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The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is

investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers

are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency

dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating

effects of fluid viscosity is presented. The model demonstrates good agreement with the measured

response of two prototype cantilevers, characterized with a vibrating water column, in the regime of

Re� 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor

performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar

cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic

responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the

influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These

cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state

ocean noise. [http://dx.doi.org/10.1121/1.4725764]

PACS number(s): 43.30.Yj, 43.38.Ar, 43.38.Zp, 43.58.Wc [DAB] Pages: 103–114

I. INTRODUCTION

The benefits of characterizing an acoustic field by meas-

uring particle motion, instead of local changes in ambient

pressure, have long been known. Measurement of the particle

motion in terms of displacement, velocity, or acceleration

reveal information on the field direction as well as amplitude.

Simultaneous measurement of the local pressure, p, and parti-

cle velocity, _u, in a plane wave also yields the acoustic inten-

sity through the relationship, I ¼ hrealðpÞrealð _uÞiT , where

hiT denotes time average. When it is of interest to detect and

locate sources of acoustic radiation through the use of coher-

ently beamformed arrays, particle motion sensors provide fur-

ther benefits due to their inherent directionality. An array of

three-axis directional sensors achieves equal array gain to an

array of scalar hydrophones with twice the length.1 Further-

more, the left-right ambiguity arising from the symmetry of

scalar sensor line arrays is overcome with arrays of directional

sensors.2

Most sensors designed to respond to acoustic particle

motion are based on some form of simple harmonic mechani-

cal oscillator that is driven by the acoustically induced

motion. The operating bandwidth of the sensor is determined

by the fundamental resonant frequency of the oscillator.

Assuming the sensor responds linearly to the relative displace-

ment between the inertial mass and its case, then operation

below the fundamental resonance will result in a response to

acceleration independent of frequency (i.e., an accelerometer).

Operation above the fundamental resonance results in a

response to displacement independent of frequency. One such

sensor, known as the moving coil geophone, that operates

above the fundamental resonance responds to the rate of

change of the sensor casing and thus responds to velocity in-

dependent of frequency.

For measuring low frequency (i.e., <10 kHz) acoustic

fields in the ocean, a frequency independent or smooth

response to particle velocity is highly desirable. In a planar

wave field, the acoustic impedance relating the ratio of the

pressure to particle velocity is given by the product of fluid

density and sound speed, qflcfl. Thus, the ambient velocity

noise field is proportional to the pressure field. This is benefi-

cial since the spectral density of the ambient acoustic pressure

noise exhibits an approximately, 1/fn dependence, which is a

similar dependence to the internal electronic noise spectrum in

many sensors, particularly at low frequencies. Consequently,

when the limiting noise source is ambient acoustic, the acous-

tic resolution is not diminished for deceasing frequency with a

true velocity sensor. The interest in developing low frequency

vector sensors is apparent from the number of reported devi-

ces. For example, devices based on moving coil,3,4 piezoelec-

tric,5 resistive heating,6 and magnetostrictive7 mechanisms

have been demonstrated. Also, several fiber-optic devices have

been demonstrated based on flexural disk8,9 and bending

beam10 accelerometers, and pressure gradient hydrophones.11

However, achieving high acoustic sensitivity over a large

bandwidth from a small sensor remains a challenge.

In the current work, a new concept for a particle motion

sensor is investigated. The sensor is based on the acoustically

driven motion of a fluid loaded fiber-optic cantilever. Both cy-

lindrical and planar cantilevers are investigated (some results

for the planar cantilever have been previously published in

Ref. 12). Although, essentially behaving as a driven mechani-

cal oscillator, the implementation of the sensing mechanism

results in unique behavior that is evidently well suited to mea-

surement of low frequency acoustic fields. The current work

has a number of novel aspects: (a) the dominant damping

mechanism for both planar and cylindrical fiber-optic cantile-

ver geometries is identified and incorporated into a theoretical
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model, (b) expressions for the acoustically induced driving

force are derived for both cylindrical and planar cantilevers

and their validity is demonstrated with finite element model-

ing and experimental measurements in the regimes of low to

moderate fluid viscosity, (c) the model is used to determine

important design parameters for an acoustic sensor, and (d)

compelling evidence is presented to suggest that acoustically

insonified optical fiber in a fluid exhibits a response strongly

affected by the particle motion, which in certain circumstan-

ces may dominate the response due to hydrostatic pressure

changes. This last point is significant, since early research on

the acoustic transduction mechanism of optical fiber was con-

cerned primarily with its response to hydrostatic pressure

changes13–15 and generally neglected inertial and viscous

effects which are shown here to be very significant.

The deflections of the cantilever are measured with a fiber

laser sensor.16 This fiber optic sensor provides very high sensi-

tivity to axial strain induced in the core through flexure of the

optical fiber, necessary for acoustic measurements. Along with

the established benefits of fiber optic sensors for undersea

acoustic measurements such as excellent long term reliability,

low weight, and immunity to electromagnetic interference, an

acoustic vector sensor based on the present concept has many

other favorable attributes: (a) it can be made very small and

lightweight since the fiber constitutes both the mechanical os-

cillator and the sensor, (b) a single multicore fiber can poten-

tially measure two vector components of the acoustic field, and

(c) a smooth response to particle velocity can be achieved due

to significant viscous fluid damping arising from low Reynolds

number flow around a small cantilever.

Although fiber-optic flow sensors that respond to the vis-

cous fluid force have been demonstrated based on twin-core

optical fiber,17 only one previous effort to develop an acoustic

sensor of this type has been reported. Josserand et al.18 char-

acterized the acoustic response of a planar PVF2 cantilever. A

simple model was presented to describe the cantilever motion

but the exact expression for the acoustic driving force was not

clear and viscous forces, which are shown to be significant in

the current work, were neglected. Although the results demon-

strated were encouraging, the size of the device resulted in a

strongly peaked resonant response to particle velocity at low

frequencies, which is generally undesirable.

