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We report linear response properties of the recently proposed boron fullerenes [N. Gonzalez

Szwacki et al., Phys. Rev. Lett., 2007, 98, 166804]: magnetic susceptibilities, static dipole

polarizabilities and dynamical polarizabilities (i.e. optical and near ultraviolet absorption spectra),

calculated from first principles within the (time-dependent) density-functional theory framework.

We find that all clusters except B80 are diamagnetic. The strong cancellation between diamagnetic

and paramagnetic currents in B80 leads to a very small value for its susceptibility that turns out to

be slightly paramagnetic. Static polarizabilities increase linearly with the number of B atoms.

Furthermore, the absorption spectrum of B80 is very different from the one of its carbon

counterpart C60, exhibiting a low absorption threshold of about 1.5 eV and many peaks in the

visible and near ultraviolet. This can be understood by the analysis of the wavefunctions involved

in the low energy transitions.

I. Introduction

The hollow carbon clusters, or ‘‘fullerenes’’, were only

theoretical predictions1–3 for two decades, until their discovery

in 1985.4 Recently, Gonzalez Szwacki et al.5 have predicted the

existence of a boron doppelgänger of the C60 fullerene: a B80

cage whose experimental detection seems quite likely in the

near future. Indeed, the nanotubular boron structures were

also suggested by first-principles calculations,9 and later

confirmed experimentally.10 In the same vein, we should also

refer the new boron sheets proposed in ref. 11, and the

corresponding nanotubes proposed in ref. 12, that use the

same fundamental motif as the B80 cluster.

Like C60, B80 has a remarkable stability (as measured, for

example, by its cohesive energy), a relatively large energy

gap between the highest occupied and lowest unoccupied

molecular orbitals (HOMO and LUMO, respectively), and,

like C60, almost Ih symmetry; even though the original work of

Gonzalez Szwacki et al. reported an icosaehedral shape, they

acknowledged the existence of several close local minima at

distorted geometries. Later it has been defended that the

geometry of the most stable structure seems to be a slight

distortion of the Ih configuration. Both Gopakamur et al.6 and

Baruah et al.7 have further investigated the stability of the

lowest energy isomers of B80, and claim that the icosahedral

structure is unstable; the ground state configuration is

reported to have, in fact, Th symmetry. However, the recent

work of Sadrzadeh et al.8 has also investigated the issue, and

report very small energy differences (lower than 30 meV)

among the three lowest lying isomers (Ih, Th, and C1), with

the icosahedral shape being, in fact, a close winner.

Unlike C60, B80 accommodates one boron atom in the

center of each hexagon, accounting for the extra 20 atoms;

this hexagon reinforcement is necessary to stabilize the

otherwise unstable icosahedral B60 cage. In this manner, the

Aufbau principle proposed by Boustani13 is respected: stable

homoatomic boron clusters are constructed with two basic

bricks: hexagonal pyramids, B7 (characteristic of convex and

quasiplanar clusters), or pentagonal pyramids, B6 (character-

istics of open-spherical clusters, such as the prototypical B12).

Alternatively, B80 can also be viewed as six interwoven B20

double-rings;5 the inclusion of staggered double rings in the

structure of boron clusters seems to enhance their stability

Fig. 1 Structures of the boron cages studied in this work.
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(see Fig. 1, where, among other structures, both the B20

double-ring cluster and the B80 are depicted).

The existence of cage-like boron conformations should

come as no surprise, given the rich chemistry of this element:

boron nanostructures have been found in very diverse

forms—clusters,14–21 nanowires22 or nanotubes.10,23,24 The

family of boron nanostructures is unlimited, since boron has

the property of catenation: it can form structures of arbitrary

size by linking covalent bonds with itself—a property only

shared with carbon. In fact, a wide variety of polyhedral

clusters containing boron have been known for a very long

time, and have been used for a surprisingly large number of

applications.25 The rich diversity can be explained in terms of

the high coordination number and the short covalent radius

usually exhibited by boron, which leads to the possibility of

creating strong directional bonds with many elements.

Before the work of Gonzalez Szwacki and collaborators5 on

B80 and other possible hollow structures,14 a significant

amount of work had been reported on smaller, homo-

atomic boron clusters: Experimental work15–17,20 and

calculations13,15,17,20,26–32 that, led to one main conclusion

regarding the structures: small clusters appear typically in

either convex, quasi-planar, spherical or nanotubular shapes.

