Fiber-optic, cantilever-type acoustic motion velocity hydrophone
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The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is
investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers
are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency
dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating
effects of fluid viscosity is presented. The model demonstrates good agreement with the measured
response of two prototype cantilevers, characterized with a vibrating water column, in the regime of
Re > 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor
performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar
cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic
responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the
influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These
cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state

ocean noise. [http://dx.doi.org/10.1121/1.4725764]

PACS number(s): 43.30.Yj, 43.38.Ar, 43.38.Zp, 43.58.Wc [DAB]

. INTRODUCTION

The benefits of characterizing an acoustic field by meas-
uring particle motion, instead of local changes in ambient
pressure, have long been known. Measurement of the particle
motion in terms of displacement, velocity, or acceleration
reveal information on the field direction as well as amplitude.
Simultaneous measurement of the local pressure, p, and parti-
cle velocity, #, in a plane wave also yields the acoustic inten-
sity through the relationship, I = (real(p)real(n)),, where
(), denotes time average. When it is of interest to detect and
locate sources of acoustic radiation through the use of coher-
ently beamformed arrays, particle motion sensors provide fur-
ther benefits due to their inherent directionality. An array of
three-axis directional sensors achieves equal array gain to an
array of scalar hydrophones with twice the length.' Further-
more, the left-right ambiguity arising from the symmetry of
scalar sensor line arrays is overcome with arrays of directional
sensors.”

Most sensors designed to respond to acoustic particle
motion are based on some form of simple harmonic mechani-
cal oscillator that is driven by the acoustically induced
motion. The operating bandwidth of the sensor is determined
by the fundamental resonant frequency of the oscillator.
Assuming the sensor responds linearly to the relative displace-
ment between the inertial mass and its case, then operation
below the fundamental resonance will result in a response to
acceleration independent of frequency (i.e., an accelerometer).
Operation above the fundamental resonance results in a
response to displacement independent of frequency. One such
sensor, known as the moving coil geophone, that operates
above the fundamental resonance responds to the rate of
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change of the sensor casing and thus responds to velocity in-
dependent of frequency.

For measuring low frequency (i.e., <10kHz) acoustic
fields in the ocean, a frequency independent or smooth
response to particle velocity is highly desirable. In a planar
wave field, the acoustic impedance relating the ratio of the
pressure to particle velocity is given by the product of fluid
density and sound speed, pscy. Thus, the ambient velocity
noise field is proportional to the pressure field. This is benefi-
cial since the spectral density of the ambient acoustic pressure
noise exhibits an approximately, 1/f* dependence, which is a
similar dependence to the internal electronic noise spectrum in
many sensors, particularly at low frequencies. Consequently,
when the limiting noise source is ambient acoustic, the acous-
tic resolution is not diminished for deceasing frequency with a
true velocity sensor. The interest in developing low frequency
vector sensors is apparent from the number of reported devi-
ces. For example, devices based on moving coil,** piezoelec-
tric,” resistive heating,’ and magnetostrictive’ mechanisms
have been demonstrated. Also, several fiber-optic devices have
been demonstrated based on flexural disk®® and bending
beam' accelerometers, and pressure gradient hydrophones.'!
However, achieving high acoustic sensitivity over a large
bandwidth from a small sensor remains a challenge.

In the current work, a new concept for a particle motion
sensor is investigated. The sensor is based on the acoustically
driven motion of a fluid loaded fiber-optic cantilever. Both cy-
lindrical and planar cantilevers are investigated (some results
for the planar cantilever have been previously published in
Ref. 12). Although, essentially behaving as a driven mechani-
cal oscillator, the implementation of the sensing mechanism
results in unique behavior that is evidently well suited to mea-
surement of low frequency acoustic fields. The current work
has a number of novel aspects: (a) the dominant damping
mechanism for both planar and cylindrical fiber-optic cantile-
ver geometries is identified and incorporated into a theoretical
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model, (b) expressions for the acoustically induced driving
force are derived for both cylindrical and planar cantilevers
and their validity is demonstrated with finite element model-
ing and experimental measurements in the regimes of low to
moderate fluid viscosity, (c) the model is used to determine
important design parameters for an acoustic sensor, and (d)
compelling evidence is presented to suggest that acoustically
insonified optical fiber in a fluid exhibits a response strongly
affected by the particle motion, which in certain circumstan-
ces may dominate the response due to hydrostatic pressure
changes. This last point is significant, since early research on
the acoustic transduction mechanism of optical fiber was con-
cerned primarily with its response to hydrostatic pressure
changes'>™"> and generally neglected inertial and viscous
effects which are shown here to be very significant.

The deflections of the cantilever are measured with a fiber
laser sensor.'® This fiber optic sensor provides very high sensi-
tivity to axial strain induced in the core through flexure of the
optical fiber, necessary for acoustic measurements. Along with
the established benefits of fiber optic sensors for undersea
acoustic measurements such as excellent long term reliability,
low weight, and immunity to electromagnetic interference, an
acoustic vector sensor based on the present concept has many
other favorable attributes: (a) it can be made very small and
lightweight since the fiber constitutes both the mechanical os-
cillator and the sensor, (b) a single multicore fiber can poten-
tially measure two vector components of the acoustic field, and
(c) a smooth response to particle velocity can be achieved due
to significant viscous fluid damping arising from low Reynolds
number flow around a small cantilever.

Although fiber-optic flow sensors that respond to the vis-
cous fluid force have been demonstrated based on twin-core
optical fiber,!” only one previous effort to develop an acoustic
sensor of this type has been reported. Josserand er al.'® char-
acterized the acoustic response of a planar PVF2 cantilever. A
simple model was presented to describe the cantilever motion
but the exact expression for the acoustic driving force was not
clear and viscous forces, which are shown to be significant in
the current work, were neglected. Although the results demon-
strated were encouraging, the size of the device resulted in a
strongly peaked resonant response to particle velocity at low
frequencies, which is generally undesirable.