This article is arranged as follows. An analytical model

of the response of the fluid loaded cantilever is described in

Sec. II. Expressions for the acoustic driving force are pre-

sented and results from the analytical model are compared

with a finite-element model of the acoustic-structure interac-

tion. The characterization of the cantilevers in air and water

is described in Sec. III and the measured responses are com-

pared with results from the analytical models. A discussion

is then given on the dependence of the acoustic response on

the size and geometry of the cantilever and the predicted

acoustic resolution in Sec. IV. Finally the conclusions are

summarized in Sec. V.

II. THEORY

The geometries of the planar and cylindrical cantilevers

are illustrated in Figs. 1(a) and 1(b), respectively. The planar

cantilever consists of a thin ribbon with an optical fiber

attached to its upper surface. The cylindrical cantilever con-

sists of a single optical fiber. Both cantilevers are rigidly

fixed to an aluminum support. In the subsequent analysis the

following assumptions are made.

(a) The cross section of the cantilever is uniform along its

length.

(b) The cantilever length greatly exceeds its width or di-

ameter (i.e., it is long and slender).

(c) The beam is isotropic in the x-direction.

(d) The smallest dimension of the beam greatly exceeds

the amplitude of the vibration.

(e) The shortest wavelength of the acoustic excitation

greatly exceeds the largest dimension of the beam.

(f) The surrounding fluid is unbounded within a region

much larger than the largest cross-sectional dimension

of the cantilever.

Furthermore, the laser is assumed to respond only to

flexural vibration modes, thus transverse modes (in the

z-direction) are neglected.

Of particular interest is the effect of viscous fluid damping

on the response of the cantilever which becomes significant at

FIG. 1. (Color online) Cantilever geometries (a) planar cantilever compris-

ing a silica optical fiber with an acrylate coating bonded to an aluminum rib-

bon, (b) cylindrical cantilever comprising a silica optical fiber with an

acrylate coating only, and (c) displacements of cantilever and support.
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low Reynolds number. The Reynolds number for the acousti-

cally induced flow can be defined in terms of the dominant

length scale of the cantilever as19

Re ¼
qflxb2

4g
: (1)

Here qfl is the fluid density, x is the acoustic (angular) fre-

quency, g is the dynamic viscosity of the fluid, and b is the

width of the planar cantilever or outer diameter of the cylin-

drical cantilever. The relative importance of viscous effects

on the sensor behavior will therefore depend on operating

frequency due to the dependence of Re on x.

A. Beam theory

Many studies on the behavior of fluid loaded beams

have been previously reported.20–25 Although the later mod-

els incorporate the effect of acoustic radiation losses24,25 all

of these analyses assume the fluid is inviscid. Furthermore,

radiation losses in the current sensor are expected to be small

due to the acoustic wavelength greatly exceeding the cantile-

ver dimensions. A more recent model incorporating viscous

losses was reported by Sader19 who analyzed the thermally

driven response of a micro-cantilever in a viscous fluid. This

model was later experimentally verified.26 The Sader model

is used as the basis for understanding the behavior of the

fiber-optic cantilever. This model is extended by considering

the cantilever motion when driven by acoustically induced

fluid motion and support motion.

The deflections of the cantilever when submerged in a

viscous fluid are described by the beam equation

EI
@4uðx; tÞ
@x4

þ l
@2uðx; tÞ
@t2

¼ fhðx; tÞ; (2)

where EI is the beam stiffness, u(x, t) is the absolute dis-

placement of the beam in the y-direction, l is the mass per

unit length of the cantilever, and fh(x, t) is the hydrodynamic

force. This equation represents the balance of forces on the

cantilever when brought into motion. The sum of the restor-

ing force due to the beam stiffness and the inertial force of

the cantilever is equal to the force exerted by the fluid. This

force due to the fluid is known as the hydrodynamic force

and incorporates the effect of the additional inertia of the

fluid and its viscosity for unsteady (or oscillatory) boundary

flow. Equation (2) can be solved using the boundary condi-

tions for a beam of length, L, clamped at one end,

uð0; tÞ ¼ usðtÞ;
@uð0; tÞ
@x

¼ 0 (3)

and

@2uðL; tÞ
@2x

¼ 0;
@3uðL; tÞ
@3x

¼ 0; (4)

where us(x, t) is the displacement of the support. It is con-

venient to transform Eq. (2) into the frequency domain to an-

alyze steady-state behavior such that

EI
@4UðxjxÞ
@x4

þ l
@2UðxjxÞ

@t2
¼ FhðxjxÞ; (5)

where UðxjxÞ represents the Fourier transform of u(x, t). Assum-

ing harmonic motion of the form, uðx; tÞ ¼ u0ðxÞexpðiwtÞ, then

Eq. (5) becomes

EI
@4UðxjxÞ
@x4

� lx2UðxjxÞ ¼ FhðxjxÞ: (6)

The hydrodymanic force, presented by Rosenhead27 and also

used by Sader,19 is given by

FhðxjxÞ ¼ l0CðxÞx2UðxjxÞ; (7)

where l0 is the added mass per unit length due to the fluid

and CðxÞ is the geometry dependent hydrodynamic function

and in general is complex. The term l0CðxÞ is known as the

“virtual” mass of the fluid.

Consider first the case where the cantilever is brought

into motion by applying a displacement to the support, as

illustrated in Fig. 1(c). The device will measure the relative

displacement between the support and the beam (i.e., the

beam shape), which is given by WðxjxÞ ¼ UðxjxÞ � UsðxÞ.
Substituting Eq. (7) into Eq. (6) and expressing in terms of

the beam shape, WðxjxÞ, yields

EI
@4WðxjxÞ

@x4
� ðlþ l0CðxÞÞx2WðxjxÞ ¼ Fdr�SMðxÞ

(8)

where the general form of the driving force due to support

motion, Fdr�SMðxÞ, is given by

Fdr�SMðxÞ ¼ ðlþ l0CðxÞÞx2UsðxÞ: (9)

The hydrodynamic force has added the virtual mass term to

the inertial term on the left-hand side of Eq. (8). This acts to

shift the resonant frequency and adds damping due to the

fluid viscosity. The virtual mass is also added to the driving

force causing it to be enhanced, compared with its magni-

tude in a vacuum (i.e., where l0 ¼ 0). Equation (8) represents

the equation of motion for a fluid loaded cantilever subject

to support motion.