This is surprising, since bulk boron, in its typical phases, is

constructed from the icosahedral B12 unit. Below 20 atoms, the

most stable shapes are planar, whereas tubular structures start

to become more stable above this number.20 Recently, some of

us33 contributed to the possible elucidation of the precise

planar-to-tubular transition by calculating the optical absorp-

tion of the main conformers: The spectra show significant

differences among them, possibly enabling the optical

characterization of mass selected samples of boron clusters

with unknown geometry.

Until experimentalists find a way to produce boron

fullerenes, first-principle calculations remain the only route

to understanding their properties. In this work we report on

the linear response signatures of B80 and some of the other

stable fullerenes proposed by Gonzalez Szwacki et al.:

dynamical polarizabilities, static dipole polarizability and

magnetic susceptibilities.

The importance of the knowledge of the static dipole

polarizability is beyond doubt (e.g. it is a coarse indicator of

molecular shape, it determines the long-range interaction

between molecules, etc.), as it is the case for its dynamical

generalization (e.g. the excitation energies are determined by

the peak positions of this function; the absorption cross

section is trivially related to the imaginary part of the

dynamical polarizability, etc.).

Furthermore, it is interesting to realize if boron fullerenes

share the anomalous magnetic properties present in traditional

carbon fullerenes. The nature and magnitude of the electronic

ring currents that circulate around the carbon rings is

intriguing; Elser and Haddon34,35 calculated the contribution

of these ring currents to the magnetic susceptibility by making

use of London’s theory.36 The finding was surprising since this

contribution was found to be vanishingly small; this result was

later backed by the experiment:37 the measured susceptibility

had almost the same value as the estimated local contributions

to the diamagnetism, which implies a small ring current

contribution. However, this fact does not imply that currents

do not circulate around the carbon cycles; the truth is that

fullerenes exhibit both diamagnetic and paramagnetic ring

currents, which cancel each other.38 This result is surprising

if we attempt to explain the ring current induced magnetism

with a more naı̈ve approach—such as Pauling’s model.39

It is then clear how the phenomenon of ring currents—

usually linked to the ‘‘aromatic’’ character of a molecule—and

its effect on the magnetic susceptibility of clusters, can be

subtle. The ‘‘spherical aromaticity’’ of fullerenes,40 in particu-

lar, demands for a careful theoretical study of the magnetic

response. Boron clusters, including boron fullerenes, also

contain rings of delocalized p orbitals, and its aromatic

character has also been discussed.41,42 It is therefore in

order to investigate, at an accurate level of theory, the

magnetic properties of the newly proposed B80 and its family

of fullerenes.

II. Methodology

The cluster geometries are those reported by Gonzalez

Szwacki et al.,5 the ones optimized within the density-

functional theory (DFT) framework with the Perdew–

Burke–Ernzerhof43 (PBE) parametrization. The core

electrons were frozen thanks to the ultrasoft Vanderbilt

pseudopotentials.44 The minimized geometries, which we used

without further relaxation are depicted in Fig. 1. Besides the

cage solutions, we include, for completeness, the prototypical

B20 ring.

We then performed density-functional perturbation

theory45 in order to obtain the static magnetic susceptibilities,

finite-differences to calculate the static polarizabilities, and

time-dependent density-functional theory (TDDFT)46 in order

to obtain the optical absorption spectra. In all cases we used

the code Octopus.47,48 The most salient features of this

approach are: the relevant functions (Kohn–Sham wave

functions, densities) are discretized on a real-space regular

mesh; the ion-electron interaction is modelled with norm-

conserving pseudopotentials.49 The grid spacing was chosen

to be 0.18 Å, and the simulation boxes were built large enough

to ensure the convergence of the results—in practice, by

placing the box boundaries at least 5 Å away from the closest

atom. In all calculations, we approximated the exchange and

correlation functional by the PBE43 parametrization. The

HOMO–LUMO gaps calculated in this way are shown in

Table 1, and are in very good agreement with previously

published results.5

Regarding the calculation of the dynamical polarizabilities,

we employed a real-time TDDFT approach, based on the

explicit propagation of the time-dependent Kohn–Sham

equations. In this approach, one first excites the system from

its ground state by applying a delta electric field E0d(t)em
(the unit vector em determines the polarization direction of the

field, and E0 its magnitude, which must be small to ensure that

the response is linear). The Kohn–Sham equations are then

propagated forward in real time,50 and the time-dependent

density n(r,t) readily computed. From this quantity one can

then obtain the absorption cross-section as explained in

ref. 47, 51 and 52. In this work, the total propagation time
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was chosen to be 30�h/eV E 20 fs, and the time step

0.002�h/eV E 1.3 as. This approach has already been used

for many cluster and molecular systems: metal and semi-

conducting clusters,53–56 aromatic hydrocarbons,52,57,58 or

protein chromophores.59,60 The accuracy to be expected from

this technique is around 0.1–0.2 eV for the position of the

spectral peaks in the visible and near ultraviolet wavelength

interval.