This article is arranged as follows. An analytical model
of the response of the fluid loaded cantilever is described in
Sec. II. Expressions for the acoustic driving force are pre-
sented and results from the analytical model are compared
with a finite-element model of the acoustic-structure interac-
tion. The characterization of the cantilevers in air and water
is described in Sec. III and the measured responses are com-
pared with results from the analytical models. A discussion
is then given on the dependence of the acoustic response on
the size and geometry of the cantilever and the predicted
acoustic resolution in Sec. IV. Finally the conclusions are
summarized in Sec. V.

Il. THEORY

The geometries of the planar and cylindrical cantilevers
are illustrated in Figs. 1(a) and 1(b), respectively. The planar
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FIG. 1. (Color online) Cantilever geometries (a) planar cantilever compris-
ing a silica optical fiber with an acrylate coating bonded to an aluminum rib-
bon, (b) cylindrical cantilever comprising a silica optical fiber with an
acrylate coating only, and (c) displacements of cantilever and support.

cantilever consists of a thin ribbon with an optical fiber
attached to its upper surface. The cylindrical cantilever con-
sists of a single optical fiber. Both cantilevers are rigidly
fixed to an aluminum support. In the subsequent analysis the
following assumptions are made.

(a) The cross section of the cantilever is uniform along its
length.

(b) The cantilever length greatly exceeds its width or di-
ameter (i.e., it is long and slender).

(c) The beam is isotropic in the x-direction.

(d) The smallest dimension of the beam greatly exceeds
the amplitude of the vibration.

(e) The shortest wavelength of the acoustic excitation
greatly exceeds the largest dimension of the beam.

(f) The surrounding fluid is unbounded within a region
much larger than the largest cross-sectional dimension
of the cantilever.

Furthermore, the laser is assumed to respond only to
flexural vibration modes, thus transverse modes (in the
z-direction) are neglected.

Of particular interest is the effect of viscous fluid damping
on the response of the cantilever which becomes significant at
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low Reynolds number. The Reynolds number for the acousti-
cally induced flow can be defined in terms of the dominant
length scale of the cantilever as'®

wb?
Re — ’)ﬂ4n . (1)

Here py is the fluid density, o is the acoustic (angular) fre-
quency, 7 is the dynamic viscosity of the fluid, and b is the
width of the planar cantilever or outer diameter of the cylin-
drical cantilever. The relative importance of viscous effects
on the sensor behavior will therefore depend on operating
frequency due to the dependence of Re on w.

A. Beam theory

Many studies on the behavior of fluid loaded beams
have been previously reported.”*>> Although the later mod-
els incorporate the effect of acoustic radiation losses**? all
of these analyses assume the fluid is inviscid. Furthermore,
radiation losses in the current sensor are expected to be small
due to the acoustic wavelength greatly exceeding the cantile-
ver dimensions. A more recent model incorporating viscous
losses was reported by Sader'® who analyzed the thermally
driven response of a micro-cantilever in a viscous fluid. This
model was later experimentally verified.?® The Sader model
is used as the basis for understanding the behavior of the
fiber-optic cantilever. This model is extended by considering
the cantilever motion when driven by acoustically induced
fluid motion and support motion.

The deflections of the cantilever when submerged in a
viscous fluid are described by the beam equation

O*u(x,t) Qu(x,t)
B T % =

fh(xv t)v (2)

where EI is the beam stiffness, u(x, ) is the absolute dis-
placement of the beam in the y-direction, u is the mass per
unit length of the cantilever, and f;,(x, ) is the hydrodynamic
force. This equation represents the balance of forces on the
cantilever when brought into motion. The sum of the restor-
ing force due to the beam stiffness and the inertial force of
the cantilever is equal to the force exerted by the fluid. This
force due to the fluid is known as the hydrodynamic force
and incorporates the effect of the additional inertia of the
fluid and its viscosity for unsteady (or oscillatory) boundary
flow. Equation (2) can be solved using the boundary condi-
tions for a beam of length, L, clamped at one end,

ou(0,1)

l/t(O7 f) = Ms(l)7 T = 0 (3)
and

Q%u(L,1) PPu(L,t)

I T @

where u(x, ) is the displacement of the support. It is con-
venient to transform Eq. (2) into the frequency domain to an-
alyze steady-state behavior such that
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where U (x|w) represents the Fourier transform of u(x, 7). Assum-
ing harmonic motion of the form, u(x, 7) = uo(x)exp(iwt), then
Eq. (5) becomes

o*U
E[% — pU(x|w) = Fi(x|o). ©)

The hydrodymanic force, presented by Rosenhead?’ and also
used by Sader,'? is given by

Fi(x|o) = ¢'T(0)0*U(x|w), (7)

where (/' is the added mass per unit length due to the fluid
and I'(w) is the geometry dependent hydrodynamic function
and in general is complex. The term y'T'(®) is known as the
“virtual” mass of the fluid.

Consider first the case where the cantilever is brought
into motion by applying a displacement to the support, as
illustrated in Fig. 1(c). The device will measure the relative
displacement between the support and the beam (i.e., the
beam shape), which is given by W (x|w) = U(x|w) — Us(w).
Substituting Eq. (7) into Eq. (6) and expressing in terms of
the beam shape, W (x|w), yields

E]% — (u+ YT (0))*W (x|w) = Fygr_su(w)

®)

where the general form of the driving force due to support
motion, F,_sy(®), is given by

Far-su(®) = (u+ f'T(0)) 0 Us(w). ©)

The hydrodynamic force has added the virtual mass term to
the inertial term on the left-hand side of Eq. (8). This acts to
shift the resonant frequency and adds damping due to the
fluid viscosity. The virtual mass is also added to the driving
force causing it to be enhanced, compared with its magni-
tude in a vacuum (i.e., where i’ = 0). Equation (8) represents
the equation of motion for a fluid loaded cantilever subject
to support motion.

