

# 大啁啾光纤光栅特性研究

(申请清华大学工学博士学位论文)

培养单位: 清华大学电子工程系

学 科: 电子科学与技术

研究生: 夏 历

指导教师: 谢世钟教 授

副指导教师: 陈 向 飞 副教授

二〇〇四年四月

# 摘要

大啁啾光纤光栅的研究是光纤光栅器件研究中的一个重要组成部分。本论 文对大唱啾光纤光栅的设计及制作进行了详细讨论。传统的小啁啾光纤光 栅由于受其啁啾系数大小的限制,带宽较小、色散量较大,一般不能作为宽带 滤波器件。而大啁啾光纤光栅由于带宽较宽、色散量较小、很方便地用于宽带 滤波、放大器噪声抑制、增益平坦、光纤传感等方面。本论文中分析了大啁啾 光纤光栅中存在的波长反射率随折射率调制分布范围的变化关系、不同啁啾量 下波长反射率随耦合系数的变化关系、光栅不同位置处波长反射率与耦合系数 的变化关系等大啁啾光纤光栅特有的性质,提出了通过插值查询来设计制作宽 带滤波谱形状可控的大啁啾光纤光栅的方法。另外通过光栅分立层剥算法的介 绍,进行了几种常用光栅结构的重构分析。首次提出了在模板啁啾系数和长度 不变条件下制作特定滤波谱形状的大啁啾光纤光栅方法,其前提是通过先行构 造设计和制作一个已知特定折射率分布的光纤光栅。采用这种新方法制作得到 了特定滤波谱形状的滤波器。在光栅写入过程中采用控制准分子脉冲激光器出 射脉冲数目及光斑面积大小的方法实现了在光栅长度上折射率调制强度不同的 分布。另外针对大啁啾条件下的宽带多信道滤波器设计时的信道间反射率不平 坦性,在理论上给出了其存在的原因,分别提出了采用非线性啁啾系数相位模 板、不变取样周期以及变取样周期、不变模板线性啁啾系数的两种可行解决方 案。结合大啁啾条件下折射率调制范围分布特点,提出了基于信道包络滤波的 宽带光纤光栅滤波器的设计方法,首次制作得到了相应滤波包络形状的多信道 功率均衡补偿器。在论文的最后首次提出了一种基于大啁啾系数的光栅周期取 样的新型光纤光栅设计方法。这种光栅的特点在干不仅能产生多信道光谱结构, 而且位于中心信道两边的信道内色散大小不同。设计了可以在系统上实现色散 补偿的这种光栅器件,分析了在制作中可能要考虑到的影响因素。

本论文在理论和实验上获得的结果对推动我国光纤光栅相关领域的研究和应用具有积极意义。

关键词: 光纤, 布拉格光栅, 大啁啾, 滤波器, 波分复用

#### Abstract

The research on large chirped fiber Bragg grating (LCBG) is an important part of researches about the fiber grating devices. This thesis gives a detailed discussion on the design and fabrication of LCBG. Conventional small chirped fiber Bragg grating (SCBG) usually has narrow bandwidth and large dispersion for the chirp coefficient restriction, thus is unsuitable for acting as broadband filtering device. But for the LCBG, it has large bandwidth and small dispersion, thus is easy to be applied to broadband filtering, amplifier noise suppressing, gain flattening and fiber sensing, etc. The thesis analyzes the relation of wavelength reflectivity and refractive index modulation zone, the relation of wavelength reflectivity and coupling coefficient under different chirp coefficient, and the relation of wavelength reflectivity and coupling coefficient on different grating position, which are the special characters of LCBG. Moreover, an interpolative inquiry algorithm to design the broadband controllable filtering profile is proposed. Through discrete layer peeling algorithm introduction, the reconstructions of several kinds of grating structure are realized. Through constructing a special refractive index modulation distribution, it is easy to obtain other filtering profiles when the large chirp coefficient and phase mask length are constant. Some special profile filters are produced using this new simple controllable filtering profile design method. Different refractive index modulation distributions along the grating length have been achieved by controlling the pulse number from the excimer laser and beam width during the grating writing process. The reason about non-uniform channel reflectivities existed in the broadband multi-channel filter is also explained in the thesis. Two feasible approaches, non-linear chirp phase mask and constant sample period method as well as changeable sample period and constant chirp coefficient method, are proposed to resolve this problem. The multi-channel equalization filter is designed and manufactured for the first time through the refractive index

modulation distribution in the condition of large chirp coefficient. At last in the thesis, a novel grating period sampling design method is demonstrated firstly. The characters of this kind of grating are multi-channel structure and different dispersion at opposite side of the central channel. It is designed and simulated to use in the system dispersion compensation. The effects which may be confronted in the fabrication are also analyzed.

