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The dependencies of excitons, trions and biexcitons 
energy spectra and their oscillator strength on micro- 
crystal radius have been investigated. The calculation 
taking into account the degeneracy of the valence band 
has been performed into two limit cases: the small and 
the large value of the valence band spin-orbit splitting. 
The total energy of two confined excitons have been 
shown to be smaller than the energy of confined bioxciton 
in the small size microcrystals which means the negative 
biexciton bound energy. In the case of the small spin- 
orbit splitting the all confined exciton complexes are 
shown to be optical nonactive which explains low quantum 
efficiency of small size CdS microcrystals. 

l.Optical properties of semiconductor 
microcrystals have been a subject of 
extensive investigation in recent 
years [1-6]. The properties were shoual 
to be determined by the energy spect - 
rum of confined electron-hole pairs: 
the linear optical properties are 
determined by the one pair (exciton) 
[2,7], but nonlinear ones by the three 
charge particles or two of them (trlon 
or blexclton) [8]. The previous 
calculations of confined exciton 
energy spectra didn't take into 
account the degeneracy of valence band 
[9,7,10]. 

In the present paper we 
investigate the influence of the 
valence band degeneracy on the energv 
spectrum and oscillator strength of 
confined excltons, trlons and 
blexcitons. The energy spectra of 
confined trions and biexcltons wasn't 
calculated earlier. 
2.We consider semiconductors with the 
cublc-symmetry lattice which valence 
band edge is described by the Bloch 
functions of r 7 and r 8 s~nnmetry. In 

these semiconductors an electron mass 
m is much smaller then a heavy hole 
e 

mass m h and is of the order of a light 

hole mass ml: m e - ml, me<<m h. We will 

consider here two limit values of 
valence band spin-orbit splitting A: 
the large A when hole is described by 
the four-band Luttlnger Hamiltonlan 

HL4 and small A (A-O) when hole is 

described by the three-band Luttlnger 

fin a Hamlltonian [II]. We shall assume 

t h a t  t h e  m i c r o c r y s t a l s  h a v e  a 
s p h e r i c a l  s u r f a c e  with r a d i u s  a .  T h e  
wave functions of electrons and holes 
vanish on this surface which 
correspond to an infinitely high 
potential wall surrounding this 
sphere. 

We shall consider here only the 
case of the strong confinement when 
microcrystal radius a is smaller then 
the Bohr radius of electron 

ae-Xh21mee2, where x is dielectric 

coefficient of semiconductor and e is 
electron charge. Under this condition 
the energy spectrum of the exciton 
complexes in microcrystals differs 
considerably from the bulk one what 
reveals in the absorption spectra 
[2]. In this case the 
size-quantlzation energy of electron 

Eq=h2~2/2mea2 is much higher than the 

energy of Interparticle Coulomb 
interaction in microcrystals which is 

of the order of e2/xa. The Coulomb 
potential of the electrons which 
affects the holes can be considered 
then using the condition me<< m h in 

adiabatic approximation [ 9 ] .  This 
potential has a spherical form: 

e 2 F Ye 2(r) 

V(rh)=- ~- Jd3r-irh_~- [- (I) 

1 
where ¥ = sln(~r/a)/r is the wave e~ 
function of the Ic~vest electron 
quantum-size level. 
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3 .  We s h a l l  f i r s t l y  c o n s i d e r  t h e  
e n e r g y  s p e c t r u m  o f  c o n f i n e d  e x c i t o n  i n  
t h e  c a s e  A ~ ~ . T h e  a d i a b a t i c  e q u a t i o n  
f o r  w a v e  f u n c t i o n  o f  s u c h  e x c i t o n  h a s  
t h e  f o r m :  

H0% =[HL 4 +V(r) ]~ =E 'P (2) 

with the boundary condition T(a)ffiO. In 
this case the hole ground state is 
characterized by the total momentum 
F=3/2 and is four-fold degenerate with 
the respect to momentum projection 
M=+3/2 ,  + 1 / 2 .  The wave functions 
corresponding to these states are [12] 

