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Scattering of Two-Dimensional Electron Gas 
on the Semibounded Three-Dimensional Electron Gas 

I. I. BOIKO and Yu. M. SIRENKO 

From first principles, basing on the averaging of the equation for exact fluctuating distribution functions, 
the classical kinetic equation is derived for a two-dimensional electron gas (2DEG), interacting with 
a random potential of an external system. Using the approximation of a Fermi function with a shifted 
argument for the 2DEG distribution function the frequencies of energy and momentum relaxation 
are obtained. In the case of equilibrium external system the frequencies are expressed in terms 
of the dielectric functions of the 2DEG and external system. Energy and momentum relaxation 
frequencies of ZDEG, scattered on the three-dimensional electron gas, are calculated. 

113 nepBbIX npAHUEiIIOB, MeTOnOM YCpeAHeHIlX YpaBHeHAk AJIX TOYHbIX @JIyKTyApyIoLUAX (PYHKUUfi 
PaCIIpeneJIeHHX, BbIBeAeHO KJIaCCAYeCKOe KHHeTAYeCKOe YpaBHeHHe Anll ABYMePHOrO 3JIeKTPOHHOTO 
Ta3a (2M3r), B3aAMORefiCTByWLLWO CO CJIyYaEHbIM IIOTeHUUaJIOM BHeLUHe% CUCTCMbI. B npH- 
6nuxeH~U @epMUeBCKOk cpyHKUAA CO CABAHYTbIM apryMeHTOM AJIX @YHKUUU paCnpeAeneHAs HakAeHbl 
YaCTOTbI PeJlaKCa~AEi 3HCPTHA U UMIIyJIbCa 2M3r .  B CJIy’iae PaBHOBeCHOfi BHeIIIHek CUCTeMbl YaCTOTbI 
BbIpaXeHbI Yepe3 nkI3JIeKTPEi’ieCKEie @YHKqUA 2 M 3 r  U BHeIIlHefi CUCTCMbI. PaCCYATaHbI YaCTOTbI 
PeJIaKCaUAU 3HeprAH A AMIlyJIbCa 2 M 3 r  npU PaCCeRHUki Ha IIOJIyOrpaHAYeHHOM TpeXMepHOM 
3JleKTPOHHOM Ta3e. 

1. Introduction 

Electron-electron collisions in a closed system of charges cannot, be responsible .by 
themselves for energy and momentum relaxation, but have only an indirect influence on 
kinetic coefficients. The interaction between electrons, which belong to different systems 
and take different parts in energy and momentum transfer, can provide an efficient relaxation. 

In this paper we consider the scattering of a two-dimensional electron gas (2DEG) on 
the semibounded three-dimensional electron gas (3DEG). Particles of the 3DEG occupy a 
halfspace separated by a distance 1 from the region of the 2DEG disposition. Such a situation 
occurs, for example, in heterojunctions and MIS structures, where 2DEG is separated by 
a depletion layer or oxide from the 3DEG. Another case is a thin layer of a narrow-gap 
semiconductor in a wide-gap one. 

Intricate geometry of the system, presence of polar medium, and several kinds of mutually 
screening and scattering charge carriers makes the problem of complete and consistent 
allowance for all relevant effects nontrivial. Therefore, in Section 2 we derive the kinetic 
equation for 2DEG interacting with some external system. The equation is derived from 
first principles after the fashion of Klimontovich and Silin [l to 31 and Rostoker 141. In 
Section 3 we obtain the frequencies of 2DEG momentum and energy relaxation. For an equi- 
librium external system the frequencies can be expressed in a convenient form in terms of the 
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dielectric function of the system. The latter is determined in Section 4 for a rather general 
model of an external system, in particular, that with the semibounded 3DEG. Calculation 
of the relaxation frequencies of the 2DEG scattering on 3DEG is performed in Section 5. 

The 2DEG is supposed to occupy the lowest subband; transitions to other subbands are 
out of consideration. Both 2DEG and 3DEG are treated classically. 

2. Kinetic Equation for 2DEG 

For convenience in the beginning we consider an extremely thin layer of 2DEG ( z  = 0 
plane). The generalization to the case of a finite extension ion z-direction will be given below. 