All the above results are positive to promote the research and development of the area about FBG.

Key words: Fiber, Bragg grating, Large chirp, Filter, WDM

# 主要符号对照表

DLP 分立层剥算法(Discrete Layer Peeling)

CSP 取样周期啁啾(Chirp in the Sampling Period)

FBG 光纤光栅(Fiber Bragg Grating)

LCBG 大啁啾光纤光栅(Large Chirped Fiber Bragg Grating)

PSBG 光栅周期分布上取样的新型大啁啾光纤光栅(Period Sampling

Bragg Grating)

c 光在真空中的传播速度

n<sub>eff</sub> 光纤有效折射率

Λ 光栅周期

Λ。 光栅坐标零点处周期

λ₀ 光栅中心波长

λ 光信号波长

v 光信号频率

ω 光信号角频率

β 导波传播常数

β<sub>2</sub> 光纤中群速度色散参量

β 光栅中心波长处的传输常数

δβ 传播常数的失谐量

n<sub>0</sub> 光纤初始折射率

n<sub>1</sub> 折射率调制强度幅度

Δn 折射率调制强度幅度

κ 耦合系数

 $\kappa_{ac}$  耦合系数直流分量 耦合系数交流分量

q(z) 耦合系数分布

 $\tau_g$  群时延

D 色散

### 主要符号对照表

Cg<sub>1</sub> 啁啾系数

sp 取样周期

duty cycle 占空比

G 高斯函数切趾系数

ρ 复反射系数

r 光栅复反射系数

t 光栅复透射系数

# 关于学位论文使用授权的说明

本人完全了解清华大学有关保留、使用学位论文的规定,即:学校 有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论 文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。

(保密的论文在解密后遵守此规定)

作者签名: 五五

日期: 404.4.14

导师签名: 火 下 生 生 中

日期: <u>Lw4.4.1</u>4

# 第一章 绪论

### 1.1 引言

随着世界范围内建设信息高速公路热潮的兴起,光纤通信作为其骨干网得到了十分迅速的发展。又由于未来的综合业务服务中每一用户的容量需求可能超过100Mb/s,在这种需求的推动下,作为现代信息传输主体的光纤通信一直在朝着高码率、多信道、长距离和全光网络化方向发展。一方面,单信道速率不断提升,现已发展到10Gb/s、正向40Gb/s甚至160Gb/s发展;另一方面,密集波分复用技术(DWDM)日趋成熟并已商用化。从技术的角度来看,限制高速率信号长距离传输的因素主要包括光纤衰减、光纤非线性效应和光纤色散。掺铒光纤放大器(EDFA)以及光纤拉曼放大器(Raman Amplifier)的研制成功并投入商用,使光纤的衰减对系统的传输距离不再起主要限制作用,而光纤非线性效应和光纤色散对系统传输的影响逐渐明显和突出。随着光纤通信技术水平的不断提高,目前已有许多方法和措施能对非线性效应和色散进行有效地抑制和补偿,如非零色散位移光纤(NZDSF)、多量子阱DFB激光器、外调制技术、预啁啾技术、色散补偿光纤以及前向纠错编码技术(FEC)等。

在城域和接入光纤网络中,一种趋势是基于波长进行路由和交换等管理功能。Easex 公司则更进一步提出了在城域网中每个用户单独使用一个波长的方案,研制了 4000 个波长的系统。这种方案实现了全光的交换和路由,并为终端用户提供了大容量的接入服务,是未来城域和接入网中极具竞争力的方案。因此,更窄的频率间隔和更多的复用频道是发展密集波分复用/解复用器件的主要方向。几年以前的典型系统是以 C 波段(1530nm-1565nm)间隔 200GHz 的 16 个通道为代表,目前的典型系统是以 50GHz 为间隔的 40 个通道为主,而未来以 25GHz 间隔的 160 个通道系统将占有重要地位。