3 / 2  . (3 )  

where u are the Bloch functions of 

the four-fold degenerate valence band 
r 8 (~=±I/2,±3/2), Yl,m are the 

normalized spherical  functions,(im kn 1) 
are the 3j Wigner symbols, Ro,2are the 

radial functions satisfied the set of 
second order differential equations 
[12]. The relationship between these 
two functions in the limit ml/mh<<l is 

[15]: 

dRo/dr + (3/r + d/dr)R2=O (4) 

The analytical form of R 0 and R 2 can 

be obtained in frames of the 

perturbation theory if a< aB=Xh2/mhe2, 
what corresponds to the the case of 
the strong hole size quantization. In 
the limit ml/mh<<l we have: 

Ro-C[ Jo(@2r/a)-Jo(@2 ) ] 
(5) 

R2ffieJ 2(~2r/a) 

where J 1 are the spherical Bessel 

functions, ~2 ~ 5.76 is the first root 

of J2 and C ~ 6.044/a 3/2 is determined 
by  n o r m a l i z i n g :  ~ d r r 2 ( R 0 2 + R 2 2 )  = i .  

The ground state energy of such 
exciton is 

Eexff ih2@22/(2mha2)  - 1 . 7 4 8  e 2 / ( x a )  (6 )  

T h i s  e n e r g y  i s  m e a s u r e d  f r o m  t h e  
l o w e s t  q u a n t u m - s i z e  l e v e l  o f  e l e c t r o n .  
For obtaining the exciton energy at 
arbitrary relation between a B and a we 

perform the variational calculation. 
The trial functions for R 0 and R 2 were 

chosen accounting to an effect of the 
hole localization i n  potential (i) [2 ]  
a n d  r e l a t i o n s h i p  ( 4 ) :  

R2=Cexp(-ar2/L2)j2(~2r/a) ; 
a (7) 

R0=-R 2 + 3 ~ d r ' R 2 ( r ' ) / r ' ;  

r 
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where L2=a2~/-~ 2 x/2~e2mha and a is 

d i m e n s i o n l e s s  v a r i a t i o n a l  p a r a m e t e r .  
The v a r i a t i o n a l  d e p e n d e n c e  of 

Eex/E B on a is shown in Pig.l 

(EB=e2/2xaB). This dependence is in a 

good agreement with Eq.6 for a < 20a B. 

Parameter ~ tends to zero in the same 

region of a. 
We shall now consider an exciton 

complex consisted of two holes and 
electron, so called trion. The trions 
originate as a result of one photon 
absorption by the ionized 
microcrystals [8]. In the adiabatic 
approximation trion is described by 
the Hamiltonian : 

e 2 
^ ^ 

H t r - H 0 4 ( r l  ) + H 0 4 ( r 2  ) + ] r l _ r 2 1  (8 )  

w h e r e  r 1 a n d  r 2 a r e  t h e  h o l e  

c o o r d i n a t e s .  The  g r o u n d  s t a t e  o f  t h i s  
H a m i l t o n i a n  w i l l  b e  f o u n d  by t h e  

2 
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Fig.l The exciton Eex, trion Etr and 

biexciton EbibOund energy dependencies 

on microcrystal radius a in 
semiconductor with four-fold 
degenerate valence band. 1 - Eex; 2a, 

2b - E r r ( J )  w i t h  J - O , 2 ;  3 a ,  3b - 

E b i ( J )  w i t h  J = 0 , 2 . T h e  i n s e r t :  t h e  

dependencies on a larger scale. 
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variational method assuming that the 
holes with momentum F-3/2 provide the 
main contribution in the confined 
trlon bound energy. The u~ave functions 
of the holes are described by Eq.3. 
These holes can form two types of 
trions corresponding to the 
interchanging antisymmetry condition 
for two holes wave function. One of 
them has total momentum Jffi2 and the 
other J-O. The wave functions of these 
states are 

1 #j:j2z(rl,r2)- (9) 

/-----~,3/2 3/2 J ~ . 2 

MI+M2ffiJz 

where J is the projection of the 
z 

momentum J. Here upper index in YM is 

introduced for possibility to 
describe two ~M differed by the 

parameter ~ (~i and ~2) included into 

radial f u n c t i o n s ( R o i , R 2 1  and RO2,R22). 