We start with introducing the exact, fluctuating microscopic distribution function of the 
2DEG, 

where r = (x, y) ,  ri(t) and ui(t) being coordinate and velocity of the i-th individual particle, 
the sum is taken over all 2DEG particles. The function e satisfies the equation 

Here q(r, t) is exact random potential, created by 2DEG particles and external system in 
z = 0 plane. We divide e and cp into averaged (over a statistical ensemble) and fluctuating 
parts 

e(r, u, t )  = f(r, 8, t )  + 6dr ,  u, t ) ,  cpk, t )  = W ,  t )  + 6cp(r, t )  . 
Taking an average of (1) we obtain the kinetic equation for the 2DEG one-particle 

distribution function f (r, u, t) = (e(r, u, t ) ) ,  

where the collisional term is 

Subtracting (2) from (1) we find 

ase aije e af - + v - - - - - = O .  
at ar rn ar a U  

Writing down (4) we omitted the terms 

1 

(3) 

(4) 

corresponding to the direct influence of average external fields and collisions on the 
fluctuations (criteria of neglections are presented below). 

Fluctuating part of the potential q(r, t) can be split into the sum 

W r ,  t )  = 6cps(r, t )  + 6q,(r, t )  . 
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Here 6qs is the fluctuation of the external system potential (e.g. that of impurities, phonons, 
other charge carriers) in the absence of 2DEG; 6qe  is the potential of 2DEG particles, 
“dressed” by the potential induced in the polar medium. In the lowest order of perturbation 
theory the relation between 6 9 ,  and 6~ can be expressed within the linear response 
approximation, in Fourier representation this connection is specified by means of the 
dielectric function of the external system cS(o, q), 

where the density fluctuation is 

6n(r, t )  = 2 (&)’ j 6 e ( r ,  u, t )  d2u. 

The explicit form of E ~ ( w ,  q) is specified by the properties of the external system; for an 
unbounded system without spatial dispersion cS coincides with the dielectric permittivity 
of the medium. 

Considering 2DEG as a homogeneous and quasistationary gas we perform the Fourier 
transform (one-side in time, two-side in space) over (4); temporarily we write f (u)  instead 
of f ( r ,  u, t). By solving the transformed equation (4) together with (5) and (6) we obtain 

where 

is dielectric permittivity of 2DEG [5 ] .  

the Fourier transform of (3) we find 
Equations (7) and (8) are employed in the calculation of the collision integral (3). Taking 

S t f =  -~ j q  2 Im ( 6 9  6~),,,, d o  d2q. 
( 2 ~ ) ~  m au 

We set up the correlator of values (7) and (8), using for the correlator of initial functions 
6 ~ ( t  = 0, q, u) a form analogous to that of the three-dimensional case [5], 
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Finally, we get 

Substituting (13) into (11) we obtain the integral of collisions (see also [7, 81). For 
convenience we divide it into two parts, relating to the mutual scattering of 2DEG particles 
and their scattering on the external system 

St f = Stee f + Stes f 9 

Here the effective temperature z ( w ,  q) is defined by the equation 

For an equilibrium external system with temperature the effective temperature z ( w ,  q) 
coincides with T, and (16) becomes the fluctuative-dissipative theorem. 

It should be noticed that the kinetic equation (2) with collision integral given by (14), 
(15) has the Fokker-Planck form. The collision integral (14) is similar to that of 
Lehnard-Balescu for 3DEG [3, 61. Equation (15) specifies the 2DEG scattering on the 
fluctuating potential of the external system. The screening in (14) and (15) is carried out 
both by 2DEG particles and by charges of the external system. The collision integral (14) 
is turned to zero by the Fermi function with shifted argument; for 2DEG and external 
system in equilibrium with each other, the Fermi function with temperature turns to 
zero collision integral (15). 

Now we allow for a finite thickness of 2DEG in z-direction; let g(z) be the distribution 
function normalized by the condition g(z) dz = 1. Thereby instead of potential cp(r, t, z = 0) 
the value cp(r, t )  = J dz g(z) cp(r, t, z) must be taken, whereas 
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Here the dielectric function E ~ ( o ,  q; z, z’) specifies the response in the point z on the 
perturbation in z’. 