An alternative means of actuating the cantilever is by

fluid motion. This can be implemented by exciting an acous-

tic wave in the fluid and corresponds to the relevant trans-

duction mechanism for the present sensor. In this case

Us¼ 0 (i.e., the support motion is zero) and an additional

term, Fdr�FM(x), must be added to the right-hand side of Eq.

(6) to account for this fluid motion. The equation of motion

in this case is given by

EI
@4WðxjxÞ

@x4
� ðlþ l0CðxÞÞx2WðxjxÞ ¼ Fdr�FMðxÞ:

(10)

The general form of the driving force due to fluid motion is

Fdr�FMðxÞ ¼ l0CðxÞx2UflðxÞ; (11)

J. Acoust. Soc. Am., Vol. 132, No. 1, July 2012 Cranch et al.: Fiber-optic, cantilever-type hydrophone 105

Downloaded 15 Jul 2012 to 159.226.100.225. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



where UflðxÞ is the displacement of the fluid in the absence

of the cantilever. Typically, l0CðxÞ is much larger than l
and therefore the response under actuation by support

motion, according to Eq. (9), will be similar to that under

fluid motion when Us ¼ Ufl. Equations (8) and (10) are simi-

lar in form to Eq. (11) derived in Ref. 28 for a piezo-

electrically actuated microcantilever used in atomic force

microscopes.

The driving force from a plane acoustic wave, which

creates the pressure gradient parallel to the motion of the

cantilever, can be derived from this result. A small volume

element of fluid in an acoustic field experiences a force per

unit length given by d~f ðx; y; zÞ ¼ �dA � rpðx; y; zÞ, where p
is the acoustic pressure, r ¼ @=@x �~i þ @=@y �~j þ @=@z � ~k,

and dA is the area across which the force acts. According to

the linear inviscid force equation for small amplitude acous-

tic processes,29 the pressure gradient is also proportional to

the fluid acceleration

qfl

@ _ufl

@t
¼ �rp: (12)

A plane wave traveling in the y-direction takes the form,

p ¼ p0 expðiðxt� kyÞÞ, where k is the acoustic wavenumber

ðk ¼ x=cflÞ and cfl is the sound speed in the fluid. Assuming

the acoustic wavelength is much larger than the dimensions

of the cantilever, then using Eqs. (11), (12) and the relation

dfy ¼ �Ae � @p=@y yields the Fourier transform of the force

due to the fluid motion in terms of acoustic pressure

Fdr�acoðxÞ ¼ �iAeCðxÞ �
x
cfl

py: (13)

Ae corresponds to the effective area over which to calculate

the pressure gradient and is given by l0/qfl.

1. Effect of geometry

Thus far the analysis has not considered the geometry of

the cantilever. This establishes the effective mass of the fluid

and the form of the hydrodynamic function, CðxÞ. The

effective mass of the fluid has been derived by Chu for the

case of the planar cantilever and is given by20,30

l0pl ¼ qflpb2=4: (14)

The effective mass of the fluid is equivalent to the mass of a

fluid cylinder with a diameter equal to the width of the canti-

lever, b. The expression for the cylindrical cantilever is the

same as the planar cantilever with b replaced with the outer

diameter of the cylindrical cantilever, 2r2. This result sug-

gests that a cylindrical region of fluid surrounding the canti-

lever is closely coupled to it and strongly influences its

motion. This is also the region where the fluid motion is

strongly perturbed by the cantilever motion. The expression

(14) is widely used to predict the change in resonance fre-

quency of a beam submerged in an inviscid fluid.

The hydrodymanic function incorporates the effect on

the cantilever motion of the fluid viscosity and depends on

the geometry of the cantilever. An analytical solution exists

for the cylindrical cantilever and is given by

CcircðxÞ ¼ 1þ 4iK1ð�i
ffiffiffiffiffiffiffi
iRe
p

Þffiffiffiffiffiffiffi
iRe
p

K0ð�i
ffiffiffiffiffiffiffi
iRe
p

Þ
; (15)

where Kn are modified Bessel functions of the second kind.

An analytical solution for the planar cantilever does not

exist, however, Sader derived an approximate solution by

noting that the hydrodynamic function for the cylindrical

and planar cantilever possess the same asymptotic form in

the limits Re! 0 and Re!1. In the simulations that fol-

low, this approximate expression is used for the hydrody-

namic function for the planar cantilever. However, it should

be noted that this approximate expression deviates from the

exact expression for the cylindrical cantilever by less than

12% over the range 10�4 < Re < 102. Therefore, C is simi-

lar for both cantilever geometries. The real and imaginary

parts of CðxÞ are plotted in Fig. 2. For large Re, the imagi-

nary part is negligible and C � 1 corresponding to an invis-

cid fluid. When Re� 1 the imaginary part is much larger

than the real part, which has interesting consequences for the

driving force. The sensor behavior can be separated into

three different operating regimes depending on the Reynolds

number, illustrated in Fig. 2. These will now be examined in

more detail.

2. Driving force—high Re regime

This regime occurs, according to Eq. (1), at high fre-

quencies or when the cantilever dimensions increase, and

represents small or negligible viscous effects. It is obtained

when the prototype cantilevers described here are operated

in air. In water, this regime is obtained when the cantilever

cross section is larger than a few millimeters and is experi-

enced by the planar cantilever described here. When viscous

damping is small, the frequency response of the cantilever

exhibits sharp peaks at each resonance and as a sensor is

generally not suitable for operation above the fundamental

resonance. If the cantilever were driven by an acoustic wave

propagating in air, the driving force generated by air particle

FIG. 2. Real and imaginary parts of the hydrodynamic function for the cy-

lindrical and planar cantilever (solid line—cylindrical cantilever, dashed

line—planar cantilever).
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motion, according to Eq. (11), will be very small due to a

small value of l0 yielding a very low response.