An alternative means of actuating the cantilever is by
fluid motion. This can be implemented by exciting an acous-
tic wave in the fluid and corresponds to the relevant trans-
duction mechanism for the present sensor. In this case
U,=0 (i.e., the support motion is zero) and an additional
term, Fy,_ (), must be added to the right-hand side of Eq.
(6) to account for this fluid motion. The equation of motion
in this case is given by

E[84W(x|w)

o (14 WT(0)*W (x|w) = Fyr_py (o).

(10)
The general form of the driving force due to fluid motion is

Far-rm(0) = @' T(0)0*Up(), (11
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where Uy (w) is the displacement of the fluid in the absence
of the cantilever. Typically, ¢/'T'(w) is much larger than u
and therefore the response under actuation by support
motion, according to Eq. (9), will be similar to that under
fluid motion when U; = Uy. Equations (8) and (10) are simi-
lar in form to Eq. (11) derived in Ref. 28 for a piezo-
electrically actuated microcantilever used in atomic force
microscopes.

The driving force from a plane acoustic wave, which
creates the pressure gradient parallel to the motion of the
cantilever, can be derived from this result. A small volume
element of fluid in an acoustic field experiences a force per
unit length given by df (x,y,z) = —dA - Vp(x, y, z), where p
is the acoustic pressure, V = 9/0x - i +8/dy - j+ 0/0z - k,
and dA is the area across which the force acts. According to
the linear inviscid force equation for small amplitude acous-
tic processes,”’ the pressure gradient is also proportional to
the fluid acceleration

ou
pﬂ?tﬂ = —Vp. (12)

A plane wave traveling in the y-direction takes the form,
p = poexp(i(wt — ky)), where k is the acoustic wavenumber
(k = w/cp) and cp is the sound speed in the fluid. Assuming
the acoustic wavelength is much larger than the dimensions
of the cantilever, then using Egs. (11), (12) and the relation
dfy = —A. - Op/Jy yields the Fourier transform of the force
due to the fluid motion in terms of acoustic pressure

) w
Fdr—aco(w) = _lAeF(w) :ﬂp) (13)

A, corresponds to the effective area over which to calculate
the pressure gradient and is given by i/'/py.

1. Effect of geometry

Thus far the analysis has not considered the geometry of
the cantilever. This establishes the effective mass of the fluid
and the form of the hydrodynamic function, I'(w). The
effective mass of the fluid has been derived by Chu for the
case of the planar cantilever and is given by>’>°

W, = pymb’ /4. (14)

The effective mass of the fluid is equivalent to the mass of a
fluid cylinder with a diameter equal to the width of the canti-
lever, b. The expression for the cylindrical cantilever is the
same as the planar cantilever with b replaced with the outer
diameter of the cylindrical cantilever, 2r,. This result sug-
gests that a cylindrical region of fluid surrounding the canti-
lever is closely coupled to it and strongly influences its
motion. This is also the region where the fluid motion is
strongly perturbed by the cantilever motion. The expression
(14) is widely used to predict the change in resonance fre-
quency of a beam submerged in an inviscid fluid.

The hydrodymanic function incorporates the effect on
the cantilever motion of the fluid viscosity and depends on
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the geometry of the cantilever. An analytical solution exists
for the cylindrical cantilever and is given by

4iK, (—iv/iRe)

rcirc w)=1+ 5
(@) ViReKo(—iv/iRe)

5)

where K,, are modified Bessel functions of the second kind.
An analytical solution for the planar cantilever does not
exist, however, Sader derived an approximate solution by
noting that the hydrodynamic function for the cylindrical
and planar cantilever possess the same asymptotic form in
the limits Re — 0 and Re — oo. In the simulations that fol-
low, this approximate expression is used for the hydrody-
namic function for the planar cantilever. However, it should
be noted that this approximate expression deviates from the
exact expression for the cylindrical cantilever by less than
12% over the range 10~* < Re < 10%. Therefore, I is simi-
lar for both cantilever geometries. The real and imaginary
parts of I'(w) are plotted in Fig. 2. For large Re, the imagi-
nary part is negligible and I' ~ 1 corresponding to an invis-
cid fluid. When Re < 1 the imaginary part is much larger
than the real part, which has interesting consequences for the
driving force. The sensor behavior can be separated into
three different operating regimes depending on the Reynolds
number, illustrated in Fig. 2. These will now be examined in
more detail.

2. Driving force—high Re regime

This regime occurs, according to Eq. (1), at high fre-
quencies or when the cantilever dimensions increase, and
represents small or negligible viscous effects. It is obtained
when the prototype cantilevers described here are operated
in air. In water, this regime is obtained when the cantilever
cross section is larger than a few millimeters and is experi-
enced by the planar cantilever described here. When viscous
damping is small, the frequency response of the cantilever
exhibits sharp peaks at each resonance and as a sensor is
generally not suitable for operation above the fundamental
resonance. If the cantilever were driven by an acoustic wave
propagating in air, the driving force generated by air particle

real(T, )

real(T )/\\

rect:
'
'
'
'
'

'
—

Hydrodynamic function, I'(w)
3,

4 LowRe ! M°dReefate iHigh Re
10 T T T T T

10" 10* 10% 10" 10° 10" 10
Reynolds number, Re

FIG. 2. Real and imaginary parts of the hydrodynamic function for the cy-
lindrical and planar cantilever (solid line—cylindrical cantilever, dashed
line—planar cantilever).

