we find
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Writing down (4) we omitted the terms

eldp 1 00¢ e | 06¢p 0B 06¢p 0d¢
— = ==-(wxH)|— == — - (===,
m|or ¢ dv . m| or Ov or Ov
corresponding to the direct influence of average external fields and collisions on the

fluctuations (criteria of neglections are presented below).
Fluctuating part of the potential ¢(r, t) can be split into the sum

do(r, 1) = dos(r, t) + do.(r, ).
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Here 3¢ is the fluctuation of the external system potential (e.g. that of impurities, phonons,
other charge carriers) in the absence of 2DEG; 8¢, is the potential of 2DEG particles,
“dressed” by the potential induced in the polar medium. In the lowest order of perturbation
theory the relation between 8¢, and 8¢ can be expressed within the linear response
approximation, in Fourier representation this connection is specified by means of the
dielectric function of the external system &g(w, g),

2ne

ges(w, q)

where the density fluctuation is

5p.(w, 9) = Sn(w,9); 4= 1), N &)

5 t—z('">zfs t)dzv (6)
n(r, t) = s olr, v, v.

The explicit form of g(w, q) is specified by the properties of the external system; for an
unbounded system without spatial dispersion &g coincides with the dielectric permittivity
of the medium.

Considering 2DEG as a homogeneous and quasistationary gas we perform the Fourier
transform (one-side in time, two-side in space) over (4); temporarily we write f(v) instead
of f(r, v, t). By solving the transformed equation (4) together with (5) and (6) we obtain

id%(t=04q1v e g f(v)

oo(w, q, v) = —-— s 7
ow. 4. v) w — qv + 0 mw—qv+i0q ov @

4mie m\* [0t =0,q,0v &,
50(0,g) = Q—)j“ 0 g2y 4 SO D, (0 g), ®)

. qe(w, q) \2nh o — qv + i0 &(w, 9)
where
&(w, g) = &5(w, 9) + Aeyp(w, q); )
, .
)
Az, q) =~ J 90//0) _ 4z, (10)
ph’q ) o — qv + i0

is dielectric permittivity of 2DEG [5].
Equations (7) and (8) are employed in the calculation of the collision integral (3). Taking
the Fourier transform of (3) we find

e 0
Stf=— — Im (3¢ 8¢), , do d*q. 11
/ (2n)3quav 8¢ 807, 4 dw d*q (11)

We set up the correlator of values (7) and (8), using for the correlator of initial functions
og(t = 0, g, v) a form analogous to that of the three-dimensional case [5],

2n

2h2 »
SO — ()] 8(v — ). (12)

m

(Be(t = 0,4, v) de(t = 0,4, v)> = (2m)* 3(g + ¢)
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Finally, we get

4 2
8¢ 8¢)0,q = il F@1 — f(v)] 8w — gqv)
qe(w, 9)
4ne’m 1 af(v)f 2 . .
T PR e g qr — o + 0" oo o f(@)[1 — f(2)] 8w — qv)
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Substituting (13) into (11) we obtain the integral of collisions (see also [7, 8]). For
convenience we divide it into two parts, relating to the mutual scattering of 2DEG particles
and their scattering on the external system

Stf=St.f +Stsf,

Stoof = - f d’qqﬁ{—1—~ f 20 3(gv — qv)
ee 2nh? v g? le(gv, )
) of (v
x [q 7O w1t~ 5@ - e L1 - f(v)]}}, (14)
) ov
_ € [, g0 [Ime(gr,q)
sl = oo f ‘ aa»{ jotas, O
x [f(v) - S + 2929 0 “”]}. 15)
(quym ov
Here the effective temperature Ty(w, q) is defined by the equation
<6(p§>m,q — 4nTs(w, q) Im 85(60, q (16)

wg (o, @

For an equilibrium external system with temperature T the effective temperature Ti(o, 9)
coincides with T; and (16) becomes the fluctuative—dissipative theorem.