As a result in above-stated equations one has 

Several remarks must be made upon the applicability of the obtained kinetic equations. 
Firstly, classical treatment of 2DEG and external system imposes restrictions on hg and h6 - 
actual values of transferred momentum and energy, 

fic5 = fi(qu),,t < T, T,  ; hg Q mu, (20) 

where v z I/wlm, W being the characteristic energy (therhal or Fermi) of 2DEG particles. 
Furthermore, in the derivation of the collision integrdl the equation for fluctuations (4) 

was taken in fieldless and collisionless approximation. This requires the inequalities (for 
actual q and u) 

qu, q s u  % v(q, u), O H  9 (21) 

where qs = 2ne2n/ W is the inverse screening length in 2DEG [5 ] ,  n the 2DEG concentration, 
oE = eE/mv, oH = eH/mc. 

The frequency v(q,  u) of collisions with momentum transfer hq is evaluated as 
St f (q ,  u )  z v(q, u) Sf(q,  u) and has the form 

e2q Im A ~ ~ , ( q v ,  4) + Im E S ( m  4) 

mu 1 I&U, 412 
v = v e , + v  eS = -  

Here yes is the frequency of 2DEG particle collisions with the external system. The frequency 
of electron-electron collisions is v,, x e4nq/m’/2W3’2 1 ~ 1 ~ .  Insertion of v,, in (28) gives two 
inequalities, 

e4nlW2 [ & I 2  < 1 , q - l  + e2/lEl W .  

The first inequality requires the mean potential energy to be small as compared to the 
mean kinetic energy (weakly nonideal2D plasma). The second one restricts the consideration 
by distance, where the potential energy of interaction between the particles is less than the 
kinetic energy (Born approximation). 

3. Frequencies of Momentum and Energy Relaxation 

Employing (2) with collision integral (14), (15) we write down the momentum and energy 
balance equations. 

Introducing velocity averaging by 

we define average characteristic of 2DEG - current density j = en ((u)), momentum flux 
density x i j  = mn((uiuj)), kinetic energy density B = n((mv2/2)), flux of kinetic energy density 
Q = n ((umv2/2)). 
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The balance equations have 
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the form 

1 1 
nc 

+ - ( j x H ) - - B ,  

(23) 
a 8  
at 
- + d i v e  = j . E  - n Y .  

Here -9 = rn ( ( u f - l  St,, f>) is a friction force against medium, 9 = - (rn/2) 
x ((uy-’ St,, 1)) is a power transferred (per particle) to the external system. Interaction 
between 2DEG particles, specified by (14), does not contribute to 9 and 9. 

With help of (15) the equations for 9 and 9 are reduced to the form (z) = < ( f i ) ’ j $ j d z a (  4 ) Im E S ( 4 U 3  4) 

nn 27ch q v  IE(4U> 41’ 

To evaluate Y in (24) we employ a model function f o ( u )  of Fermi form with some 
temperature T. For an equilibrium external system that yields 9 = v,(T - &). Applying 
a Fermi function with shifted argument f o ( u  - u) to the equation for &, after linearization 
in u we can present 9 in the form W i  = vzrnuj. Linearization is valid if the drift velocity u 
is small compared with the characteristic velocity of 2DEG particles. A sufficient condition 
would be (T  - TJT 6 vp/v,. 

For the dielectric function E(W,  q), depending on 141 only, we have v t  = v,Sij and 
rn m 

(25) 
o2 Im E,(o, q)  Im AE;%(w, q)  

Is(o,q)I2 (:)=A 0 1: 0 jqdq(Tq2/2rn) 

The superscript “eq” indicates that the value Aceq must be calculated with an equilibrium 
distribution function. 

For a stationary and homogeneous system in the absence of a magnetic field the 
energy balance equation takes the form jE = nv,(T - T,). Hence it follows 

T = T,(1 + e2E2/rn&v,v,). 

It should be mentioned that the model function fo used in the derivation of (25) is an 
exact solution of the kinetic equation in the limit of strong e-e scattering (vri‘ 6 v,, in the 
actual’region of energy). In many cases (excluding the well-known peculiarities of optical 
phonon scattering [9]) even in the opposite limite of v,, % v,,, application of model functions 
gives results that do not differ muCh from the exact ones [lo]. 