An alternative configuration for an acoustic sensor oper-

ating in a liquid is to place the cantilever in a sealed neu-

trally buoyant enclosure, which is submerged in the liquid.

An acoustic wave propagating in the liquid induces motion

of the support through the enclosure. The cantilever motion

will be described by Eq. (8) and the force is given by

Fdr�SMðxÞjhigh�Re ’ lx2UsðxÞ: (16)

The driving force is dependent on the mass of the beam, l.

Such a configuration is similar to that demonstrated in Ref.

10. For a planar cantilever, this force is somewhat smaller

than the force experienced by the cantilever when sub-

merged in a liquid and driven directly by the acoustic wave.

In this case, the force is dependent on the effective mass of

the surrounding water. This implies an added benefit of a

directly driven cantilever.

3. Driving force—moderate Re regime

When Re is less than �10 the real part of CðxÞ begins

to increase. However, the imaginary part increases more rap-

idly and becomes equal to the real part when Re � 1. In this

regime, viscous damping is more significant but the driving

force is predominantly due to fluid inertia. This regime is

experienced by the cylindrical cantilever described here in

water. The driving force due to fluid motion is given by Eq.

(11) and can be approximated to

Fdr�FMðxÞjmod�Re ’ l0 realðCðxÞÞ � x2UflðxÞ: (17)

This force is in phase with the acceleration of the cantilever

and is thus related to the acceleration of the fluid driven by

the pressure gradient across the cantilever (i.e., parallel to its

motion). The Fourier transform of the force due to the fluid

motion in terms of acoustic pressure is

Fdr�acoðxÞjmod�Re ’ �iAe realðCðxÞÞ � x
cfl

py: (18)

In this regime, C takes a value between 1 and 3. The inviscid

form of Eq. (17) [i.e., when CðxÞ ¼ 1] is in agreement with

an equivalent expression for an acoustically driven cylinder

derived in Ref. 31.

4. Driving force—low Re regime

When Re is less than 1, then real(CðxÞÞ � imagðCðxÞÞ.
The driving force due to fluid motion is given by

Fdr�FMðxÞjlow�Re ’ l0 imagðCðxÞÞ � x2UflðxÞ: (19)

The driving force is now dominated by the imaginary part of

CðxÞ and is in phase with the velocity of the cantilever. The

cantilever motion in this regime is driven predominantly by

the fluid viscosity. Referring to Fig. 2, the imaginary part of

CðxÞ increases rapidly with decreasing Re, approaching

�1000 for Re � 10�3. The magnitude of this force is very

large compared with the other two regimes and therefore

represents an interesting operating regime for a fluid motion

sensor.

The Fourier transform of the force in terms of acoustic

pressure is given by

Fdr�acoðxÞjlow�Re ’ �iAeimagðCðxÞÞ � x
cfl

py: (20)

5. Calculating the beam shape

The normalized beam shape is given by the analytical

solution to the equation of motion (6), which was derived by

Sader using a Green’s function method and is given in

Appendix A of Ref. 19. This solution is used along with the

driving forces derived above to determine the beam

deflections.

B. Comparison of analytical and finite-element
models

To confirm the validity of the acoustically induced force

derived above, the inviscid form of the analytical model

[i.e., Eqs. (10) and (11) with C ¼ 1] is compared with a finite

element model for each cantilever. The finite-element (FE)

model is developed in COMSOL MULTIPHYSICS as a three dimen-

sional acoustic-structure interaction, details of which are

given in Appendix A. For both models the beam shape is

derived as a function of drive frequency. This is used to

determine the flexure strain induced in the core of the optical

fiber, D�(x, t). The shift in laser frequency, D�l, is then calcu-

lated using32

D�l

�l
¼ ð0:78Þ 1

Lc

ðx2

x1

Deðx; tÞA
_

ðxÞdx; (21)

where A
_

ðxÞ is the spatial distribution of the laser mode in-

tensity and Lc is the effective cavity length.

The results from the two models for each cantilever ge-

ometry are shown in Fig. 3 as solid lines for the analytical

model and symbols for the FE model. Details on calculating

the mechanical properties of the cantilevers for the analytical

model are given in Appendix B. For each case the simulation

is run for fluid densities of 10 and 1000 kg/m3. In both cases

the agreement is excellent. The close agreement at low fre-

quencies confirm the validity of the expressions for the driv-

ing force for an inviscid fluid. The change in fluid density

affects the mass loading, shifting the resonant frequencies.

III. EXPERIMENT

In the following experimental section, the response of

the cantilevers is characterized and compared to the theoreti-

cal response according to the analytical model presented in

Sec. II in the operating regimes of moderate and high Re.
The planar cantilever is 40 mm in length and consists of

an aluminum ribbon with cross-section 3 mm� 50 lm. It

comprises a fiber laser adhered to an aluminum ribbon using

a thin layer of rapid cure epoxy. The fiber laser comprises
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two fiber Bragg gratings separated by 20 mm written into an

erbium doped fiber. Only the cavity of the laser (�20 mm in

length) is adhered to the ribbon, which is positioned at the

base of the cantilever, to avoid distortion of the Bragg gra-

tings. The prototype is shown in Fig. 4. The fiber comprises

a 125 lm silica cladding with a 138 lm thick acrylate jacket.

The core is approximately 200 lm from the neutral surface

of the cantilever.

The cylindrical cantilever is 55 mm in length and con-

sists of a 125 lm diameter erbium doped silica fiber with a

62.5 lm thick acrylate coating. A fiber laser consisting of a

50 mm Bragg grating with a centrally located p phase-shift

is formed in the core of the optical fiber. This type of laser is

known as a distributed feedback (DFB) laser and exhibits an

optical mode tightly confined about the phase-shift. The

Bragg grating strength is characterized by its coupling coef-

ficient, q, which is �180 m�1. The phase-shift defines the

center of the laser mode and is located close to the center of

the cantilever.