Cranch et al.: Fiber-optic, cantilever-type hydrophone

Downloaded 15 Jul 2012 to 159.226.100.225. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



motion, according to Eq. (11), will be very small due to a
small value of ' yielding a very low response.

An alternative configuration for an acoustic sensor oper-
ating in a liquid is to place the cantilever in a sealed neu-
trally buoyant enclosure, which is submerged in the liquid.
An acoustic wave propagating in the liquid induces motion
of the support through the enclosure. The cantilever motion
will be described by Eq. (8) and the force is given by

Far—sm(0)|pigh—re = pa*Us(). (16)

The driving force is dependent on the mass of the beam, p.
Such a configuration is similar to that demonstrated in Ref.
10. For a planar cantilever, this force is somewhat smaller
than the force experienced by the cantilever when sub-
merged in a liquid and driven directly by the acoustic wave.
In this case, the force is dependent on the effective mass of
the surrounding water. This implies an added benefit of a
directly driven cantilever.

3. Driving force—moderate Re regime

When Re is less than ~10 the real part of I'(w) begins
to increase. However, the imaginary part increases more rap-
idly and becomes equal to the real part when Re ~ 1. In this
regime, viscous damping is more significant but the driving
force is predominantly due to fluid inertia. This regime is
experienced by the cylindrical cantilever described here in
water. The driving force due to fluid motion is given by Eq.
(11) and can be approximated to

Farim(0)]og_ge = 1 real(T(0)) - 0*Un(w). (17)

This force is in phase with the acceleration of the cantilever
and is thus related to the acceleration of the fluid driven by
the pressure gradient across the cantilever (i.e., parallel to its
motion). The Fourier transform of the force due to the fluid
motion in terms of acoustic pressure is

. w
Far—aco(®)lnoq—ge = —iAc real(T'(®)) '&p}“ (18)

In this regime, I" takes a value between 1 and 3. The inviscid
form of Eq. (17) [i.e., when I'(w) = 1] is in agreement with
an equivalent expression for an acoustically driven cylinder
derived in Ref. 31.

4. Driving force—low Re regime

When Re is less than 1, then real(I'(®)) < imag(T'(w)).
The driving force due to fluid motion is given by

Far—im(®) |1y _ge = 1 imag(T(w)) - 0*Up(). (19)

The driving force is now dominated by the imaginary part of
I'(w) and is in phase with the velocity of the cantilever. The
cantilever motion in this regime is driven predominantly by
the fluid viscosity. Referring to Fig. 2, the imaginary part of
I'(w) increases rapidly with decreasing Re, approaching
~1000 for Re ~ 1073, The magnitude of this force is very

J. Acoust. Soc. Am., Vol. 132, No. 1, July 2012

large compared with the other two regimes and therefore
represents an interesting operating regime for a fluid motion
sensor.

The Fourier transform of the force in terms of acoustic
pressure is given by

R w
Fdr—a(‘()(w)‘l()\/‘;_Rg = _lAelmag(F(w)) : &py- (20)

5. Calculating the beam shape

The normalized beam shape is given by the analytical
solution to the equation of motion (6), which was derived by
Sader using a Green’s function method and is given in
Appendix A of Ref. 19. This solution is used along with the
driving forces derived above to determine the beam
deflections.

B. Comparison of analytical and finite-element
models

To confirm the validity of the acoustically induced force
derived above, the inviscid form of the analytical model
[i.e., Egs. (10) and (11) with I' = 1] is compared with a finite
element model for each cantilever. The finite-element (FE)
model is developed in cOMSOL MULTIPHYSICS as a three dimen-
sional acoustic-structure interaction, details of which are
given in Appendix A. For both models the beam shape is
derived as a function of drive frequency. This is used to
determine the flexure strain induced in the core of the optical
fiber, Ae(x, r). The shift in laser frequency, Ay, is then calcu-
lated using™

Avi _ (0,78)Lir Ae(x, DA (x)dx, 1)

4 ¢ Jx;

where A (x) is the spatial distribution of the laser mode in-
tensity and L. is the effective cavity length.

The results from the two models for each cantilever ge-
ometry are shown in Fig. 3 as solid lines for the analytical
model and symbols for the FE model. Details on calculating
the mechanical properties of the cantilevers for the analytical
model are given in Appendix B. For each case the simulation
is run for fluid densities of 10 and 1000 kg/m’. In both cases
the agreement is excellent. The close agreement at low fre-
quencies confirm the validity of the expressions for the driv-
ing force for an inviscid fluid. The change in fluid density
affects the mass loading, shifting the resonant frequencies.

lll. EXPERIMENT

In the following experimental section, the response of
the cantilevers is characterized and compared to the theoreti-
cal response according to the analytical model presented in
Sec. II in the operating regimes of moderate and high Re.

The planar cantilever is 40 mm in length and consists of
an aluminum ribbon with cross-section 3 mm x 50 um. It
comprises a fiber laser adhered to an aluminum ribbon using
a thin layer of rapid cure epoxy. The fiber laser comprises
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FIG. 3. (Color online) Comparison of
analytical model (solid lines) with
finite-element acoustic-structure inter-
action model (symbols) for (a) planar
cantilever and (b) cylindrical cantile-
ver. Both models are inviscid. For this
simulation, the flexural strain is inte-
grated over the length of the cantilever
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two fiber Bragg gratings separated by 20 mm written into an
erbium doped fiber. Only the cavity of the laser (~20 mm in
length) is adhered to the ribbon, which is positioned at the
base of the cantilever, to avoid distortion of the Bragg gra-
tings. The prototype is shown in Fig. 4. The fiber comprises
a 125 um silica cladding with a 138 um thick acrylate jacket.
The core is approximately 200 um from the neutral surface
of the cantilever.

