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The dependencies of excitons, trions and biexcitons
energy spectra and their oscillator strength on micro=
crystal radius have been investigated. The calculation
taking into account the degeneracy of the valence band
has been performed into two limit cases: the small and
the large value of the valence band spinworbit splitting.
The total energy of two confined excitons have been
shown to be smaller than the energy of confined biexciton
in the small size microcrystals which means the negative
biexciton bound energy. In the case of the small spin=
orbit splitting the all confined exciton complexes &are
shown to be optical nonactive which explains low quantum
efficiency of small gize CdS microcrystals.

1.0ptical properties of semiconductor
microcrystals have been a subject of
exXtensive investigation in recent
years [1-6]. The properties were shown
to be determined by the energy spect —
rum of confined electron-hole pairs:
the 1linear optical properties are
determined by the one pair (exciton)
[2,7], but nonlinear ones by the three
charge particles or two of them (trion

or biexciton) {8]. The previous
calculations of confined exciton
energy spectra didn't take into
account the degeneracy of valence band
[9,7,10].

In the present paper we
investigate the influence of the

valence band degeneracy on the energy
spectrum and oscillator strength of
confined excitons, trions and
biexcitons. The energy spectra of
confined trions and biexcitons wasn't
calculated earlier.

2.We consider semiconductors with the
cubic-symmetry 1lattice which wvalence
band edge is described by the Bloch
functions of F7 and F8 symmetry. In

these semiconductors an electron mass
me is much smaller then a heavy hole

mass m, and is of the order of a light

o~ My, me<<mh. We will
consider here two 1imit wvalues of
valence band spin-orbit splitting A:
the large A when hole is described by
the four-band Luttinger Hamiltonian
H % and small A (A=0) when hole is
described by the three-band Luttinger

Hami1tonian HL3 [11].

hole mass m:m

We shall assume

645

that the microcrystals have a
spherical surface with radius a. The
wave functions of electrons and holes

vanish on this surface which
correspond to an infinitely high
potential wall surrounding this
sphere.

We shall consider here only the
case of the strong confinement when
microcrystal radius a is smaller then
the Bohr radius of electron

2 dielectric

ae-xhz/mee , where x is
coefficient of semiconductor and e is

electron charge. Under this condition
the energy spectrum of the exciton
complexes in microcrystals differs

considerably from the bulk one what

reveals in the absorption spectra
[271. In this case the
size—-quantization energy of electron

Eq=h2n2/2mea2 is much higher than the

energy of interparticle Coulomb
interaction in microcrystals which is

of the order of e2/xa. The Coulomb
potential of the electrons which
affects the holes can be considered
then using the condition me<< my, in

adiabatic approximation {9]. This
potential has a spherical form:
2
e2 J 3 Te (r)
V)= s JOr e e (1)
1
where We- sin(nr/a)/r is the wave
Y2na

function of the
quantum-size level.

lowest electron
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3. We shall firstly consider the
energy spectrum of confined exciton in
the case A 2 ® .The adiabatic equation
for wave function of such exciton has
the form:

)

Hy
with the boundary condition ¥(a)=0. In
this case the hole ground state is
characterized by the total momentum
F=3/2 and is four-fold degenerate with
the respect to momentum projection
M=13/2, +1/2. The wave functions
corresponding to these states are {12]

3/2 1 3/2
v= ¥ R,(r) Y ( o )Y u (3)
M 1=0,2 1 mépi=M u m-M l,mu

where uu are the Bloch functions of

¥ =[QL4 +V(r)]¥ =E ¥ (2)

the four-fold degenerate valence band
F8 (u=x1/2,£3/2), Yl m are the

normalized spherical funEtions,L; ﬁ é)

are the 3j Wigher symbols, RO Jare the
radial functions satisfied the set of
second order differential equations
[12]. The relationship between these
two functions in the limit mllmh<<1 is

[15]:

dRo/dr + (3/r + d/dr)R2=O (4)
The analytical form of RO and R2 can
be obtained in frames of the
perturbation theory if a< aB-xhzlmhez,

what corresponds to the the case of
the strong hole size quantization. In
the 1limit ml/mh<<1 we have:

R2=Cj2(¢2r/a)

where j1 are the spherical Bessel
functions, Pon 5.76 i;;the first root
of j2 and C = 6.044/a is determined
by normalizing: Idrrz(R02+R22)=1.