It should be noticed that the kinetic equation (2) with collision integral given by (14),
(15) has the Fokker-Planck form. The collision integral (14) is similar to that of
Lehnard-Balescu for 3DEG [3, 6]. Equation (15) specifies the 2DEG scattering on the
fluctuating potential of the external system. The screening in (14) and (15) is carried out
both by 2DEG particles and by charges of the external system. The collision integral (14)
is turned to zero by the Fermi function with shifted argument; for 2DEG and external
system in equilibrium with each other, the Fermi function with temperature Ty turns to
zero collision integral (15).

Now we allow for a finite thickness of 2DEG in z-direction; let g(z) be the distribution
function normalized by the condition | g(z) dz = 1. Thereby instead of potential ¢(r, 1, z = 0)
the value o(r, t) = | dz g(2) ¢(r, t, z) must be taken, whereas

2 2 d ’ r;
S0 0.2 = 272 (1) J _d78(@) J Sol@, 4. 9 d%. )
q 2nh &(w, ¢, 2, 2)
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Here the dielectric function &g(w, g; z, z') specifies the response in the point z on the
perturbation in z'.

As a result in above-stated equations one has

! =szjdz'_§w, (18)
SS((D, ‘I) 8S((Da q5 2, Zl)
(893> ,.q = [ dz [ dz' g(2) g(2') {Beps(2) 89s(2)) 0, g - (19)

Several remarks must be made upon the applicability of the obtained kinetic equations.
Firstly, classical treatment of 2DEG and external system imposes restrictions on #§ and A& —
actual values of transferred momentum and energy,

hd = h(gv)oee < T, Ty;  hi < mo, (20)

where v & |/ W/m, W being the characteristic energy (thermal or Fermi) of 2DEG particles.

Furthermore, in the derivation of the collision integrdl the equation for fluctuations (4)
was taken in fieldless and collisionless approximation. This requires the inequalities (for
actual ¢ and v)

qu, qsv > V(q, U), wEs wH > (21)
where g, = 2ne’*n/W is the inverse screening length in 2DEG [5], n the 2DEG concentratidn,
wg = eE/mv, oy = eH[mc.

The frequency v(g, v) of collisions with momentum transfer hg is evaluated as
St f(q, v) =~ v(q, v) 3f (g, v) and has the form
_ €’qIm Ae;p(ge, g) + Im 5o, g)

my ~ le(qv, 41° ‘
Here v is the frequency of 2DEG particle collisions with the external system. The frequency

of electron—electron collisions is v,, = e*ng/m'>W 32 |¢|2. Insertion of v, in (28) gives two
inequalities,

enWrle* <1, g '> elg| W.

V= Vee + veS

The first inequality requires the mean potential energy to be small as compared to the
mean kinetic energy (weakly nonideal 2D plasma). The second one restricts the consideration
by distance, where the potential energy of interaction between the particles is less than the
kinetic energy (Born approximation).

3. Freqhencies of Momentum and Energy Relaxation

Employing (2) with collision integral (14), (15) we write down the momentum and energy
balance equations.

Introducing velocity averaging by
2 m \?
LAQ)Y = —— (——) jdzvf (r, v, 1) A(v),
n(r, t) \2nh

we define average characteristic of 2DEG — current density j = en «v}), momentum flux
density n;; = mnvp;», kinetic energy density & = nmv?/2), flux of kinetic energy density
Q = n omv*/2.
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The balance equations have the form

o 1

1+£Vﬁ:i@[85+~gxm_ge], | @)

o m m nc

o€ '

a—l—dinzj'E—ng’. (23)
Here — & = mvf ! St [ is a friction force against medium, # = — (m/2)

x ¥ "1 Sts /Y is a power transferred (per particle) to the external system. Interaction
between 2DEG particles, specified by (14), does not contribute to # and 2.
With help of (15) the equations for £ and # are reduced to the form

()£ 2o e
#)  mn\2mh q qv) le(qr, @)

Ty(qv,
X {f(v) [ — f(o) + 24 ‘I)qaf(v)}.
(q”)m ov

To evaluate 2 in (24) we employ a model function fy(v) of Fermi form with some
temperature T. For an equilibrium external system that yields # = v (T — Ty). Applying
a Fermi function with shifted argument f,(v — u) to the equation for %, after linearization
in u we can present Z in the form %#; = v{jmu;. Linearization is valid if the drift velocity u
is small compared with the characteristic velocity of 2DEG particles. A sufficient condition
would be (T — T)/T < vy/v,.