尽管光纤通信产业在经过 2000 年资本市场的投资热后目前陷入低谷,并被 视为随互联网后的第二个泡沫。但是,这种萧条的背后,实际上却蕴含着勃勃的 生机。这种潜力是建立在人类对多媒体信息的需求以及飞速发展的技术之上的。

光纤光栅以及以光纤光栅为基础的光学器件在光纤通信、光计算、光纤传感

等方面的广泛应用,使它成为了光子学当前发展的前沿课题,这一研究引起了国内外的广泛关注。光纤光栅器件容易与光纤集成,插入损耗低,偏振相关性小,制作工艺易于标准化,原材料简单便宜,是光纤通信系统中的重要无源器件。它的出现,将促使人们重新考虑光纤通信系统中的几乎每一个环节的设计。在未来光通信系统中如果没有光纤光栅就如同传统光学系统中没有镜片一样令人难以想象。

# 1.2 国际国内研究状况和进展

光纤的紫外光敏性是于 1978 年在加拿大渥太华的通信研究中心,由 K.O. Hill 等人在研究一种特制石英光纤的非线性效应时意外发现的<sup>[1,2]</sup>。在此之后,光纤光栅的设计、制作及应用在全世界研究范围内得到了很大的发展。相关的分析设计算法<sup>[3,4]</sup>有耦合模方程法、传输矩阵法、分立层剥法等。制作方法从起初的内写入法<sup>[1,2]</sup>到双光束干涉法<sup>[5]</sup>、相位模板扫描法<sup>[6,7]</sup>、逐点写入法<sup>[8,9]</sup>等。光纤光栅在其应用上能作为模式转化器、色散补偿器、波长滤波器、上下话路器、光纤传感器等。

下面给出目前国际国内有关光纤光栅领域较新的研究状况和热点:

# (1) 光纤光栅作为多信道滤波器的研究

法国 Alcatel 公司在 OFC2002 会议上报道了覆盖 50nm,信道间隔为 200GHz 的多信道光栅滤波器<sup>[10]</sup>。该公司利用相位模板和振幅模板配合的方法,制作出取样率较低的取样光栅。光栅的反射谱如图 1-1(a),光栅折射率调制强度的分布如图 1-1(b)。可以看出,这种光栅所需折射率调制强度较大,反射谱的顶端仍然受 Sinc 包络的限制,并且各信道谱形的顶部尖锐,不平坦。

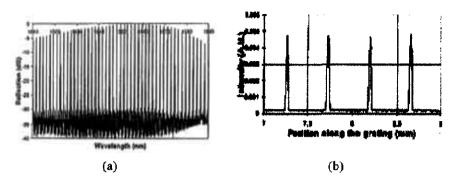



图 1-1 法国 Alcatel 公司制作的多信道光栅滤波器

(a) 反射谱 (b) 折射率调制强度分布

由于幅度取样的光纤光栅在信道数较多时,其所需折射率调制强度大小随信道数目呈线性变化。所以为了降低光栅对折射率调制强度的要求,可以采用在光栅空白未曝光处增加取样数目并在各取样初始处引入相移的方法。这种方法使得在形成多信道的同时,所需折射率调制强度大小仅随信道数目的平方根变化。另外在相同折射率调制强度下,相位取样法得到的光栅插入损耗也要比幅度取样法小得多,如图 1-2 所示。

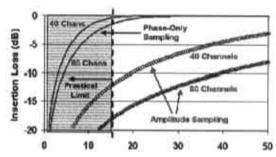



图 1-2 幅度取样调制与相位取样调制中 所需折射率大小与插入损耗的关系

Phaethon Communications 公司在 OFC2003 会议上报道了采用相移取样技术制作多信道光纤光栅<sup>[11]</sup>的方法。采用这种方法实现了 45 个信道,信道间隔为 100GHz 的多信道滤波,如图 1-3 所示。但是由于采用相位取样的相位分布非常复杂,光栅不易制作。

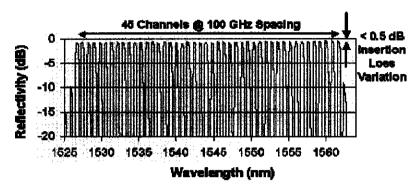



图 1-3 Phaethon Communications 公司制作的多信道光栅滤波器

#### (2) 光纤光栅作为多信道色散及色散斜率补偿器的研究

加拿大的 Teraxion 公司在 OFC2002 上报到了 12 信道的色散补偿器<sup>[12]</sup>。 其光栅长度为 10cm,补偿 12 信道,信道间隔为 1.6nm,每信道带宽>0.4nm。 该补偿方案为叠加写入所需信道数的啁啾光栅,相邻啁啾光栅的中心波长差等于 信道间隔,每个啁啾光栅的反射谱对应一个信道,各反射谱之间互不影响。其反 射谱和时延谱如图 1-4 所示。制作这种光栅,一般需要多个啁啾模板,并且需要 引入复杂的折射率轮廓。