Regarding the calculation of the magnetic susceptibilities,

we have employed density-functional perturbation theory—

the reformulation of Sternheimer’s equation within the DFT

framework.45 Details of our specific implementation can be

found in ref. 61. Note that due to the use of non-local

pseudopotentials, special care has to be taken in order to

ensure the gauge invariance of the underlying equations.

To solve this problem, we used the GIPAW approach of

Pickard and Mauri.62

III. Results

We start the discussion of our results by the magnetic suscepti-

bilities (see Table 1). With the exception of B80, all clusters

studied are diamagnetic, with the absolute value of the

susceptibility increasing with the number of atoms. Further-

more, the magnetic susceptibility tensor is quite isotropic for

most fullerene-like clusters, reflecting the global symmetry of

these systems. The exception is obviously the ring isomer of

B20, and to a lesser extent B44.

For B80 we find a completely different situation,

with the fullerene being now slightly paramagnetic (�w =

219.3 cgs ppm mol�1). The small absolute value for the

susceptibility indicates that there is indeed a strong cancella-

tion between the paramagnetic and diamagnetic currents. This

value should be compared to C60 (which has a susceptibility of

about �260 cgs ppm mol�1).37,38 In the C60 case, the reason

for the small diamagnetism is the negligible value of the

ring current susceptibility (the p-electron contribution to the

susceptibility); the paramagnetic and diamagnetic ring

currents circulating around the pentagons and hexagons,

respectively, cancel each other. In the case of B80, the geometry

is more complex with boron atoms occupying the center of the

hexagons, complicating this simple picture, and leading to a

slightly larger value of the paramagnetic current relatively to

the diamagnetic term.

Note, however, that like for C60 the total value for magnetic

susceptibility of B80 depends strongly on the geometry and in

particular on the ratio between different B–B bond lengths.

Changing the bond lengths alters the equilibrium between the

diamagnetic and paramagnetic contributions: as these

contributions are both large and with different signs, but more

or less of the same magnitude, their sum depends strongly on

small variations of their individual values. To study this effect,

we calculated the magnetic susceptibility for the three geo-

metries optimized with the B3LYP functional in ref. 5. We

found 42.8 cgs ppm mol�1 for the Ih geometry, 46.2 cgs ppm

mol�1 for the C1, and 29.7 cgs ppm mol�1 for the Th. The

differences can be explained by looking at the different B–B

bond lengths. For all structures the length of the bonds

connecting the atoms in the center of the hexagons to their

neighbors is around 1.70 Å (with some dispersion especially in

the Th geometry). However, for the other two bond-lengths,

dh measuring the side of the hexagons and dp measuring the

side of the pentagons, we can see how the different exchange–

correlation functionals influence the structure. For the cluster

optimized with the PBE we find dh B 1.68 Å and

dp B 1.73 Å, while the B3LYP yields a small contraction of

the side of the hexagon to B1.67 Å and a small expansion of

the pentagons to B1.74 Å. These are very small differences,

but due to the subtle cancellation between the paramagnetic

and diamagnetic currents leads to a large difference in the

susceptibility.

Looking at the values for the static polarizability we see that

they increase essentially linearly with the number of boron

atoms, with a slope of approximately 2 Å3 per atom. The

slope, however, decreases slightly with increasing number of

atoms. This simple result reflects the fact that, as all boron

atoms in these clusters have a similar chemical environment,

the static polarizability is mainly additive and determined by

the overall size of the cluster.

More insight can be obtained from the dynamical

polarizability, in particular from the optical absorption cross

section spectra given in Fig. 2. The low energy spectrum of B20

‘‘double ring’’ isomer33 is characterized by well defined peaks,

and is dominated by one sharp peak at around 4.8 eV—which

originates from electron fluctuations perpendicular to the

cylinder axis. The absorption strength is suppressed below

4 eV (with the exception of a couple of small peaks) as the low

energy transitions are dipole forbidden. The spectra of B38, B44

are not so well defined—there are many peaks whose respec-

tive widths overlap, creating a broad, structureless response

whose onset is below 2 eV. This fact can also be rationalized by

looking at their geometries: these clusters are not so symmetric

(distorted D3 and distorted D3h for B38, B44, respectively), and

have a larger distribution of bond lengths. The most stable of

the clusters studied, B80, also has some weak absorption peaks

in the visible, although the strongest peaks are positioned at

Table 1 HOMO–LUMO gaps (H–L in eV), ionization potentials (IP in eV) calculated through total energy differences, magnetic susceptibilities