For the dielectric function &(w, q), depending on |g| only, we have vj; = v,d;; and

mYij

Vi 1 do ®? \ Im gg(w, q) Im Aesh(w, q)
== |—= 4944\, , 2 : (25)
v/ mm g o Tq"/2m le(c, gl

The superscript “eq” indicates that the value A¢** must be calculated with-an equilibrium
distribution function.

For a stationary and homogeneous system in the absence of a magnetic field the
energy balance equation takes the form jE = nv,(T — Tg). Hence it follows

T = T,(1 + e2E*/mTyv,v,).

(24)

It should be mentioned that the model function f, used in the derivation of (25) is an
exact solution of the kinetic equation in the limit of strong e—e scattering (vi§® < v, in the
actual region of energy). In many cases (excluding the well-known peculiarities of optical
phonon scattering [9]) even in the opposite limite of v.g > v,., application of model functions
gives results that do not differ much from the exact ones [10].

4. Dielectric Function of the System

In this section we calculate the function &g(w, ) for a model system of a rather general
form, applicable to the cases of single heterojunction or MIS structure (Fig. 1 a) and double
heterojunction (Fig. 1b). Values ¢_, ¢, and &, are dielectric permittivities in the corre-
sponding regions; 2DEG adjoins the z = 0 plane on the right (Fig. 1a) or is confined in
the 0 < z < Alayer; 3DEG occupies the halfspace z < —I. At first we shall not specify the
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Fig. 1. Model of a) single heterojunc-
tion or MIS structure and b) double

e £y &_ &y €,  heterojunction
1] oz A IRE
a b

properties of the medium in the z < —/ region (impurities, 3DEG, metal electrode, another
heterojunction, etc. can be disposed here). The influence of this medium is formally taken
into account by a boundary condition of general form, relating the fluctuating parts of
induction and potential,

—¢_qdo(w,q,z= -1+ 0)

oD.(w, ¢,z = -1+ 0) = : (26)

Blw, q)
Here the function f(w, q) pattern is set by the properties of the medium in the z < —I
region. For instance, in the case of metal electrode in the z = —I plane we have f = 0;

for a medium homogeneous in the z < 0 region § = 1.

In accordance with (18), the dielectric function g5(w, g) is specified by the 2DEG density
function g(z) and dielectric function of inhomogeneous system &g(w, ¢; z, z') in the region,
occupied by 2DEG. For calculation of &g(w, ¢, z, z') one must find the potential created in
the z-plane by the source, located in the z'-plane (cf. (17)). The result for model b is
O<z<z <))

&(w, g, 2, 2')
& goler + & )cosh gl + (e2 + &,&_)sinh g4
2 (go cosh gz + &_ sinh gz) [g, cosh (A — 2) + ¢, sinh g(A — 2)}

iyl

27

where

B(w,q)tanh gl + 1
&

p(w, g) + tanh gl

3]

_=E& (w9 = (28)
stands for the effective dielectric permittivity of the medium in the z < —1 region;
&, ¢, 2, 2)) <, = &5(0, ¢, 2/, 2)| , 2,.. The equation for model a can be obtained from (27)
by taking the limit 4 — oo and substituting ¢, for ¢, (see also [11].

By making use of (18) and the variation density function [12] of a single heterojunction
g(z) = b*z? exp (—bz)/2, we find
ety +62)(1 + g/b)°

) T ey 4 ) (Lt /b (1 + 9q/8b + 3REY)

(29)

In the case of § = 1 (29) goes over into the corresponding result of [5].
In the case of a double heterojunction with square potential well we use
g(z) = (2/4) sin® (nz/4). Insertion of (27) into (18) gives

11 { 3(g))* + 8n2 32t

eslo.q) & lgAllgh) + 4n%]  (qA) [(gh) + 4nP

y 2¢,&_(cosh g4 — 1) + gole, + &_)sinh qi}
go(6- + &4)cosh gd + (e3 + &_e,)sinh gA)

(30)
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In the particular case of g, = &, = &_ (30) is consistent with the equation for the form
factor H(g) in [13].