4. Dielectric Function of the System 

In this section we calculate the function E,(w, 4) for a model system of a rather general 
form, applicable to the cases of single heterojunction or MIS structure (Fig. 1 a) and double 
heterojunction (Fig. lb). Values F - ,  E + ,  and E~ are dielectric permittivities in the corre- 
sponding regions; 2DEG adjoins the z = 0 plane on the right (Fig. l a )  or is confined in 
the 0 < z < A layer; 3DEG occupies the halfspace z < -1. At first we shall not specify the 
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Fig. 1. Model of a) single heterojunc- 
tion or MIS structure and b) double 
heterojunction 

a b 

properties of the medium in the z < - 1 region (impurities, 3DEG, metal electrode, another 
heterojunction, etc. can be disposed here). The influence of this medium is formally taken 
into account by a boundary condition of general form, relating the fluctuating parts of 
induction and potential, 

Here the function p(w, q) pattern is set by the properties of the medium in the z < -1 
region. For instance, in the case of metal electrode in the z = -1 plane we have fl = 0; 
for a medium homogeneous in the z < 0 region p = 1. 

In accordance with (18), the dielectric function eS(o, q) is specified by the 2DEG density 
function g(z) and dielectric function of inhomogeneous system E ~ ( w ,  q, z, z') in the region, 
occupied by 2DEG. For calculation of cS(o, q, z ,  z') one must find the potential created in 
the z-plane by the source, located in the z'-plane (cf. (17)). The result for model b is 
(0 < z < z' < l)  

E S ( W  4, z, z') 
E ~ ( E +  + Z-)coshql + (E; + ~ + f - ) s i n h q l  EO 

2 ( E ~  cosh qz + 6- sinh qz) [e0 cosh q ( l  - z') + E +  sinh q ( l  - z')] ' (27) - - -  

where 

stands for the effective dielectric permittivity of the medium in the z < -1 region; 
E ~ ( o ,  q, z, Z ' ) I , ! < ~  = E ~ ( w ,  q, z', z)I,<,.. The equation for model a can be obtained from (27) 
by taking the limit 1 + co and substituting E +  for c0 (see also [ll]. 

By making use of (18) and the variation density function [12] of a single heterojunction 
g(z) = b3z2 exp (- bz)/2, we find 

(29) 
E + ( E +  + E"- )  (1 + q/b)6 

E +  - 6- + ( E +  + E"- )  (1 + q/b)3 (1 + 9q/8b + 3q2/8b2)' &S(O, 4) = 

In the case of p = 1 (29) goes over into the corresponding result of [5]. 

g(z) = (2/l) sin2 (nz/l). Insertion of (27) into (18) gives 

32n4 

In the case of a double heterojunction with square potential well we use 

- 
1 

(q l )Z  [(ql)Z + 4n2i2 
2~+E"-(cosh q l  - 1) + go(&+ + E " - )  sinh q l  
~ ~ ( 6 -  + E + )  cosh q l  + (E ;  + E " - E + )  sinh q l  

X 
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In the particular case of eo = E +  = E“- (30) is consistent with the equation for the form 
factor H ( q )  in [13]. 

In the limit of an extremely thin layer of 2DEG, (29) and (30) yield 

(31) 
E +  + g - ( ~ q )  - - _  E +  + B(o,q)tanhql+ 1 ES(o,q) = - 

2 2 B(w,q) + tanhql 

Further specification of the dielectric function E ~ ( O ,  q) requires an explicit form of the 
function B(w, q), defined by the properties of the system in the z < - 1 region (cf. (26)). We 
consider the halfspace z < - 1  being occupied by a homogeneous 3DEG with a lattice 
constant E -  in the region. To find B(w,q) one must solve simultaneously the Poisson 
equation and kinetic equation for fluctuations 6f(3) of the 3DEG distribution function 
(with additional boundary condition on 8f@) at z = - 1 ) .  In the case of specular reflection 
of electrons at the boundary, the problem can be solved easily by an implicit technique using 
fictitious interface charges [14]. As a result we obtain 

- m  

Here A E ~ ~ ( o ,  k) is the contribution of unbounded 3DEG to the dielectric permittivity of 
the medium (see, e.g., [6]). 

The function B(o, q) defined by (32) is widely employed in problems dealing with the 
interaction between a particle and a semibounded plasma. The calculation of B(o, q) is 
usually based on the “plasmon pole approximation” [15, 161. However, in some cases 
(including that under consideration) the frequencies contributing to the kinetic coefficients 
may differ much from the plasmon frequency and a problem of more appropriate treatment 
arises. The calculation of B(w, q) in some limiting cases is given in the Appendix. 

5. Relaxation Frequencies of ZDEG, Scattering on 3DEG 

For conveniency, in this section we denote values relating to 2DEG (temperature, 
concentration, effective mass of carriers, etc.), by subscript 2 (e.g. T,, n,, mz) and those of 
3DEG - by subscript 3 (T3, n3, m3, etc.). 