The cylindrical cantilever is 55 mm in length and con-
sists of a 125 um diameter erbium doped silica fiber with a
62.5 um thick acrylate coating. A fiber laser consisting of a
50mm Bragg grating with a centrally located n phase-shift
is formed in the core of the optical fiber. This type of laser is
known as a distributed feedback (DFB) laser and exhibits an
optical mode tightly confined about the phase-shift. The
Bragg grating strength is characterized by its coupling coef-
ficient, g, which is ~180 m~"'. The phase-shift defines the
center of the laser mode and is located close to the center of
the cantilever.

The lasers are pumped with 100 mW of 980 nm optical
radiation from a laser diode and emit a single optical fre-
quency around 1550 nm. The frequency shifts of the fiber
laser are measured using an unbalanced fiber-optic interfer-
ometer.'® The cantilever is characterized in air by applying a
known acceleration to the support. The output frequency
shift of the laser as a function of frequency is calibrated rela-
tive to a reference piezoelectric accelerometer, also attached
to the support. Acoustic characterization of the cantilevers is
carried out using a vibrating water column, described in
Appendix C, which enables acoustic calibration from
approximately 10 Hz to 1 kHz. Inertial excitation is achieved
with a shaker table (Bruel & Kjaer 4808).

FIG. 4. (Color online) Prototype planar cantilever.
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(i.e., the laser mode function is unity).
Frequency, Hz

According to Eq. (1), for a frequency of 100 Hz and
assuming the fluid to be water, Re ~ 1410 for the planar can-
tilever and Re ~ 10 for the cylindrical cantilever. Therefore,
viscous damping is expected to be much more significant for
the cylindrical cantilever. Material parameters used in the
following theoretical calculations are given in Table I.

A. Planar cantilever

The acceleration response measured in air (in units of
GHz/g) for the planar cantilever is shown in Fig. 5(a). The
response exhibits a fundamental resonance at 121 Hz with an
overtone at 751 Hz. The predicted response according to the
analytical model is also overlaid. It is assumed that the cou-
pling of the laser cavity with the aluminum ribbon occurs
over ~0.5 of its total cavity length, which is consistent with
the bonded region of the laser to the ribbon. Good agreement
between the theoretical and measured response is obtained at
frequencies away from resonant peaks. An appreciable
amount of structural damping present in the prototype sensor

TABLE I. Definition of terms.

Parameter Definition Value
Fluid properties

Pn Density 997 kg m~3
¢ Sound speed 1482ms™"
u Particle displacement

i Particle velocity

ii Particle acceleration

n Fluid viscosity (water) 8.9 x 10 *Pas
4 Acoustic pressure

Fiber properties

Pf Density 2200kgm >
E Youngs modulus 70 GPa

s Coating radius

Ribbon properties (for planar cantilever)

Pe Density 2700kgm >
L Length

b Width 3mm

a Thickness 50 um

Miscellaneous

1 Second moment of area
12 Laser frequency

Ae Local strain

A(x) Laser mode shape

q Grating coupling coefficient
u(x, 1), U(x|w) Absolute beam displacement
uy(t), Ug(w) Support displacement
w(x, 1), W(x|w) Beam shape

Sfx, ), F(x|w)

Driving force
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is evident from the reduced amplitude of the resonant peaks.
This structural damping is not accounted for in the analytical
model, which incorporates only viscous fluid damping. In
air, viscous damping is small, and results in a large deviation
in the theoretical and measured response close to the me-
chanical resonances. This is not of concern in the present
work due to our interest in the effects of viscous fluid damp-
ing. The theoretical model also deviates significantly above
~1kHz due to physical imperfections in the cantilever,
which distort the beam shape above this frequency.

The acceleration response of the planar cantilever in
water is shown in Fig. 5(b). This is obtained by submerging
the cantilever into a water reservoir and applying an acceler-
ation to its support using a suspended shaker table. A refer-
ence accelerometer, attached to the cantilever support,
records the support acceleration. When submerged, the fun-
damental resonance is shifted down to 26 Hz, due to the fluid
loading. The fluid also adds additional viscous damping,
reducing the amplitude of the fundamental resonance
slightly. The theoretical response, derived using Eq. (9), is in
good agreement with the measured response up to 70 Hz,
above which the presence of structural damping in the com-
posite cantilever causes deviation between the measured and
theoretical response.

The measured and theoretical acoustic response in water
are shown in Fig. 5(c). The theoretical response is in close
agreement with the measured response at low frequencies,
confirming the validity of the driving force given by Eq. (11)
in the regime of high Re. The presence of structural damping
in the composite cantilever causes deviation between the
measured and theoretical response close to the resonances.
However, the deviation is much smaller than for the in-air
case as the viscous fluid damping now becomes more signifi-
cant. The dramatic drop-out in the theoretical response at
108 Hz is due to the spatial overlap of the laser mode shape
and the flexural strain induced by the beam shape. The inte-
gral of the product of these two equates to zero at a fre-
quency close to 108 Hz causing this drop-out. This drop-out
is less dramatic in the measured data due to physical imper-
fections in the cantilever, which distort the beam shape at
frequencies above ~70 Hz.
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10°