In the limit of an extremely thin layer of 2DEG, (29) and (30) yield

ey +E (0,9 _ ¢ + &- B(w, g) tanh gl + 1 (1)

+
2 2 2 B(w,q) + tanh gl

it

(o, q) =

Further specification of the dielectric function s5(w, g) requires an explicit form of the
function f(w, ¢), defined by the properties of the system in the z < —1I region (cf. (26)). We
consider the halfspace z < —I being occupied by a homogenéous 3DEG with a lattice
constant ¢_ in the region. To find B(w, q) one must solve simultaneously the Poisson
equation and kinetic equation for fluctuations 8f** of the 3DEG distribution function
(with additional boundary condition on 8 at z = —1). In the case of specular reflection
of electrons at the boundary, the problem can be solved easily by an implicit technique using
fictitious interface charges [14]. As a result we obtain

@

Blw, q) = &4

j Kle_ + Ae3D(w o KTk 8B
Here Aeyp(w, k) is the contribution of unbounded 3DEG to the dielectric permittivity of
the medium (see, e.g., [6]).

The function B(w, q) defined by (32) is widely employed in problems dealing with the
interaction between a particle and a semibounded plasma. The calculation of B(w, ¢) is
usually based on the “plasmon pole approximation” [15, 16]. However, in some cases
(including that under consideration) the frequencies contributing to the kinetic coefficients
may differ much from the plasmon frequency and a problem of more appropriate treatment
arises. The calculation of B(w, ¢) in some limiting cases is given in the Appendix.

5. Relaxation Frequencies of 2DEG, Scattering on 3DEG

For conveniency, in this section we denote values relating to 2DEG (temperature,
concentration, effective mass of carriers, etc.), by subscript 2 (e.g. T;, n,, m,) and those of
3DEG - by subscript 3 (75, n;, m;, etc.).

To calculate the momentum and energy relaxation frequencies of a nondegenerate 2DEG
we employ (25) and familiar expressions for 2DEG permittivity [5],

(Vm) — ﬁT_ J‘ q dq J d_(‘g ( 1 ) e (w/quar)? Im 68(609 CI) , (33)
A%/ 2)/aT,, J o \Qw/qoyr)? le(w, @)l

where v,7 = |/2T,/m, is the thermal velocity of 2DEG.
By using (29) to (31) for ¢,(w, q) we find

Im Es((l), ‘1) _ —2¢_Im ﬁ(ﬂ), Q) F((D, Q)
le(w,g)*  cosh®glle_(1 + Btanhql) + (6. + 2 Ae,p) (tanh gl)|*’

In the actual range of w, q the function F(w, q) = 1, for an extremely thin layer of 2DEG
F(w, g) = 1. For simplicity in what follows we put F(w, q) = 1.
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In the case of low velocities v, the integration over w in (33) is cut off by the exponential
factor exp [— (w/qu,r)?]. Then in the actual range of  and ¢ we have Im 8 ~ — o, || < 1
and tanh gl ~ 1. Carring out integration over @ in (33) we arrive at

? o2
vmzvezs_ez'( q* dq [_ Imﬂ(w,q)] 1 (34)

m, J cosh? gl w e2(q)
o

Heree(g) = (1/2) (64 + &-) (1 + 1/qlye7), Lhsr = (€4 + &_) To/4me*n, is the screening length
in the nondegenerate 2DEG, the ratio in square brackets does not depend on w.

We introduce the screening length in 3DEG as I3, = v3/w,, where v; and w,, are defined
in the Appendix.

(i) The case of | > ls,, v < v;/l5,. The integration region is limited by the value /™. In
this region '
0"133 In Lo

wp qvs

Im B(w, ) ® —c3

and (34) implies

e?e. I l

Vp RV, X €3 ——— - —— .
2.-1
(7Y myval, 1y,

(i) The case of 1 < l, v,p < vs. In the actual region of I3,' < g <I™' we have
Im B(w, ) ¥ —c,0w?/(gvs)*. Relaxation frequencies are

e_e?