The ground state energy of such
exciton is

Eex=h2p22/(2mh82) - 1.748 e2/(xa) (6)

This energy is measured from the
lowest quantum-size level of electron.
For obtaining the exciton energy at

arbitrary relation between aB and a we

perform the variational calculation.
The trial functions for R0 and R2 were

chosen accounting to an effect of the

hole localization in potential (1) [2]

and relationship (4):

Ry=Cexp(-ar®/L%) 3, (o r/a);
a 1 L] L} (7)

Ry=-R, + 3jdr Ry(r')/r';

r

0

where Lz-a2/ 3h2x/2ue2mha and o is
dimensionless variational parameter.
The variational dependence of

E__/E

ox’Ep ©on a |is shown in Fig.1

(EB=e2/2xaB). This dependence is in a
good agreement with Eq.6 for a < 2OaB.
Parameter « tends to zero in the same

region of a.

We shall now consider an exciton
complex consisted of two holes and
electron, so called trion. The trions
originate as a result of one photon
absorption by the ionized
microcrystals ([8]. In the adiabatic
approximation trion is described by
the Hamiltonian

2
B =i %) + B4 r) + e
tr 0 1 0 2 Irl—rzl

{8)

where r1 and r, are the hole

coordinates. The ground state of this
Hamiltonian will be found by the
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Fig.1l The exciton Eex’ tr and
biexciton Ebibound energy dependencies

on microcrystal radius a in
semiconductor with four-fold
degenerate valence band. 1 - Eex; 2a,

2b - Etr(d) with J=0,2; 3a, 3b -
Ebi(J) with J=0,2.The insert: the
dependencies on a larger scale.
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variational method assuming that the
holes with momentum F=3/2 provide the
main contribution in the confined
trion bound energy. The wave functions
of the holes are described by Eq.3.
These holes can form two types of
trions corresponding to the
interchanging antisymmetry condition
for two holes wave function. One of
them has total momentum J=2 and the
other J=0. The wave functions of these
states are

1 2

3/2 3/2 J
1
= ()72 S2041 Z( M, ] M(rl)‘l’M(rz)
M +M -J
where Jz 1s the projection of the
momentum J. Here upper index in WM is
introduced for possibility to
describe two ? differed by the

parameter o (al and a2) included into
radial functions(R 1 R21 and RO2 2 )
In that case a trial two-particle
function have to be taken in the form
of antisymmetric sum of the total
momentum J eigenfunctions:

1,.1,2 1,2
¢ =={0 " T(r,,r,)=% 1 (r,,r.,}1 (10)
J,Jz 9 J,Jz 1'°2 J,JZ 2'71

where J=0,2.The energy of confined

trion is easily obtained by the
perturbation theory using for RO and

R2 Eq.5 if a < ay

2
E r(J)-2Eex+(1.793—0.024d)e /xa (11)

Here as in Eq.6 the energy is measured
from the energy of lowest quantum-—size
level of electron E The results of

variational two parameter calculation
E r(J) using trial function (10) are
shown in Fig.1l. Tt is also well
described by Eq.11 for all a < 2OaB.

Let wus consider now the biexciton
using the adiabatic method developed
above for trion. The difference is in
the doubling of adiabatic potential
{1) because the last one is produced
by the two electrons. Besides it is
necessary to take into account the
repulsive energy of two electrons at
the first quantum—-size level which is

equal 1.786e2lxa. As a result we
obtain the biexciton energy in the
case of strong size quantization(aB>a)

2 2

h Py 92

(J)-2»~—- E ~(1.706+0. 012J) ------ (12)
2mh

Here energy is scaled from the total

energy of two electrons at the lowest

quantum-size level ZEq The biexciton

energy 1s larger then the doubled
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energy of the exciton what means the
negative biexciton bound energy. The
same result was obtained by the
variational computation using two
parameter trial function (10) (see
Fig.1).

4. We shall now discuss the oscillator
strength of the exciton complexes
considered above. 1t is mainly
determined by the square of electron
and hole wave functions overlap in -
tegral f. For exciton it has the form:

£ = 1Id3r wex(r,r)|2 (13)

where Wex(re,rh)=we(re)?(rh) is the

confined exciton wave function in
adiabatic approximation. For biexciton
and trion f is determined as

fir,oi = (14)

* tr,bi 3 3 2
IJWM(rh)CJ 5, (ry,rp ¥, (r,)d r dor, |
The holes identity leads to the
doubling of ftr and the one more

doubling of fbi is due to the electron

identity. In this paper we wouldn't
consider the peculiarity selection
rules of such confined system and
the relative values of their
oscillator strength. We would
investigate only the dependence of
Eqs.13,14 on the microcrystal radius.
In the case of strong size
quantization the square of the overlap
integral can be obtained analytically.