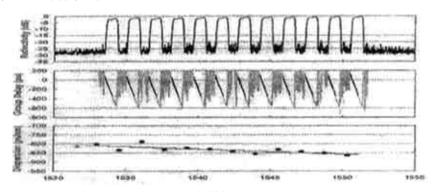



图 1-4 Teraxion 公司的色散补偿器的反射与时延谱

南加州大学的Phaethon公司在OFC2002/2003会议上均报道了9信道的色散补偿器<sup>[13]</sup>。其光栅长度为10cm,补偿9个信道,信道间隔为0.4nm,如图1-5所示。该补偿方案为制作单纯相位取样啁啾光栅,在每个取样的边界引入相移形成多信道潜质,在取样内引入多个相移实现频移,当这两种相移满足匹配条件时,光栅就可以实现多信道反射。采用这种技术对光栅折射率调制强度要求较小,可以结

合相位取样模板和啁啾模板一同使用,也可以只用一块啁啾模板,而在制作过程 中引入多个相移,但相应的制作工艺较复杂。

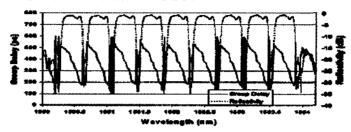



图1-5 Phaethon 公司色散补偿器的反射与时延谱

在OFC2004会议上,Michel Morin等人<sup>[14]</sup>采用相位取样结合取样周期中带有 啁啾的方法设计制作出了全C波段的色散及色散斜率补偿的光纤光栅器件,其相应结果见图1-6。这种新方法使得光纤光栅在信道数目增加时在色散补偿和色散斜率补偿上的作用仍发挥到最佳。

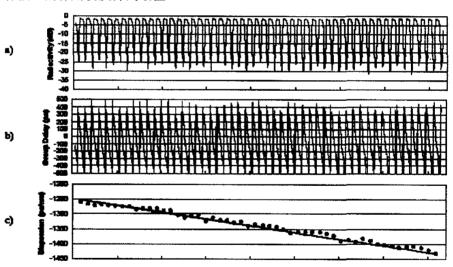



图 1-6 全 C 波段的色散及色散斜率补偿器 (a) 反射谱 (b) 时延谱 (c) 色散谱

### (3) 光纤光栅结构分析的研究

目前光纤光栅的研究热点除了其设计和制作外,在 OFC2003 会议上出现了很多针对已经成型的光纤光栅器件来分析其制作时的折射率调制强度分布以及光栅周期误差波动的方法。比较有特点的文章有:

I.Petermann 等人利用紫外光源的空间侧向散射来探究光栅特性<sup>[15]</sup>,其实验装置图如下所示。

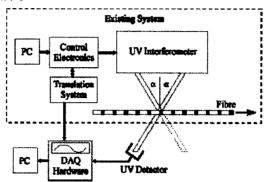



图 1-7 紫外光源的空间侧向散射方法来探究光栅特性

另外 L.Baskin 等人 $[^{16]}$ 利用图 1-8 中的装置同时测量光栅的折射率调制强度 (精度 2\*10 $^{-6}$ ),光栅周期误差(精度 5pm),还直接进行了啁啾光栅时延抖动分析。

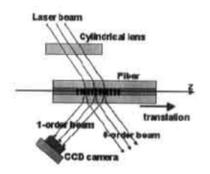



图 1-8 实验装置图

在 OFC2004 会议中 Dmitrii Yu 等人<sup>[17]</sup>更是利用远离光栅带宽外的一个波长处的反射大小作为探究光栅折射率强度大小的一个标准,从而在制作光栅的同时监测和控制曝光强度达到所需实现的折射率强度大小。