To calculate the momentum and energy relaxation frequencies of a nondegenerate 2DEG 
we employ (25) and familiar expressions for 2DEG permittivity [5], 

where uZT = 1/2T,/mz is the thermal velocity of 2DEG. 
By using (29) to (31) for E ~ ( O ,  q) we find 

Im %(WY 4) - - 2 -  Im B ( 0 Y  4) F ( o ,  4) - 
IE(o ,  q)Iz cosh’ gl  I E - ( ~  + /3 tanh ql) + ( E +  + 2 A E , ~ )  (tanh gl)I2.  

In the actual range of o, q the function F(o, q) c 1, for an extremely thin layer of 2DEG 
F ( o ,  q) = 1. For simplicity in what follows we put F(o, q) = 1. 
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In the case of low velocities uZT the integration over o in (33) is cut off by the exponential 
factor exp [ - ( @ / p Z T ) ’ ] .  Then in the actual range of w and 4 we have Im fl N - w, I f l I  < 1 
and tanh ql x 1. Carring out integration over o in (33) we arrive at 

Heres(q) = (1/2) ( E +  + E - )  (1 + l/41zsT),ZzsT = ( E +  + E - )  Tz/4neznzisthescreeninglength 
in the nondegenerate 2DEG, the ratio in square brackets does not depend on o. 

We introduce the screening length in 3DEG as 13, = v3/op, where u3 and o, are defined 
in the Appendix. 

(i) The case of 1 9 13,, o < ‘ h e  integration region is limited by the value 1-l. In 
this region 

Im f l b  4)  

and (34) implies 

v, x v, x 

(ii) The case of 16 13s, vZT < v3 .  In the actual region of /is1 < 4 < I-’ we have .~ _. 

Im j?(o, 4) x -c4wo,”/(4u3)’. Relaxation frequencies are 
Z e-e 

v, x v, x c’ 
1$sm2u3 

Characteristic wave vector 4“ and value c’ are determined by the relation between relevant 
characteristic lengths. In the case of 

qmax= min ( l ~ ’ , m z u z T / h , m 3 u 3 / h , T Z ( ~ ~  + ~+)/2e’) 9 qmin =_ max (l;:, l,’,, v3/v,) 

we have c‘ = 2c, In (4maJ4min), &(a = ( E -  + ~+)/2.  Here v3 is the mean collison frequency 
in 3DEG. 

Next we proceed to the case of high velocities oZT, where the exponential factor in (34) 
is not actual. 

(iii) The case of 1 9 13s, uZT 9 031/13,. The main contribution to (33) is given by o x wp 
and 4 5 l-’, in this region Im /?(a, 4) x -q13, and we arrive at 

(iv) The case of 1 $ lJs ,  uZT % u3. The main contribution to (33) is given by o x 4v3, 
then Im /?(o, 4) x - (q13s)-2 and 

Assuming the inequality 4 - 9  4min we get C” x In ( 4 m a J r 4  and = ( E -  + ~+) /2 .  
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Analysis of the considered limiting cases provides an interpolation form for relaxation 
frequencies of nondegenerate 2DEG, scattering on the equilibrium 3DEG, 

Here the characteristic energy of 3DEG, W3, is defined in the Appendix, the representative 
wave vector c j  is determined by the region of q, giving the main contribution in (33). 

It should be observed that in the case of 1 4 l,, the frequencies v, and v, are essentially 
the same as for scattering of 3DEG particles on another three-dimensional gas [3, 61. 
Relaxation frequencies may logarithmically depend on 1, for extremely small 1 the dependence 
vanishes. 

In the opposite limit (1 % /3s(l + uZT/u3)) ,  spatial separation of 2DEG and 3DEG leads 
to the decrease of the transferred momentum hq (the upper limit is set by h1-I). As a result 
the frequencies v, and v, are drawn together even if m3 % m,. Relaxation frequencies depend 
on 1 as v,,, - 1-4~-2(1-1), i.e. the frequencies diminish more rapidly than l-4. In the case 
ofv,, $ ~~intheintermediateregionl,~ 4 1 4 lv3su2T/v3wehavev, - l-jandv, - 1 - ' .  