(w in cgs ppm mol�1), static dipole polarizabilities (a in Å3), and static dipole polarizabilities per number of boron atoms for the selected boron

clusters. For these two latter quantities, we present both average values (e.g., �w = Tr w/3) and anisotropies (e.g., Dw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½3Tr w2 � ðTr wÞ2�=3

q
)

H–L IP �w Dw �a �a/N Da

B20 (r) 1.45 7.5 �250.2 330.1 44.0 2.20 18.2
B38 0.95 7.4 �468.3 37.7 73.8 1.94 12.3
B44 0.96 7.3 �614.4 156.3 83.1 1.89 15.0
B80 1.01 6.6 219.3 3.9 147.9 1.85 0.5
B92 1.07 6.5 �831.3 0.8 162.6 1.77 0.01
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energies higher than 3 eV. Finally, the absorption cross section

of the largest fullerene studied here, B92, is qualitatively

similar to B80.

It is curious to compare the results for B80 to the known

absorption spectrum of its carbon counterpart C60. The latter

is dominated by a p-plasmon at around 6.3 eV63 and has a

large optical gap of more than 3 eV. This is also the typical

absorption spectrum of the planar polycyclic aromatic

hydrocarbons.57,58 On the other hand, B80 exhibits a much

smaller optical gap (of around 1.5 eV) and a much less

structured spectrum. This can be explained by two factors.

First the HOMO–LUMO gap of C60 (around 1.6 eV) is larger

than the one of B80 (around 1 eV). Looking at the Kohn–Sham

states of B80 around the HOMO–LUMO gap reveals the

second factor (see Fig. 3).

The HOMO state (and the other states immediately below)

are located around the three B20 rings and retain a certain

‘‘p-like’’ character, i.e. the wave-functions change sign going

from outside to inside the cage. The first occupied state of

different character is the HOMO-5, that is mainly located

around the pentagons, but spreading considerably to other

regions of the cluster. The situation is considerably more

complicated for the LUMO states: they are no longer of

‘‘p-like’’ symmetry, and extend over considerable regions of

the cluster. It is then clear that the dipole matrix elements

between the lowest occupied and unoccupied states will not

vanish (as it happens, e.g., for the B20 ring), and absorption

will start shortly after the HOMO–LUMO gap.

IV. Conclusions

We performed first-principle calculations of electrical and

magnetic linear response properties of the boron fullerenes

recently proposed by Gonzalez Szwacki et al.5 In particular,

we investigated the signatures of the counterpart of C60, the

B80 cage, the most stable of these clusters.

Regarding the magnetic response, all clusters except B80

turn out to be diamagnetic. On the other hand, B80 turns out

to be slightly paramagnetic. This arises from the presence of a

strong cancellation between diamagnetic and paramagnetic

effects, as it is known to happen in the carbon fullerene.

The static polarizability increases monotonically with the

number of boron atoms. More precisely, it is roughly

proportional to the number of atoms, pointing to an additive

behavior justified by the fact that boron atoms in all clusters

studied here have a similar chemical environment. The absorp-

tion spectra of the boron cages display similar features, with

absorption thresholds close to the HOMO–LUMO gaps and

many peaks overlapping in the visible and near ultraviolet

region. On the other hand, the optical spectrum of the

double-ring B20 is dominated by large peaks above 4 eV, while

absorption is suppressed at low energies due to the presence of

many dipole forbidden transitions.

The physical properties of boron fullerenes, and in particu-

lar of the stable B80 are by now fairly well described and

understood through theoretical calculations. Unfortunately,

these clusters have not been produced experimentally yet. It is

however our belief that, like for C60 and the carbon nanotubes

before, the experimental ingenuity will lead in the near

future to the creation and detection of these interesting

nanostructures.
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Fig. 2 Absorption cross section (in Å2) for B20 (ring isomer), B38, B44,

B80 (‘‘slightly-off’’ Ih), and B92 as predicted by TDDFT. Most of the

energy range shown is below the calculated ionization potential of

these clusters (see Table 1).

Fig. 3 Kohn–Sham states of the B80 clusters. The states HOMO � 1,

HOMO � 2, HOMO � 3, and HOMO � 4 are nearly degenerate with

the HOMO, and very similar to the HOMO. Also LUMO + 1 is

similar to LUMO, so it is not displayed here. The magenta (cyan)

isosurface corresponds to the positive (negative) part of the wave

functions.
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