B. Cylindrical cantilever

The cylindrical cantilever consists of an optical fiber
with a centrally located core. One would not expect to
observe bending induced flexural strain in the core due to its
symmetry about the neutral axis. However, the response of
the cylindrical cantilever in air measured as a function of
rotation indicates the presence of a small offset error causing
the laser to respond to flexural motion. This is measured by
recording the response of the cylindrical cantilever to accel-
eration in air as it is rotated in its housing. The normalized
response measured at a frequency close to the fundamental
resonance as a function of rotation is shown in Fig. 6(a). The
measured and theoretical responses in air are shown in Fig.
6(b) when the fiber is rotated to a position of maximum
response. The theoretical response is scaled to the measured
response indicating a core offset of 216 nm. The response
exhibits a fundamental resonance at 23 Hz with an overtone
at 144Hz. Good agreement is obtained up to the fourth
modal resonance at 785 Hz. Above this frequency, vibration
of the supporting structure distorts the response of the canti-
lever. A small deviation of the measured resonant amplitudes
from the theory is observed, which may be caused by struc-
tural damping due to the acrylate coating or the clamp.

The measured and theoretical response to support
motion in water is shown in Fig. 6(c). The resonant peaks
are now dramatically damped due to the fluid viscosity and
reduced in frequency to 10 and 83 Hz for the fundamental
and first overtone, respectively. The theoretical response is
in very good agreement with the measured response. The
close agreement between the measurement and theory up to
~550Hz arises from the improved uniformity of the cylin-
drical cantilever along its length, which is essentially free
from structural defects compared with the planar cantilever.

The measured and theoretical acoustic response are
shown in Fig. 6(d). Very close agreement is observed
between the theoretical and measured response confirming
the validity of the driving force in the regime of moderate Re
and the predicted level of fluid damping. Damping due to the
fluid viscosity flattens the response to within =5 dB over the
range 10 to 600 Hz. Finally, the directional dependence of
the acoustic response in water is also shown in Fig. 6(a).
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This is measured by recording the cantilever response at a
frequency close to its fundamental resonance while rotating
the cylindrical cantilever in its housing when submerged in
the vibrating water column. The directional response in the
fluid closely matches the measured directional response in
air.

Although some deviations are evident between the theo-
retical model and the measured responses, particularly at
higher frequencies, the overall agreement is very good, con-
firming the wvalidity of the theoretical approach in the
regimes of high and moderate Re (i.e., Re>1). Future
improvements in mechanical design of the traducers will
reduce structural damping and suppress structural resonances
associated the cantilever support.

IV. ANALYSIS

The design considerations for developing an acoustic
sensor are to minimize oscillation in the amplitude of the
acoustic response over the operating bandwidth and to
devise a sensor configuration with the potential for achieving
high repeatability of the acoustic response between sensors.
Fluid viscosity can be utilized to provide critical damping of
the mechanical oscillator to suppress resonant oscillation
amplitude and hence smooth the acoustic response. Internal
damping mechanisms such as friction at interfaces and sup-
port damping must be minimized in order to achieve high
fabrication consistency. The effects of the fluid properties
and laser mode intensity profile on the sensor response are
now considered.

A. Dependence of response on fluid viscosity

Optimization of the Reynolds number is important for
achieving a smooth frequency response. For each cantilever
the response is calculated for three different values of
using the model presented in Sec. II. The results for the pla-
nar cantilever for values of 1n=28.9 x 1074, 0.985, and
100 Pas are shown in Fig. 7. These correspond to Re equal
to 1585, 1.4, and 0.01, respectively, calculated at 100 Hz.
The first value corresponds to water where the viscous losses
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are relatively small resulting in multiple peaks appearing in
the response due to underdamping. The phase response
exhibits abrupt changes at each resonance. Increasing 7 to
0.985 Pass results in a smooth amplitude and phase response.
In this regime, resonant oscillation is entirely suppressed
producing a smooth frequency response. This is very close
to critical damping and is a suitable operating regime for a
sensor. For n=100Pas the response becomes smoother
but steeper, reducing the response at higher frequencies. As
Re falls below 1, the driving force becomes dominated by
the imaginary part of the hydrodynamic function, I'(®),
resulting in an increasing response with decreasing
frequency. In this regime the cantilever is being driven by
the viscosity of the fluid rather than the fluid acceleration.
The corresponding simulation for the cylindrical cantile-
ver is shown in Fig. 8. Here, the response is calculated for
n =289 x 107, 1.65 x 1072, and 0.985Pas. These corre-
spond to Re equal to 11, 0.6, and 0.01, respectively, at

~
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FIG. 7. Dependence of planar cantilever response on fluid viscosity: (a) am-
plitude and (b) phase. In this simulation the geometry of the cantilever is the
same as the prototype cantilever described in Sec. III. Re is varied by chang-
ing the viscosity of the surrounding fluid. The laser mode shape is unity
over the length of the cantilever.
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FIG. 8. Dependence of cylindrical cantilever response on fluid viscosity: (a)
amplitude and (b) phase. In this simulation the dimensions of the fiber are
the same as the prototype cantilever described in Sec. III, however, the
length is made equal to the planar cantilever (4 cm) and the core is assumed
to be 45 um from the center of the optical fiber. The mode shape is unity
over the length of the cantilever.

100 Hz. Critical damping is achieved for Re ~ 0.6 at 100 Hz
yielding a smooth amplitude and phase response. Overdamp-
ing is observed for the case of Re =0.01. Similar behavior to
the planar cantilever is observed as Re falls below 1.

The similarity in the behavior of the two cantilever geo-
metries for equivalent Re is not unexpected due to the simi-
larity in the hydrodynamic functions for each cantilever.
Furthermore, Re depends only on the maximum dimension
of the cantilever and not on the geometry. The ability to tai-
lor the fluid viscosity is therefore an important design param-
eter. The fluid immediately surrounding the cantilever may
be contained within an acoustically transparent housing and
thus selected for optimum sensor response. Critical damping
may be achieved with the planar cantilever using viscous flu-
ids such as castor oil and with the cylindrical cantilever
using ethylene glycol.