In that case a trial two-particle 
function have to be taken in the form 
of ant isymmetr ic sum of the total 
momentum J eigenfunctions: 

- - l ~  ~r , r  )--~ ' ( r 2 , r l ) l  110) 
J'Jz 2 J'Jz I 2 ' z 

where J=0,2.The energy of confined 

trion is easily obtained by the 
perturbation theory using for R o and 

R 2 Eq.5  i f  a < a B 

Etr (J) -2Eex+ ( I. 793-0. 024J )e2/xa (II) 

Here as in Eq.6 the energy is measured 
from the energy of lowest quantum-size 
level of electron Eq. The results of 

variational two parameter calculation 
Etr(J) using trial function (I0) are 

shown in Fig. i. It is also wel] 
described by Eq.ll for all a < 20a B. 

Let us consider" now the biexciton 
using the adiabatic method developed 
above for trion. The difference is in 
the doubling of adiabatic potential 
(i) because the last one is produced 
by the two electrons. Besides it is 
necessary to take into account the 
repulsive energy of two electrons at 
the first quantum-size level which is 

equal 1. 786e2/xa. As a result we 
obtain the biexciton energy in the 
case of strong size quantization(aB>a ) 

Fh2 2 e~] 

Ebi (J)-2 ..... 2z - ( I .  706+0.012J)~ (12) 
2mh az 

Here energy is scaled from the total 
energy of two electrons at the lowest 
quantum-size level 2E . The biexclton q 
energy is larger then the doubled 
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energy of the exciton what means the 
negative biexcJton bound energy. The 
same result was obtained by the 
variational computation using two 
parameter t r i a l  function (I0) (see 
F i g . l ) .  
4.  We s h a l l  now d i s c u s s  t h e  o s c i l l a t o r  
strength of the exciton complexes 
considered above. It is mainly 
determined by the square of electron 
and hole wave functions overlap in - 
tegral f. For exciton it has the form: 

f ffi l~d3r ~ex(r,r)12 (13) 

where ~ex(re,rh)=~e(re)~(r h) is the 

confined exciton wave function in 
adiabatic approximation. For biexciton 
and trion f is determined as 

ftr,bi ffi (14) 

.I~M( r )~tr,bi h J'Jz ( r e ' r h ) ¥ e ( r e ) d S r e d S r h l 2  

The holes identity leads to the 
doubling of ftr and the one more 

doubling of fbi is due to the electron 

identity. In this paper we wouldn't 
consider the peculiarity selection 
rules of such confined system and 
the relative values of their 
oscillator strength. We would 
investigate only the dependence of 
Eqs.13,14 on the microcrystal radius. 

In the case of strong size 
quantization the square of the overlap 
integral can be obtained analytically. 
Using Eq.5 we obtain for fffiftrffifbi 

0.iii which is much smaller then the 
values for semiconductor with the 
parabolic nondegenerate valence band 
(f=ftrffifbi=l). The results of f, ftr 

and fbi calculation using the 

variational functions at arbitrary a 
are presented in Fig.2. The square of 
integrals is seen to be practically 
independent of a and coincide with its 
limit value 0.Iii what means a free 
character of hole movement. The 
decrease of f and fbi reflects a cer- 

tain extent of hole localization in 
potential (i) which is not a case for 
trions. 
5. We shall now consider the case A-O. 
The hole Hamiltonian of such confined 
exciton has a form 

rio 3 -  fiL 3 + V(r) (15) 

The ground state of the hole is 
characterized by the total momentum 
F=I and has three-fold degeneracy with 
the respect to momentum projection 
MffiO,±l (the spin degeneracy is 
neglected). Corresponding wave 
functions can be written as: 

2 1 

IM-l~oRl(ri~_l¥1,M,m(O)u m, (16) 
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C--6.51/a 3/2 is the normal izins 
factor. The enersy of such odd exciton 
state is 

Eex=h2@12/( 2mha2 ) - i .  6 1 9 e 2 / ( x a )  ( 19 ) 

Under the condition a << a B the lowest 

eisenstate enersy of the even solution 

E + is 
ex 

E:x-h2~22/(2mha2)-l.827e2/(xa) (20)  