#### (4) 光纤光栅的调谐特性研究

光纤光栅的调谐特性的研究从来都是光纤光栅走向应用的热点。在 2003 年取得的比较有进展的工作是 C.Goh 等人<sup>[18]</sup>提出的大于 90nm 的中心波长连续可调的光纤光栅调谐以及 Xinyong Dong 等人<sup>[19]</sup>提出的在中心波长变化很小的条件下(0.06nm 以内), 3dB 带宽调谐范围达到 2nm 的光栅调谐,从而实现啁啾光纤

光栅的可调色散补偿。其采用的调谐装置如图 1-9 所示。

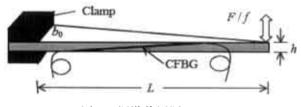



图 1-9 调谐装置图

### 1.3 大啁啾光纤光栅在光通信中的应用

大啁啾光纤光栅作为一种特殊结构的光纤光栅,由于其带宽较宽、色散量较小,谱形写入容易控制,能够很方便地用于宽带滤波、放大器噪声抑制、增益平坦,光纤传感等方面。

### (1) 宽带带阻(通)滤波器

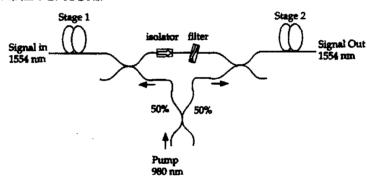



图 1-10 两级 EDFA 结构示意图

在上面的光放大器两级结构中,如果使用带宽为 20nm 的陷波器来滤除 1530nm 处的 ASE 噪声,则整个放大器的增益能提高 4dB,噪声指数改善 0.5dB。

如果使用 1555nm 附近的 40nm 带宽的带通滤波器,能提高放大器的增益 6dB, 噪声指数改善 0.5dB。

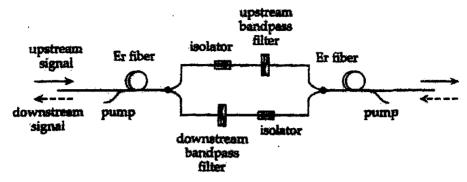



图 1-11 双向光传输放大结构

在图 1-11 中上行和下行的信号波长间插排列,可以针对不同方向的波长分布采用不同形状的带通滤波器来实现放大器的双向放大功能。

### (2) 在光放大器增益平坦中的应用[20]

对于光放大器增益平坦来说采用大啁啾光纤光栅是较优异的选择。虽然薄膜滤波器是最被认可的成熟技术<sup>[21]</sup>,一般是利用干涉涂覆原理设计复杂的单个滤波器,但是带来了制作中的复杂工艺(几百层的涂覆层)而且不易与新的增益谱吻合。另外由于薄膜滤波器是体器件,插入损耗对于平坦较复杂的增益谱线会超过 1dB。而另一种正弦滤波器如马赫一曾得器件的制作可以通过熔融双锥(FBT),平面光波回路(PLC)或微光结构等技术来实现。为了满足光放大器(EDFA)的整个C波段的平坦需要,一般要有 3 个到 5 个这种正弦型滤波器。这么多的滤波器大大增加了封装的尺寸和复杂度,而且这种技术的可靠性在需要大量使用的场合上还有待去证明。

大啁啾光纤光棚这种透射型滤波器的制作依靠沿着光栅长度方向条纹周期的改变同时使折射率的调制强度在传输谱线特定波长处满足特定大小损耗。这种滤波器在增益平坦上的应用通常工作在透射模式。它可以在普通单模光纤如 SMF-28 上制作,只会带来很小的连接损耗。同时在保偏光纤上如 PANDA 型或椭圆型上也可以制作这种滤波器来满足维持极化方向不变的增益平坦光放大器的需要。另外由于是全光纤器件,带外的插入损耗一般在 0.1dB 以下,主要是由在写入过程中紫外照射折射率改变带来的。通过合适的退火工艺,这些器件能保持 25 年以上的使用寿命。对比其它增益平坦的方案,只有这种技术在覆盖足够大的光谱带宽(35nm)之外还能同时实现非常小的体积封装。

这种技术最显著的特点是对于光放大器宽的增益翻转谱带宽而言有非常小的增益误差波动。图 1-12 给出了从 1526nm 到 1562nm 范围内大啁啾光纤光栅用在透射方式下的光放大器增益平坦谱形状。虽然最大的增益波动原先达到 8dB,但平坦后的增益波动在 36nm 范围内只有±0.1dB。右上插图里给出了用于平坦的滤波器形状。这种滤波器通过圆柱形的温度补偿封装(55×4.8mm)可以实现在-20 度到+70 度的温度范围内每变化 1 摄氏度波长漂移 1pm。