According to (35) and (36), temperature and concentration dependence of v , , ~  (if not 
allowing for the peculiarities in screening) differ from the three-dimensional one only in the 
case of 1 % 13s 

Our consideration is based upon a classical and perturbative treatment of weakly nonideal 
2DEG and 3DEG, which imposes the restriction 

4 4 q, = min (m,v,/h, m3c3/h, W,(E+ + &-)/2e2, W3e-/e2), 

Here v 2  = 1/2w,/m,, 
F ,  = nh2n,/m2 is the 

Consistent account 

W, = max (T,, F,)  are 2DEG characteristic velocity and energy, 
Fermi energy of 2DEG. 
for quantum and nonperturbative effects provides the automatic 

cut-off at q,, i.e. on inverse de Broglie or Landau lengths [3,6]. For an approximate analytical 
calculation (within the accuracy of order unity) we can introduce this cut-off artificially. 
Detailed analysis of all limiting cases leads to the result, valid in the whole range of 
parameters of weakly nonideal 2DEG and 3DEG, 

ez i) ( 4/3s )'( (5' ) 9, (::) W , O , E ~ ( ~  4u3 1 + ij21is 2T2~2/m, (37) 

where characteristic wave vector and frequency are 
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Estimations show that in 2DEG momentum relaxation the scattering on 3DEG cannot 
compete with that on impurities, with the exception of some special cases, where the 3DEG 
concentration is higher than the impurity one. The case of energy relaxation is more 
interesting. In the region of temperature near 35 K the frequency of energy relaxation on 
3DEG can exceed markedly that on the lattice. In fact, for GaAs- AlGaAs heterostructure 
(m2 M m3 M 0.066m0, E +  w E -  M 12), for n2 = 1011 cm-’, n, = lo” cm-,, I = 10 nm 
numerical evaluation gives for the energy relaxation on 3DEG the frequency v, = lo9 s-’, 
whereas the experimental value for scattering on DP and LO phonons is equal to 2 x 10’ s - l  
1171. 

Appendix 

. To calculate the function P(w,q) defined by (31) we use the familiar expressions for the 
dielectric permittivity of a classical, collisionless 3DEG (see, e.g. [6]). 

In the limit of 101 9 kus we have 

E -  + A E , ~ ( o ,  k )  = ~ - ( 1  - co;/02 + i0 sgn a), 

E -  + A E ~ D ( w ,  k)  w ~ - [ 1  + C ~ ( C O ~ / ~ V ~ ) ~  + ~ C ~ C O ; C O / ( ~ U ~ ) ~ ] .  

(All  

in the limit of 10) 4 k,, 

(‘42) 

Here 0,” = 4ze2n3/e-rn3, u3 = I-, W, = max(T,, F3). Values n3, T,, F ,  
= (3z2)’13 h2n:13/2m3, m3 stand for concentration, temperature, Fermi energy, and effective 
mass of 3DEG particles. For a nondegenerate 3DEG c1 = 2, c2 = 2 fi, for a degenerate 
gas c1 = 3, c2 = 3n/2. 

We split the function P(o, q) in two parts, 

P(o94) = Ppl(U, 4) + p”(w,q) 2 (‘43) 

where P,, is the plasmon pole contribution (cf. (Al)), the function 
contribution of the region k ,  2 Iwl/u3 in the integral (31). 

expression (A2) can be employed. As a result, P,, = 0 and 

is attributed to the 

In the case of IwJ <. qv, the condition IwI < kv,  always holds and the asymptotic 

F(w,q) = (1 + c1w;/q2u:)-’~z - i(c2w,2w/q3v$) y(clo;/q24) (A41 
where 

l n ( f i + I Z Z ) - I .  1 Y(a)  = ___ 
4 1  + 4 )qCTT) 

In the case of 101 % qu,  we have 

Ppl(w, q) = w’/(w - op + iO) (o + wp + iO) . 
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In the nondegenerate case c3 = 112 fi, c4 = 813 fi, c5 = l f i ,  in the degenerate case 
c3 = 116, c4 = 2, c5 = 314. 

With the help of (A3), (A6) to (A9) one can construct an interpolation for all frequency 
and wave vector values, 

P 3  + w2w14 - P 3 )  

(0 - 0, + i0) (0 + wp + i0) 
B(w,4) = Gop + 7 4 2  + qu, 

YU,w;4 + ln[1 + wpMo + P 3 ) l )  - i  
m;/C, + + w4/Cs 
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