Using Eq.5 we obtain for f=ftr-fbi &

0.111 which is much smaller then the
values for semiconductor with the
parabolic nondegenerate valence band
(f=ftr=fbi=1). The results of £, ftr

and fbi calculation using the

variational functions at arbitrary a
are presented in Fig.2. The square of
integrals is seen to be practically
independent of a and coincide with its
limit wvalue 0.111 what means a free
character of hole movement . The
decrease of f and fbi reflects a cer-

tain extent of hole localization in
potential (1) which is not a case for
trions.
5. We shall now consider the case A=0.
The hole Hamiltonian of such confined
exciton has a form

HOS- HL3 + V(r) (15)
The ground state of the hole is
characterized by the total momentum
F=1 and has three-fold degeneracy with
the respect to momentum projection
M=0,+1 (the spin degeneracy is

neglected). Corresponding wave
funct1ons can be written as:
W = 2 R (r&?_ Yl ,m(Q)um’ (16)
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Fig.2 The dependence of the overlap
integral square on microcrystal radius
a for exciton f - 1; trion ftr(o) -

2a, ftr(2) - 2b; and biexciton fbi(O)
-~ 3a, fbi(z) - 3b.

where u, are the Bloch function of the

three—-fold degenerate valence band
(the spin component is omitted),Y1 M.m

are the components of spherical vector
Yl M [14]. Two solutions of
i)

Hamiltonian (15) with different parity
are for each F and M. The radial
functions of the even solution Ro and

R2 are satisfied the set of second

order differential equations which is
similar to one from paper [12] obtai-
ned for the four-fold degenerate

valence band. But the ground state is
formed by the odd solution (16) with
radial function Rl satisfied an

equation:

n1e 40 2

a7=—|—-—Tr“— - —|R,+(E = V)R, =0 (17)
2mh r28r ar r2 1 1

It is conventional radial Shredinger
equation for particles with orbital
momentum 1=1. In the limit a << ag the

solution of Eq.17 satisfying the
boundary condition WM(a)-O is

RI(r)-C—jl(wlr/a), (18)

where Py 4.49 is the first root of
the spherical Bessel function jl and

C=6.51/a°"2 is the normalizing
factor. The energy of such odd exciton
state is

E;x-h2v12/(2mha2)-1.619e2/(xa) (19)

Under the condition a << ag the lowest

eigenstate energy of the even solution

+
Eex is

E;x-hzwzz/(2mh82)—1.82792/(xa) (20)

The energy of the odd state E;x is
smaller then the even state energy E;x

for semiconductor with 4=0 in the case
of the strong confinement as it is
seen from Eqs.19,20. The same result
was obtained by the variational
calculation at arbitrary ratio of a

and ag- For odd state we used the

trial function

RI-C—exp(—arzle)j1(¢1r/a) (21)

For even state Rg and R; are different
from Eq.7 by factor 2 in R,
determination: RS-RO/E. The results
shown in Fig.3 prove that the odd
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Fig.3 The bound energy dependencies of
excitons, trions and biexcitons on

- +
microcrystal radius a. Eex - 1,Eex -2;
Etr(J) - 3a,3b,3c and Ebi(J) - 4a,4b,

4c for J=0,1,2. The insert: the
dependencies on a larger scale
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state is the lowest hole state for all
investigated a.

Confined trions and biexciton
must be therefore formed in this case
from the odd hole wave functions with
F=1. Considering the hole spin one can
show that there are only three two
particle wave functions which
satisfy the condition of the hole
interchanging antisymmetry with total
momentum J=0,1,2. The trion and
biexciton energies have the following
form in the <case of strong size
quantization:

h2¢ 2 e2

1
2 —5 ~ A s (d)—
2mha2 tr,bi xa
where Atr(O)-1.660, Atr(l)'1'760'
Atr(2)-1‘705’ Abi(o)=3'112’ Abi(l) =
3.212, Abi(2)-3.157. The variationaly
obtained Etr and Ebi dependencies on a

Efr,bild)" (22)

are shown in Fig.3. These dependencies
over the range of all valuable a are
well described by Egs.19,22.
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The overlap integrals (13,14)
vanish in this approximation as far as
the wave functions of odd hole states
are formed only by the Yl m with 1=1.

y

All considered exciton complexes are
as a result optically nonactive in the
case of small spin-orbit splitting A.
6. In conclusion, we have demonstrated
the negative biexciton bound energy in
small size microcrystals. It means
that to create a second electron-hole
pair it is necessary to have
additional energy of exciting photons.
This effect can to lead to the blue
shift of absorption band edge at high
intensity of excitation [15,8].

The other important result is the
optical nonactivity of the exciton
complexes and excitons in
microcrystals with small A. It means
that quantum efficiency has to
decrease in small microcrystals when
the hole quantum-size energy is larger
then A. It might be an explanation of
the absence of an interband
luminescence in CdS microcristals of
the small size [16].
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