The lasers are pumped with 100 mW of 980 nm optical

radiation from a laser diode and emit a single optical fre-

quency around 1550 nm. The frequency shifts of the fiber

laser are measured using an unbalanced fiber-optic interfer-

ometer.16 The cantilever is characterized in air by applying a

known acceleration to the support. The output frequency

shift of the laser as a function of frequency is calibrated rela-

tive to a reference piezoelectric accelerometer, also attached

to the support. Acoustic characterization of the cantilevers is

carried out using a vibrating water column, described in

Appendix C, which enables acoustic calibration from

approximately 10 Hz to 1 kHz. Inertial excitation is achieved

with a shaker table (Bruel & Kjaer 4808).

According to Eq. (1), for a frequency of 100 Hz and

assuming the fluid to be water, Re � 1410 for the planar can-

tilever and Re � 10 for the cylindrical cantilever. Therefore,

viscous damping is expected to be much more significant for

the cylindrical cantilever. Material parameters used in the

following theoretical calculations are given in Table I.

A. Planar cantilever

The acceleration response measured in air (in units of

GHz/g) for the planar cantilever is shown in Fig. 5(a). The

response exhibits a fundamental resonance at 121 Hz with an

overtone at 751 Hz. The predicted response according to the

analytical model is also overlaid. It is assumed that the cou-

pling of the laser cavity with the aluminum ribbon occurs

over �0.5 of its total cavity length, which is consistent with

the bonded region of the laser to the ribbon. Good agreement

between the theoretical and measured response is obtained at

frequencies away from resonant peaks. An appreciable

amount of structural damping present in the prototype sensor

FIG. 3. (Color online) Comparison of

analytical model (solid lines) with

finite-element acoustic-structure inter-

action model (symbols) for (a) planar

cantilever and (b) cylindrical cantile-

ver. Both models are inviscid. For this

simulation, the flexural strain is inte-

grated over the length of the cantilever

(i.e., the laser mode function is unity).

FIG. 4. (Color online) Prototype planar cantilever.

TABLE I. Definition of terms.

Parameter Definition Value

Fluid properties

qfl Density 997 kg m�3

cfl Sound speed 1482 m s�1

u Particle displacement

_u Particle velocity

€u Particle acceleration

g Fluid viscosity (water) 8.9� 10�4 Pa s

p Acoustic pressure

Fiber properties

qf Density 2200 kg m�3

E Youngs modulus 70 GPa

r2 Coating radius

Ribbon properties (for planar cantilever)

qc Density 2700 kg m�3

L Length

b Width 3 mm

a Thickness 50 lm

Miscellaneous

I Second moment of area

�l Laser frequency

D� Local strain

A(x) Laser mode shape

q Grating coupling coefficient

u(x, t), UðxjxÞ Absolute beam displacement

us(t), Us(x) Support displacement

w(x, t), WðxjxÞ Beam shape

f(x, t), FðxjxÞ Driving force
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is evident from the reduced amplitude of the resonant peaks.

This structural damping is not accounted for in the analytical

model, which incorporates only viscous fluid damping. In

air, viscous damping is small, and results in a large deviation

in the theoretical and measured response close to the me-

chanical resonances. This is not of concern in the present

work due to our interest in the effects of viscous fluid damp-

ing. The theoretical model also deviates significantly above

�1 kHz due to physical imperfections in the cantilever,

which distort the beam shape above this frequency.

The acceleration response of the planar cantilever in

water is shown in Fig. 5(b). This is obtained by submerging

the cantilever into a water reservoir and applying an acceler-

ation to its support using a suspended shaker table. A refer-

ence accelerometer, attached to the cantilever support,

records the support acceleration. When submerged, the fun-

damental resonance is shifted down to 26 Hz, due to the fluid

loading. The fluid also adds additional viscous damping,

reducing the amplitude of the fundamental resonance

slightly. The theoretical response, derived using Eq. (9), is in

good agreement with the measured response up to 70 Hz,

above which the presence of structural damping in the com-

posite cantilever causes deviation between the measured and

theoretical response.

The measured and theoretical acoustic response in water

are shown in Fig. 5(c). The theoretical response is in close

agreement with the measured response at low frequencies,

confirming the validity of the driving force given by Eq. (11)

in the regime of high Re. The presence of structural damping

in the composite cantilever causes deviation between the

measured and theoretical response close to the resonances.

However, the deviation is much smaller than for the in-air

case as the viscous fluid damping now becomes more signifi-

cant. The dramatic drop-out in the theoretical response at

108 Hz is due to the spatial overlap of the laser mode shape

and the flexural strain induced by the beam shape. The inte-

gral of the product of these two equates to zero at a fre-

quency close to 108 Hz causing this drop-out. This drop-out

is less dramatic in the measured data due to physical imper-

fections in the cantilever, which distort the beam shape at

frequencies above �70 Hz.

B. Cylindrical cantilever

The cylindrical cantilever consists of an optical fiber

with a centrally located core. One would not expect to

observe bending induced flexural strain in the core due to its

symmetry about the neutral axis. However, the response of

the cylindrical cantilever in air measured as a function of

rotation indicates the presence of a small offset error causing

the laser to respond to flexural motion. This is measured by

recording the response of the cylindrical cantilever to accel-

eration in air as it is rotated in its housing. The normalized

response measured at a frequency close to the fundamental

resonance as a function of rotation is shown in Fig. 6(a). The

measured and theoretical responses in air are shown in Fig.

6(b) when the fiber is rotated to a position of maximum

response. The theoretical response is scaled to the measured

response indicating a core offset of 216 nm. The response

exhibits a fundamental resonance at 23 Hz with an overtone

at 144 Hz. Good agreement is obtained up to the fourth

modal resonance at 785 Hz. Above this frequency, vibration

of the supporting structure distorts the response of the canti-

lever. A small deviation of the measured resonant amplitudes

from the theory is observed, which may be caused by struc-

tural damping due to the acrylate coating or the clamp.