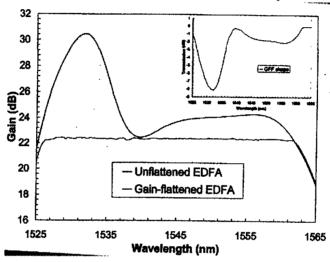



图 1-12 基于大啁啾光纤光栅技术的增益平坦效果(插图中为光栅滤波谱形状)

#### (3) 在多信道滤波中的应用

为了在实现 25GHz 间隔的密集波分复用系统的同时避免器件技术的过分复杂和太高成本,在 2000 年 3 月的 OFC 展览上,多家公司纷纷提出一种群组滤波器, Chroum 公司称之为 Slicer, Wavesplitter 和 JDS Uniphase 等公司称之为 Interleaver。

这种器件的基本工作原理如图 1-13,通过两个分别频率间隔为目标间隔两倍的普通复用/解复用器的组合使用,一个专门配合偶数的频道数,一个专门配合新数频道数。再配合一个可以将信号按奇偶分开的 Interleaver,就可以实现50GHz(25GHz)的频率间隔的复用/解复用。

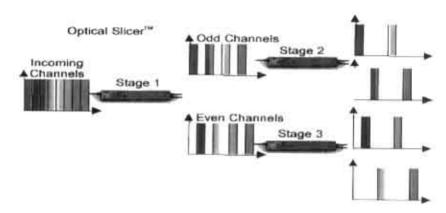



图 1-13 Interleaver 工作示意图

可以说 Interleaver 的出现使许多传统滤波器技术在密集波分复用的新应用中重新找到了自己的位置,大大减低了器件设计制作的压力,降低了整个系统的成本。这种器件的基本制作原理还是来自两束光的干涉。通过选择合适的干涉设计参数可以使 Interleaver 的传输谱成为类似梳状滤波谱的形状。目前实现 Interleaver 的常用技术包括熔融拉锥的干涉仪、液晶、双折射晶体等等。

基于光纤的群组滤波器主要是依靠短周期的大啁啾光纤光栅。这种器件可以提供非常窄的频率间隔,可以做到 50GHz(0.4nm)的信道间隔,理论上在 C 波段就可以容纳 160 个通道复用,插损与一致性也非常好。而且通过对大啁啾光纤光栅长度方向上折射率调制强度取样,能得到谱型光滑、顶部平坦、边沿陡峭、小色散的窄带高性能多信道群组滤波器。

本课题组的陈向飞老师首次提出的这种基于大啁啾光纤光栅的群组滤波器,不仅拥有自主的知识产权,而且已经形成初步实验样品。其相关文章已经发表在国外期刊<sup>[22]</sup>及 OFC2004<sup>[23]</sup>会议上。

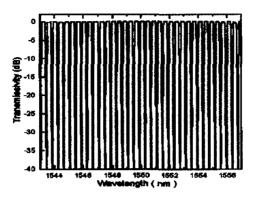



图 1-14 群组滤波器模拟传输谱图

### (4) 在光纤传感中的应用

大啁啾光纤光棚用做新型的光纤传感器在最近也得到了很大的关注。它的解调方法有别于传统常用的窄带光栅滤波器的波长解调方法,避免了使用高质量的压电陶瓷控制器或滤波器复杂的调谐装置,从而提供了另一种可行的传感选择方案。

#### (a) 利用两相似大啁啾光栅实现温度和拉力的传感解调

Fallon 等人提出了一种利用两相似大啁啾光栅光谱失配的特性来进行传感解调的方法<sup>[24]</sup>。其结构图如下:

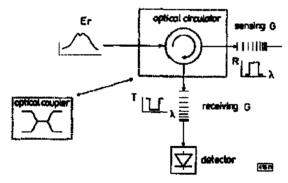
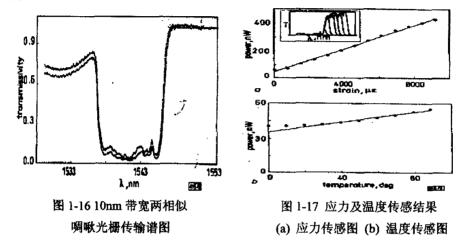