B. Dependence of response on laser mode shape

According to Eq. (21), the response of the cantilever is
given by the integral of the beam shape weighted by the laser
intensity mode shape. The effect of the laser mode shape on
the response is now investigated for the case of three mode
functions given by

A](X) = 17

B 1 0<x<L/)2

Ay(x) = 22)
0 L/2<x<L,

As(x) = exp(—2g|x — L/2]).

The first function corresponds to equal weighting over the
beam length (i.e., a uniform mode intensity distribution), the
second to unity weighting over the first half of the beam and
the third corresponds to a DFB laser mode centered on the
beam, where ¢ is the coupling coefficient.
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The response of the cylindrical cantilever when operat-
ing in the low Re regime is calculated for each of these laser
mode functions and is shown in Fig. 9. The smoothest
response is observed for the case of unity mode shape (solid
line). If the flexural strain is integrated over half the cantile-
ver length (dotted line), the overall response is increased by
a factor ~2, however, this comes at the expense of a similar
increase in the oscillation amplitude. Finally, for the case of
the DFB laser mode (dashed line), the response at frequen-
cies above the fundamental resonance is increased slightly,
indicating that measuring the flexure strain close to the cen-
ter of the beam yields a larger response than integrating over
the total length. However, this also comes at the expense of
an increase in the oscillation amplitude. The laser mode
shape can therefore strongly affect the response shape and
must be fully accounted for to achieve a smooth response.
Similar results are obtained when the sensor operates in the
moderate Re regime.

C. Comparison of planar and cylindrical cantilever

When operated in water, the cylindrical cantilever
exhibits a much smoother response than the planar cantilever
due to its smaller dimensions, yielding lower Re of the fluid
flow. However, when Re is matched for each cantilever (by
tailoring the fluid viscosity) the dynamic response for each
geometry are very similar.

The response amplitude of the cylindrical cantilever can be
dramatically increased (by a factor of 100) over that achieved
by the prototype sensor by using a custom designed optical fiber
incorporating a core located some distance away from the center
of the optical fiber or a multi-core optical fiber.*

The amplitude of the response is determined by the
magnitude of the driving force and the cantilever stiffness.
The ratio of the driving forces for the planar and cylindrical
cantilever, according to Eq. (11), is given by the ratio of their
effective fluid mass, /i, and is typically very large
(>100). The planar cantilever experiences a much larger
driving force than the cylindrical cantilever and thus a higher
response. For the simulations shown in Figs. 7 and 8 for crit-
ical damping, this leads to the planar cantilever exhibiting a
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FIG. 9. Dependence of cylindrical cantilever response operating in the low
Re regime on laser mode shape.
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response approximately 4 times higher than the cylindrical
cantilever.

One characteristic of interest is the ratio of the response
due to fluid motion to the response due to support motion
when subjected to identical acceleration. This is given by the
ratio of Egs. (11) and (9),

Far—pm(w)
Far—smu(o)

¢= = (14 p/WT)™"! (23)

and can be used as a figure of merit for a given cantilever ge-
ometry. The optimum value of £ is unity to avoid excess sen-
sitivity to support motion. A value close to unity is obtained
for the planar cantilever as the virtual mass of the fluid is
much larger than the mass of the cantilever. A slightly less
optimum value of & = (1 + ,of/(pﬂl“)f1 ~ 0.33 is obtained
for the cylindrical cantilever with no acrylate coating and
assuming I ~ 1. As the fluid viscosity increases, ¢ for the
cylindrical cantilever approaches unity.

D. Acoustic resolution

The acoustic resolution of a cantilever type sensor can be
estimated from the frequency noise of the laser. For a typical
laser of the type used in the present sensor, the frequency
noise is ~ 80 HZ/HZ]/2 at 100 Hz.'® For the planar cantilever,
the response at 100 Hz is measured to be ~63 100 Hz/Pa. This
yields an acoustic resolution of 1.3 mPa/Hz'? which is
around a factor of 2 above the lowest sea state noise observed
in the open ocean.

The simulations shown in Fig. 7 suggest a slightly higher
responsivity can be obtained from the planar cantilever with a
smooth frequency response. Thus, resolutions comparable to
the lowest sea state noise at frequencies below 1 kHz appear
attainable from the planar cantilever.

E. Comment on the response of optical fiber to
acoustically induced particle motion in water

It was shown in Fig. 6 that a small offset error in the
core of conventional optical fiber yields a flexural response
due to particle motion associated with a plane acoustic
wave, on the order of 100 Hz/Pa. The hydrostatic pressure
response of an optical fiber laser is ~330 Hz/Pa.** Thus, it is
likely that an acoustic characterization of a supported fiber
laser will be strongly influenced by the flexural response of
the fiber. The same would be true if the acoustic response of
the optical fiber were measured by other means such as inter-
ferometry. Furthermore, the flexural response will be larger
in nonplanar fields with high levels of particle motion or for
optical fiber with a larger core offset error.

These findings provide evidence that may explain the
anomalously high acoustic response of submerged optical
fiber lasers observed by other groups.>>~°

V. CONCLUSIONS

The acoustic response of planar and cylindrical fiber-
optic cantilevers has been investigated both experimentally
and theoretically. An analytical model of the deflections of
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the cantilever subject to an acoustic driving force and incor-
porating the effects of viscous fluid damping has been devel-
oped and applied to the case of a fiber laser cantilever. The
results from an inviscid form of the analytical model are
shown to be in close agreement with a 3D finite-element
model based on the fluid-structure interaction up to frequen-
cies exceeding 1 kHz. The fluid in close proximity to the
cantilever is intimately coupled to the cantilever motion and
the two can be thought of as acting in unison within this
region. The viscid analytical model illustrates that viscous
damping becomes very significant when the dimensions of
the cantilever approach that of conventional optical fiber
when submerged in water.