The measured and theoretical response to support

motion in water is shown in Fig. 6(c). The resonant peaks

are now dramatically damped due to the fluid viscosity and

reduced in frequency to 10 and 83 Hz for the fundamental

and first overtone, respectively. The theoretical response is

in very good agreement with the measured response. The

close agreement between the measurement and theory up to

�550 Hz arises from the improved uniformity of the cylin-

drical cantilever along its length, which is essentially free

from structural defects compared with the planar cantilever.

The measured and theoretical acoustic response are

shown in Fig. 6(d). Very close agreement is observed

between the theoretical and measured response confirming

the validity of the driving force in the regime of moderate Re
and the predicted level of fluid damping. Damping due to the

fluid viscosity flattens the response to within 65 dB over the

range 10 to 600 Hz. Finally, the directional dependence of

the acoustic response in water is also shown in Fig. 6(a).

FIG. 5. (Color online) Planar cantile-

ver: (a) acceleration response in air,

(b) acceleration response in water,

and (c) acoustic response in water.

Theoretical responses according to

the analytical model are also shown.
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This is measured by recording the cantilever response at a

frequency close to its fundamental resonance while rotating

the cylindrical cantilever in its housing when submerged in

the vibrating water column. The directional response in the

fluid closely matches the measured directional response in

air.

Although some deviations are evident between the theo-

retical model and the measured responses, particularly at

higher frequencies, the overall agreement is very good, con-

firming the validity of the theoretical approach in the

regimes of high and moderate Re (i.e., Re� 1). Future

improvements in mechanical design of the traducers will

reduce structural damping and suppress structural resonances

associated the cantilever support.

IV. ANALYSIS

The design considerations for developing an acoustic

sensor are to minimize oscillation in the amplitude of the

acoustic response over the operating bandwidth and to

devise a sensor configuration with the potential for achieving

high repeatability of the acoustic response between sensors.

Fluid viscosity can be utilized to provide critical damping of

the mechanical oscillator to suppress resonant oscillation

amplitude and hence smooth the acoustic response. Internal

damping mechanisms such as friction at interfaces and sup-

port damping must be minimized in order to achieve high

fabrication consistency. The effects of the fluid properties

and laser mode intensity profile on the sensor response are

now considered.

A. Dependence of response on fluid viscosity

Optimization of the Reynolds number is important for

achieving a smooth frequency response. For each cantilever

the response is calculated for three different values of g
using the model presented in Sec. II. The results for the pla-

nar cantilever for values of g¼ 8.9� 10�4, 0.985, and

100 Pa s are shown in Fig. 7. These correspond to Re equal

to 1585, 1.4, and 0.01, respectively, calculated at 100 Hz.

The first value corresponds to water where the viscous losses

are relatively small resulting in multiple peaks appearing in

the response due to underdamping. The phase response

exhibits abrupt changes at each resonance. Increasing g to

0.985 Pa s results in a smooth amplitude and phase response.

In this regime, resonant oscillation is entirely suppressed

producing a smooth frequency response. This is very close

to critical damping and is a suitable operating regime for a

sensor. For g¼ 100 Pa s the response becomes smoother

but steeper, reducing the response at higher frequencies. As

Re falls below 1, the driving force becomes dominated by

the imaginary part of the hydrodynamic function, CðxÞ,
resulting in an increasing response with decreasing

frequency. In this regime the cantilever is being driven by

the viscosity of the fluid rather than the fluid acceleration.

The corresponding simulation for the cylindrical cantile-

ver is shown in Fig. 8. Here, the response is calculated for

g ¼ 8:9� 10�4, 1:65� 10�2, and 0.985 Pa s. These corre-

spond to Re equal to 11, 0.6, and 0.01, respectively, at

FIG. 7. Dependence of planar cantilever response on fluid viscosity: (a) am-

plitude and (b) phase. In this simulation the geometry of the cantilever is the

same as the prototype cantilever described in Sec. III. Re is varied by chang-

ing the viscosity of the surrounding fluid. The laser mode shape is unity

over the length of the cantilever.

FIG. 6. (Color online) Cylindrical

cantilever: (a) directional response,

(b) acceleration response in air, (c)

acceleration response in water, and

(d) acoustic response in water. Theo-

retical responses, according to the

analytical model, are also shown.

110 J. Acoust. Soc. Am., Vol. 132, No. 1, July 2012 Cranch et al.: Fiber-optic, cantilever-type hydrophone

Downloaded 15 Jul 2012 to 159.226.100.225. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



100 Hz. Critical damping is achieved for Re � 0.6 at 100 Hz

yielding a smooth amplitude and phase response. Overdamp-

ing is observed for the case of Re¼ 0.01. Similar behavior to

the planar cantilever is observed as Re falls below 1.

The similarity in the behavior of the two cantilever geo-

metries for equivalent Re is not unexpected due to the simi-

larity in the hydrodynamic functions for each cantilever.

Furthermore, Re depends only on the maximum dimension

of the cantilever and not on the geometry. The ability to tai-

lor the fluid viscosity is therefore an important design param-

eter. The fluid immediately surrounding the cantilever may

be contained within an acoustically transparent housing and

thus selected for optimum sensor response. Critical damping

may be achieved with the planar cantilever using viscous flu-

ids such as castor oil and with the cylindrical cantilever

using ethylene glycol.

B. Dependence of response on laser mode shape

According to Eq. (21), the response of the cantilever is

given by the integral of the beam shape weighted by the laser

intensity mode shape. The effect of the laser mode shape on

the response is now investigated for the case of three mode

functions given by

A
_

1ðxÞ ¼ 1;

A
_

2ðxÞ ¼
1 0 � x < L=2

0 L=2 � x < L;

(

A
_

3ðxÞ ¼ expð�2q x� L=2j jÞ:

(22)

The first function corresponds to equal weighting over the

beam length (i.e., a uniform mode intensity distribution), the

second to unity weighting over the first half of the beam and

the third corresponds to a DFB laser mode centered on the

beam, where q is the coupling coefficient.