/

(@) Bamavs

Ve RV, R C

Characteristic wave vector § and value ¢’ are determined by the relation between relevant
characteristic lengths. In the case of
Imax = min (l_l’mZUZT/h’ M3U3/h, T2(6_ + 8+)/2€2) > Qmin = MaX (l;sl’ 12_511" v3/v3)

we have ¢ = 2¢, In (¢ex/Gmin), £(@) = (6~ + £,)/2. Here v, is the mean collison frequency
in 3DEG.

Next we proceed to the case of high velocities v,,, where the exponential factor in (34)
is not actual.

(ili) The case of | » ly,, Va7 ® v,3lfl5,. The main contribution to (33) is given by w = ,
and ¢ § 171, in this region Im B(w, q) & —gl;, and we arrive at

(Vm) ~ 82 0271356_ ( 1 )
v) @07 PT, \@lvarks)

(iv) The case of | <€ l5,, vy7 > v5. The main contribution to (33) is given by @ ~ qv,,
then Im B(w, q) ¥ —(ql3,) "% and

<v,,,)~c” e? v”s_< 1 )
Vv, &(@) BT, \(vs/v2r) .

Assuming the inequality ¢ > Guin We g€t ¢” = In (@./qmin) and &(§) = (6 + £,)/2.
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Analysis of the considered limiting cases provides an interpolation form for relaxation
frequencies of nondegenerate 2DEG, scattering on the equilibrium 3DEG,

- dnetn, (m,ym3)'? 1 (35)
"R [Tymy + Wamy(l + BBIPR L+ Iy,
UL S (36)

. e
Ve my Ws(l + I/13)

Here the characteristic energy of 3DEG, W, is defined in the Appendix, the representative
wave vector § is determined by the region of g, giving the main contribution in (33).

It should be observed that in the case of I < I, the frequencies v,, and v, are essentially
the same as for scattering of 3DEG particles on another three-dimensional gas [3, 6].
Relaxation frequencies may logarithmically depend on /, for extremely small / the dependence
vanishes.

In the opposite limit (I > I;,(1 + v,7/v;)), spatial separation of 2DEG and 3DEG leads
to the decrease of the transferred momentum #q (the upper limit is set by #l~'). As a result
the frequencies v,, and v, are drawn together even if m; > m,. Relaxation frequencies depend
onlasv,, ~ 7% 2(I""), ie. the frequencies diminish more rapidly than [~*. In the case
ofv,r > vyintheintermediate regionly, < | <€ A3,0,,/v; wehavev, ~ " 3andv, ~ [71.

According to (35) and (36), temperature and concentration dependence of v, , (if not
allowing for the peculiarities in screening) differ from the three-dimensional one only in the
case of I » I3,

Our consideration is based upon a classical and perturbative treatment of weakly nonideal
2DEG and 3DEG, which imposes the restriction

4 < g, = min (myv,/h, mycsfh, W(e, + £_)/2e%, Wae_Je?).

Here v, = |/2W,/m,, W, = max (T, F,) are 2DEG characteristic velocity and energy,
F, = nh®n,/m? is the Fermi energy of 2DEG.

Consistent account for quantum and nonperturbative effects provides the automatic
cut-off at g, i.e. on inverse de Broglie or Landau lengths [3, 6]. For an approximate analytical
calculation (within the accuracy of order unity) we can introduce this cut-off artificially.
Detailed analysis of all limiting cases leads to the result, valid in the whole range of
parameters of weakly nonideal 2DEG and 3DEG,

<vg>z e? 3( gls, >2< @? )g, | an
Vi Wzvzsz(‘ﬂ qvs 1_}_421%5 ZTZQZ/mZ ;

where characteristic wave vector and frequency are

g = min {Guay I3 + 0/l + T/h(v; + 03)} 5 Guex=min ("', q,),

@ = min {T/A, quma¥2s Gmax+ 13" + 0/l29) v3},

L =1+ In{l + /l3{(gmax+ &/v3) + Min [ T/, + 0/ + 151},
6@ = (e, +e) (L + 1/g1,)/12; 1y, = 2me’n, /W, .