Two prototype cantilevers are characterized acousti-
cally using a vibrating column calibrator. The response of
both cantilevers is shown to yield close agreement with the
predicted response from the viscid analytical model in the
regime of Re > 1. In this regime the driving force is in
phase with the acceleration of the cantilever and is due to
the inertia of the surrounding fluid. The cylindrical cantile-
ver yields the closest agreement due to its more uniform
and defect free physical structure. The viscous fluid damp-
ing is shown to significantly reduce resonant oscillation, an
effect which is observed to be strongest with the cylindrical
cantilever in water due to its smaller physical size and
hence lower Reynolds number of the surrounding fluid flow
compared with the planar cantilever. Further reduction in
Re can be obtained by increasing the viscosity of the sur-
rounding fluid. It is shown theoretically that when Re < 1,
the driving force is in phase with the velocity of the sur-
rounding fluid and as such the cantilever motion is driven
by fluid viscosity. A smooth frequency response is obtained
when Re ~ 9.5 x 107*w (~0.6 at 100Hz) irrespective of
cantilever geometry.

The response of the cantilever to support motion is also
characterized and analyzed theoretically. A figure of merit is
derived in terms of the ratio of the force due to fluid motion
and the force due to support motion for a given cantilever
geometry. Both cantilever geometries achieve a similar fig-
ure of merit. Close agreement is demonstrated between the
measured response to support motion and the theoretical
response.

These results will be invaluable for designing novel ve-
locity hydrophones based around miniature cantilever con-
figurations. Each cantilever exhibits certain benefits. For
example, the cylindrical cantilever yields the smoothest
response in water and is capable of dual-axis measurement
of particle motion (using multicore fiber). However, the pla-
nar cantilever exhibits a higher response compared with an
equivalent cylindrical cantilever with an off-axis core fiber.
Thus, choice of cantilever geometry will be driven by appli-
cation requirements.

Finally, we note that the response of a conventional op-
tical fiber (i.e., with a central core) based cylindrical cantile-
ver is close to the hydrostatic pressure response. Thus,
measurement of acoustically induced strain in a submerged
optical fiber will be strongly affected by the particle motion
and may exhibit significant deviation from the predicted
hydrostatic pressure response.
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APPENDIX A: FINITE-ELEMENT MODEL
OF ACOUSTIC-STRUCTURE INTERACTION

The mechanical deformation of the planar and cylindri-
cal cantilever subject to an acoustic wave are modeled as a
coupled interaction of an acoustic wave in a fluid with a
solid structure using the 3D solid, stress-strain, and acoustic
modules of comsoL muLTIPHYSICS (v3.5a). The deformation
of the cantilever with a single fixed edge, subject to a pla-
nar acoustic wave, is calculated as a function of frequency
using a boundary layer mesh. The flexural strain induced in
the core of the optical fiber is calculated from the deformed
cantilever shape. The frequency modulation of the laser is
then calculated with Eq. (21). The FE model incorporates
the effect of acoustic radiation and neglects all other damp-
ing mechanisms.

APPENDIX B: CALCULATION OF THE MECHANICAL
PROPERTIES OF THE CANTILEVERS

The planar cantilever is composed of several materials
(aluminum, acrylate, and silica glass) and as such has to be
treated as a composite structure. However, several simplifi-
cations can be made due to the uniformity of the cantilever
along its length. In this case, the elastic properties of the
composite structure can be determined by (a) deriving the
equivalent cross-section area, (b) determining the position of
the neutral surface, and (c) using the parallel axis theorem to
determine the second moment of area.

This procedure, applied to an identical cross-sectional
structure, is described in Sec. III B of Ref. 37 and is used in
the present model.

APPENDIX C: ACOUSTIC CHARACTERIZATION WITH
A VIBRATING COLUMN

Characterization of the acoustic response of the cantilever
in a fluid is achieved using a technique known as the vibrating
water column method described in Ref. 38. This method pro-
duces a well defined and highly uniform acceleration field in a
single plane and is thus highly suited to characterizing acous-
tic vector sensors. Illustrated in Fig. 10, the cantilever is
placed in a rigid walled container of water, which is excited
on a vibration table. The vibration of the column induces an
acoustic field in the water column. The acceleration of the
fluid as a function of depth, ii(%), is given by

ii(h) _ cos(wh/c.)
iy cos(wd/c.)’

(ChH
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Water column

FIG. 10. (Color online) Vibrating column calibrator.

where i is the acceleration applied at the base of the col-
umn, # is the depth, d is the height of the water column, and
¢ is the sound speed in the column. For an infinitely rigid
column ¢, is equal to the bulk sound speed of water. The
response of the cantilever is measured relative to the
response of the accelerometer attached to the base. At fre-
quencies less than 500 Hz and close to the bottom of the col-
umn, % (h) ~ .

This calibration technique has other useful characteris-
tics. The water-air interface acts as a pressure release surface
at which the pressure is zero. Any residual response to
acoustic pressure can be determined by varying the depth of
the cantilever and taking into account any variation in (/).
The local pressure can be obtained from the specific acoustic
impedance of the column given by

IM = ipc. tan (w_h) , (C2)
i(h) c

where 1 = ii/(iw). The response of the cantilever in terms
of the acoustic pressure in a free-field, pg, is determined
from

.. Puch
pﬁc:u%. (C3)

This represents a standard field for comparing acoustic
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