The response of the cylindrical cantilever when operat-

ing in the low Re regime is calculated for each of these laser

mode functions and is shown in Fig. 9. The smoothest

response is observed for the case of unity mode shape (solid

line). If the flexural strain is integrated over half the cantile-

ver length (dotted line), the overall response is increased by

a factor �2, however, this comes at the expense of a similar

increase in the oscillation amplitude. Finally, for the case of

the DFB laser mode (dashed line), the response at frequen-

cies above the fundamental resonance is increased slightly,

indicating that measuring the flexure strain close to the cen-

ter of the beam yields a larger response than integrating over

the total length. However, this also comes at the expense of

an increase in the oscillation amplitude. The laser mode

shape can therefore strongly affect the response shape and

must be fully accounted for to achieve a smooth response.

Similar results are obtained when the sensor operates in the

moderate Re regime.

C. Comparison of planar and cylindrical cantilever

When operated in water, the cylindrical cantilever

exhibits a much smoother response than the planar cantilever

due to its smaller dimensions, yielding lower Re of the fluid

flow. However, when Re is matched for each cantilever (by

tailoring the fluid viscosity) the dynamic response for each

geometry are very similar.

The response amplitude of the cylindrical cantilever can be

dramatically increased (by a factor of 100) over that achieved

by the prototype sensor by using a custom designed optical fiber

incorporating a core located some distance away from the center

of the optical fiber or a multi-core optical fiber.33

The amplitude of the response is determined by the

magnitude of the driving force and the cantilever stiffness.

The ratio of the driving forces for the planar and cylindrical

cantilever, according to Eq. (11), is given by the ratio of their

effective fluid mass, l0pl=l
0
cyl, and is typically very large

(>100). The planar cantilever experiences a much larger

driving force than the cylindrical cantilever and thus a higher

response. For the simulations shown in Figs. 7 and 8 for crit-

ical damping, this leads to the planar cantilever exhibiting a

FIG. 9. Dependence of cylindrical cantilever response operating in the low

Re regime on laser mode shape.

FIG. 8. Dependence of cylindrical cantilever response on fluid viscosity: (a)

amplitude and (b) phase. In this simulation the dimensions of the fiber are

the same as the prototype cantilever described in Sec. III, however, the

length is made equal to the planar cantilever (4 cm) and the core is assumed

to be 45 lm from the center of the optical fiber. The mode shape is unity

over the length of the cantilever.
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response approximately 4 times higher than the cylindrical

cantilever.

One characteristic of interest is the ratio of the response

due to fluid motion to the response due to support motion

when subjected to identical acceleration. This is given by the

ratio of Eqs. (11) and (9),

n ¼ Fdr�FMðxÞ
Fdr�SMðxÞ

¼ ð1þ l=l0CÞ�1
(23)

and can be used as a figure of merit for a given cantilever ge-

ometry. The optimum value of n is unity to avoid excess sen-

sitivity to support motion. A value close to unity is obtained

for the planar cantilever as the virtual mass of the fluid is

much larger than the mass of the cantilever. A slightly less

optimum value of n ¼ ð1þ qf =ðqflCÞÞ�1 � 0:33 is obtained

for the cylindrical cantilever with no acrylate coating and

assuming C � 1. As the fluid viscosity increases, n for the

cylindrical cantilever approaches unity.

D. Acoustic resolution

The acoustic resolution of a cantilever type sensor can be

estimated from the frequency noise of the laser. For a typical

laser of the type used in the present sensor, the frequency

noise is �80 Hz=Hz
1=2

at 100 Hz.16 For the planar cantilever,

the response at 100 Hz is measured to be �63 100 Hz/Pa. This

yields an acoustic resolution of 1.3 mPa/Hz1/2, which is

around a factor of 2 above the lowest sea state noise observed

in the open ocean.

The simulations shown in Fig. 7 suggest a slightly higher

responsivity can be obtained from the planar cantilever with a

smooth frequency response. Thus, resolutions comparable to

the lowest sea state noise at frequencies below 1 kHz appear

attainable from the planar cantilever.

E. Comment on the response of optical fiber to
acoustically induced particle motion in water

It was shown in Fig. 6 that a small offset error in the

core of conventional optical fiber yields a flexural response

due to particle motion associated with a plane acoustic

wave, on the order of 100 Hz/Pa. The hydrostatic pressure

response of an optical fiber laser is �330 Hz/Pa.34 Thus, it is

likely that an acoustic characterization of a supported fiber

laser will be strongly influenced by the flexural response of

the fiber. The same would be true if the acoustic response of

the optical fiber were measured by other means such as inter-

ferometry. Furthermore, the flexural response will be larger

in nonplanar fields with high levels of particle motion or for

optical fiber with a larger core offset error.

These findings provide evidence that may explain the

anomalously high acoustic response of submerged optical

fiber lasers observed by other groups.35,36

V. CONCLUSIONS

The acoustic response of planar and cylindrical fiber-

optic cantilevers has been investigated both experimentally

and theoretically. An analytical model of the deflections of

the cantilever subject to an acoustic driving force and incor-

porating the effects of viscous fluid damping has been devel-

oped and applied to the case of a fiber laser cantilever. The

results from an inviscid form of the analytical model are

shown to be in close agreement with a 3D finite-element

model based on the fluid-structure interaction up to frequen-

cies exceeding 1 kHz. The fluid in close proximity to the

cantilever is intimately coupled to the cantilever motion and

the two can be thought of as acting in unison within this

region. The viscid analytical model illustrates that viscous

damping becomes very significant when the dimensions of

the cantilever approach that of conventional optical fiber

when submerged in water.