The e n e r g y  o f  t h e  odd s t a t e  E-  i s  ex 
smaller then the even state enersy E + 

ex 
for semiconductor with A=O in the case 
of the strons confinement as it is 
seen from Eqs.19,20. The same result 
was obtained by the variational 
calculation at arbitrary ratio of a 
and a B. For odd state we used the 

trial function 

RI-C exp(-~r2/L2)jl(@irla) (21) 
+ + 

For even state R 0 and R 2 are different 

from Eq. 7 by factor ~ in R 0 
integral square on microcrystal radius 
a for exciton f - I; trion fir(O) - determination: R0-HOV~. The results 

2a, ftr(2) - 2b; and biexciton fbi(0) shoua~ in Fis.3 prove that the odd 

- 3a ,  f b i ( 2 )  - 3b.  

where u m are the Bloch function of the 005- 30 

three-fold desenerate valence band -l~ 

(the spin comp°nent Is °mitted)'Yl'M'm IIII 0 3 8 IO a/as 

are the components of spherical vector -0.05- 
Yl, M [ 14 ]. TWO solut ions of 

Hamiltonian (15) with dlfferent parlty ~11/ m [ _ ~ , ~  
are for each F and M. The radial ~ -o 10 

functions of the even solution Re and m z IIII "' o 1 5 ~  
H 2 are satisfied the set of second 

order differential equations which is -020 
similar to one from paper [12[ obtai- 
ned for the four-fold desenerate f~~~\\~ 3 0.25 
valence band. But the around state is i F 4 c ~  
formed by the odd solution (16) with 
radial function H 1 satisfied an 

--,on: °T 
h 2 f l a  2 a 2 ]  02 'F °<°" 

(1-,) _o.2f . 
It is conventional radial Shredinser -o.5 
equation for particles wlth orbital 
momentum I-i. In the limit a << a B the 

solution of Eq.17 satisfying the 
boundary condition ~M(a)-O is 

R~(r)-C-Jl(~Ir/a), (18) 

where ~I ~ 4.49 is the first root of 

the spherical Bessel function Jl and 

Fig.3 The bound energy dependencies of 
excltons, trions and biexcitons on 

- - I + microcrystal radius a. rex ,rex -2; 

Err(J) - 3a,Sb,3c and Ebi(J) - 4a,4b, 

4c for J=O,l,2. The insert: the 
dependencies on a larser scale 
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state is the lowest hole state for all 
investigated a. 

Confined trions and biexciton 
must be therefore formed in this case 
from the odd hole wave functions with 
F-I. Considering the hole spin one can 
show that there are only three two 
particle wave functions which 
satisfy the condition of the hole 
interchanging antls~mmletry with total 
momentum J-O,l,2. The trion and 
blexclton energies have the following 
form in the case of strong size 
quantization: 

~2~12 e 2 

E t r , b i ( J ) =  2 2n~a 2 Atr,bi(J)--xa (22) 

where Atr(O)=l.660 , Atr(1)-l.760 , 

Atr(2)-l.705, Abi(O)=3.112, Abi(1) = 

3.212, Abi(2)-3.157. The variationaly 

obtained Err and Ebi dependencies  on a 
are shown in Fig.3. These dependencies 
over the range of all valuable a are 
well described by Eqs.19,22. 
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The overlap integrals ( 13,14 ) 
vanish in this approximation as far as 
the wave functions of odd hole states 
are formed only by the Yl,m with i=i. 

All considered exciton complexes are 
as a result optically nonactive in the 
case of small spin-orblt splitting A. 
6. In conclusion, we have demonstrated 
the negative biexciton bound energy in 
small size microcrystals. It means 
that to create a second electron-hole 
pair it is necessary to have 
additional energy of exciting photons. 
This effect can to lead to the blue 
shift of absorption band edge at high 
intensity of excitation [15,8). 

The other important result is the 
optical nonactivity of the exciton 
complexes and exc i tons in 
microcrystals wlth small A. It means 
that quantum efficiency has to 
decrease in small microcrystals when 
the hole quantum-size energy is larger 
then A. It might be an explanation of 
the absence of an interband 
luminescence in CdS microcristals of 
the small size [161. 
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