The value # = 0 for v, and n = 1 for v,

Equation (37) goes over into (35), (36) in the particular case of T, > F, and
g. > min ("4 1. + Y.
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Estimations show that in 2DEG momentum relaxation the scattering on 3DEG cannot
compete with that on impurities, with the exception of some special cases, where the 3DEG
concentration is higher than the impurity one. The case of energy relaxation is more
interesting. In the region of temperature near 35 K the frequency of energy relaxation on
3DEG can exceed markedly that on the lattice. In fact, for GaAs-AlGaAs heterostructure
(m, =~ my = 0.066mgy, &, ~ e. ~ 12), for n, = 10 cm™2, n; = 107 ecm 3, I = 10 nm
numerical evaluation gives for the energy relaxation on 3DEG the frequency v, &~ 10%s71,
whereas the experimental value for scattering on DP and LO phonons is equal to 2 x 10% s ™!
{17

Appendix

To calculate the function f(w, q) defined by (31) we use the familiar expressions for the
dielectric permittivity of a classical, collisionless 3DEG (see, e.g. {6]).
In the limit of |w| > kvs we have

Ce- + Agplw, k) e (1 — w/o* + i0sgn w), (A1)
in the limit of jw| < k,,
e + Aesp(w, k) ~ &_[1 + ¢y(wy/kvs)* + ic;0iw/(kvs)®] . (A2)

Here o} = 4ne’nyfe_ms, vy = |/2W3/m;, W; = max (T, F3). Values ny, T, Fy
= (3n%)®"® h%n2/3/2m,, m, stand for concentration, temperature, Fermi energy, and effective

mass of 3DEG particles. For a nondegenerate 3DEG ¢, = 2, ¢, = 2 ﬁ, for a degenerate
gas ¢, = 3, ¢, = 3n/2.
We split the function f{w, ¢g) in two parts,

B((D, q) = ﬂpl(w’ q) + [?(w, q) s (A3)

where f; is the plasmon pole contribution (cf. (A1), the function f§ is attributed to the
contribution of the region k, 2 |o|/v; in the integral (31).

In the case of |w| <€ quv; the condition |w| < kv; always holds and the asymptotic
expression (A2) can be employed. As a result, f,, = 0 and

Blo, )= (1 + c;0}/g*v3)™ 1 — i(c,0kw/q*v3) Plc,w?/q*v)), (A4
where

a(l + a) Va(l + a)

In the case of jw| > qv; we have

W)= [1+M mw@+va+n—1]

~ 2
Blw, q) = v (1 — —arctan @ >
n ¢ w,

Ve, w,

2 1
e, 240 [m (1 N “") - ! } (A5)
w, o 1+ w?/c oy

B, g) = 0*f(@ — o, + 0) (@ + w, + i0). (A6)
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In three regions of the (w, qvs) plane (Ad), (AS) for B simplify
for |w|, qv; < w, to

B, q) = qus/)/c; @, — ics(0gvs/od) In [/ + qvs)], (A7)
for w, < |w| < qv, to
B, q) ~ 1 — ic,onl/(qus)?, (A8)

for , < qv; < 0| to )

B(w, ) ~ 2gvs/nw — icsquiw?/o?® . (A9)
In the nondegenerate case c; = 1/2 1/_, cy = 8/3 [/7_t, Cs = 1%, in the degenerate case
c3 = 1/6,c, = 2, c5 = 3/4.

With the help of (A3), (A6) to (A9) one can construct an interpolation for all frequency
and wave vector values,

(|| — qvs) qv3
(@ — w, + i0) (0 + o, + i0) ]/C_lwp+7t(0/2+qv},
3 _quiwio{l + In[1 + o,/f(@ + quvs)i}

wifes + (qus)ties + o*/cs

Blw,q) ~
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