Two prototype cantilevers are characterized acousti-

cally using a vibrating column calibrator. The response of

both cantilevers is shown to yield close agreement with the

predicted response from the viscid analytical model in the

regime of Re� 1. In this regime the driving force is in

phase with the acceleration of the cantilever and is due to

the inertia of the surrounding fluid. The cylindrical cantile-

ver yields the closest agreement due to its more uniform

and defect free physical structure. The viscous fluid damp-

ing is shown to significantly reduce resonant oscillation, an

effect which is observed to be strongest with the cylindrical

cantilever in water due to its smaller physical size and

hence lower Reynolds number of the surrounding fluid flow

compared with the planar cantilever. Further reduction in

Re can be obtained by increasing the viscosity of the sur-

rounding fluid. It is shown theoretically that when Re� 1,

the driving force is in phase with the velocity of the sur-

rounding fluid and as such the cantilever motion is driven

by fluid viscosity. A smooth frequency response is obtained

when Re � 9:5� 10�4x (�0.6 at 100 Hz) irrespective of

cantilever geometry.

The response of the cantilever to support motion is also

characterized and analyzed theoretically. A figure of merit is

derived in terms of the ratio of the force due to fluid motion

and the force due to support motion for a given cantilever

geometry. Both cantilever geometries achieve a similar fig-

ure of merit. Close agreement is demonstrated between the

measured response to support motion and the theoretical

response.

These results will be invaluable for designing novel ve-

locity hydrophones based around miniature cantilever con-

figurations. Each cantilever exhibits certain benefits. For

example, the cylindrical cantilever yields the smoothest

response in water and is capable of dual-axis measurement

of particle motion (using multicore fiber). However, the pla-

nar cantilever exhibits a higher response compared with an

equivalent cylindrical cantilever with an off-axis core fiber.

Thus, choice of cantilever geometry will be driven by appli-

cation requirements.

Finally, we note that the response of a conventional op-

tical fiber (i.e., with a central core) based cylindrical cantile-

ver is close to the hydrostatic pressure response. Thus,

measurement of acoustically induced strain in a submerged

optical fiber will be strongly affected by the particle motion

and may exhibit significant deviation from the predicted

hydrostatic pressure response.

112 J. Acoust. Soc. Am., Vol. 132, No. 1, July 2012 Cranch et al.: Fiber-optic, cantilever-type hydrophone

Downloaded 15 Jul 2012 to 159.226.100.225. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



ACKNOWLEDGMENTS

The authors would like to thank J. Bucaro (NRL), A.

Tveten (NRL), J. Michalowicz (NRL), S. Foster (DSTO),

and M. J. Martin (Louisiana State University) for interesting

discussions during various stages of this work and J. Lou

(NRL) for useful comments on the manuscript. This work

was funded by the NRL 6.2 base program.

APPENDIX A: FINITE-ELEMENT MODEL
OF ACOUSTIC-STRUCTURE INTERACTION

The mechanical deformation of the planar and cylindri-

cal cantilever subject to an acoustic wave are modeled as a

coupled interaction of an acoustic wave in a fluid with a

solid structure using the 3D solid, stress-strain, and acoustic

modules of COMSOL MULTIPHYSICS (v3.5 a). The deformation

of the cantilever with a single fixed edge, subject to a pla-

nar acoustic wave, is calculated as a function of frequency

using a boundary layer mesh. The flexural strain induced in

the core of the optical fiber is calculated from the deformed

cantilever shape. The frequency modulation of the laser is

then calculated with Eq. (21). The FE model incorporates

the effect of acoustic radiation and neglects all other damp-

ing mechanisms.

APPENDIX B: CALCULATION OF THE MECHANICAL
PROPERTIES OF THE CANTILEVERS

The planar cantilever is composed of several materials

(aluminum, acrylate, and silica glass) and as such has to be

treated as a composite structure. However, several simplifi-

cations can be made due to the uniformity of the cantilever

along its length. In this case, the elastic properties of the

composite structure can be determined by (a) deriving the

equivalent cross-section area, (b) determining the position of

the neutral surface, and (c) using the parallel axis theorem to

determine the second moment of area.

This procedure, applied to an identical cross-sectional

structure, is described in Sec. III B of Ref. 37 and is used in

the present model.

APPENDIX C: ACOUSTIC CHARACTERIZATION WITH
A VIBRATING COLUMN

Characterization of the acoustic response of the cantilever

in a fluid is achieved using a technique known as the vibrating

water column method described in Ref. 38. This method pro-

duces a well defined and highly uniform acceleration field in a

single plane and is thus highly suited to characterizing acous-

tic vector sensors. Illustrated in Fig. 10, the cantilever is

placed in a rigid walled container of water, which is excited

on a vibration table. The vibration of the column induces an

acoustic field in the water column. The acceleration of the

fluid as a function of depth, €uðhÞ, is given by

€uðhÞ
€u1

¼ cosðxh=ccÞ
cosðxd=ccÞ

; (C1)

where €u1 is the acceleration applied at the base of the col-

umn, h is the depth, d is the height of the water column, and

cc is the sound speed in the column. For an infinitely rigid

column cc is equal to the bulk sound speed of water. The

response of the cantilever is measured relative to the

response of the accelerometer attached to the base. At fre-

quencies less than 500 Hz and close to the bottom of the col-

umn, €uðhÞ � €u1.

This calibration technique has other useful characteris-

tics. The water-air interface acts as a pressure release surface

at which the pressure is zero. Any residual response to

acoustic pressure can be determined by varying the depth of

the cantilever and taking into account any variation in €uðhÞ.
The local pressure can be obtained from the specific acoustic

impedance of the column given by

pðhÞ
_uðhÞ ¼ iqcc tan

xh

cc

� �
; (C2)

where _u ¼ €u=ðixÞ. The response of the cantilever in terms

of the acoustic pressure in a free-field, pff , is determined

from

pff ¼ €u
qflcfl

ix
: (C3)

This represents a standard field for comparing acoustic
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