图 1-15 实验结构图

从宽光谱光源中出来的光通过传感光栅的反射进入接收参考光栅滤波,最后通过光电转换为接收功率的大小。初始状态时,传感光栅与接收参考光栅的带宽位置重叠一致,此时接收到的功率最小。当由于温度或拉力因素引起传感光栅的光谱发生漂移时,则有一部分的反射光处于接收参考光栅的带宽之外,从而使接收到的功率变大。宽带平顶滤波形状的大啁啾光栅滤波器能保证温度或应力变

化与接收功率大小呈线性关系。在这里,一对带宽约 10nm 的大啁啾光栅能够实 现  $10 m \varepsilon$  的应力传感范围( $\sim 1 p m / \mu \varepsilon$ )以及高达  $750 ^{0}$ C 的温度传感范围  $(\sim 13\,pm/^{0}\mathrm{C})$ 。光栅的制作可通过大啁啾相位模板的扫描写入或双光束干涉方法 来实现。



# (b) 利用不对称滤波形状的大啁啾光栅实现温度和拉力的传感解调<sup>[25]</sup>

通过给定的探测波长光经过光栅反射率变化的调制可以实现压力传感解 调。特别适合的宽带滤波谱形状是从光栅滤波谱一侧到另一侧,反射率大小是呈 线性变化的。可以让探测波长选在光谱形状的中央,通过谱形变化时反射率大小 的变化很容易知道所受拉力还是压力。

图 1-18 中给出了这种形状的光栅谱形以及施加 2000 με 应力时光谱漂移的 谱图,另一张图 1-19 给出了探测光波长选在 1534nm 时应力及反射功率变化关 系。

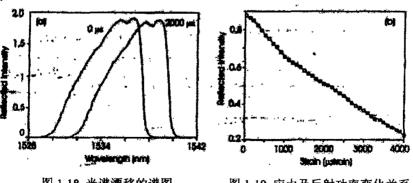



图 1-18 光谱漂移的谱图

图 1-19 应力及反射功率变化关系

### 1.4 课题目的和意义

光纤光栅可以根据其不同模式间耦合、光栅不同周期分布、折射率不同调制 分布等依据分成很多类型,下面介绍几种典型的光纤光栅:

# (1) 长周期光纤光栅(Long FBG-LFBG)[26]

长周期光纤光栅的周期通常为几百微米,可以把导波模式耦合到同向传播的包层模式或(多模光纤中的)高阶导波模式,用作模式转换器或者与波长有关的衰减器。长周期光栅具有不同波长处提供不同损耗大小的能力,但由于导模与包层模间耦合容易受到诸如纤芯与包层界面间的微缺陷、应力弯曲等因素的影响,其谱线形状设计比较难于控制。

# (2) 闪耀光纤光栅(Tilt FBG-TFBG)[27]

闪耀光纤光栅的光栅平面的法向方向与光纤的轴向不一致,可以把导波模式 耦合到辐射模式,其作用相当于一个与波长有关的衰减器。

# (3) 等周期等耦合系数光纤光栅(Standard FBG-SFBG)[28]

电磁波在周期性介质波导中传播时,当介质的折射率的变化周期等于两个导模的传播常数的差时,导模中的能量会产生耦合,从一个导模耦合到另一个导模。在干线高速光通信系统中,所用光纤通常都是单模光纤,纤芯中只有一个传导模式,因此在纤芯中的耦合只会发生在正向传输的模式与反向传输的模式之间,这种光栅的周期较短,约为0.523µm左右。当沿光栅长度方向光栅的周期和耦合系数都是均匀分布时,其称为等周期等耦合系数光纤光栅。

# 

线性啁啾光纤光栅的布拉格中心波长随光栅长度方向发生线性变化,形成一段连续的波长范围,表现为反射谱带宽的展宽。如果用一系列足够短的等周期光栅来等效线性啁啾光纤光栅,相当于形成了一个多波长反射光栅阵列,不同波长的光波被对应的不同的小段光栅反射,使导波光程随波长而单调递增或递减,相位上表现为相移色散,是最早提出的进行色散补偿的FBG结构。早期的色散补偿用啁啾波导结构都是在介质膜或三五族化合物半导体体系中实现的,自从光纤光栅被发明以来,显示了巨大的优越性,逐渐成为主流。

# (5) 切趾光纤光栅(Apodized FBG-AFBG)[31,32,33]

理论与实验研究表明,采用折射率调制强度Δη的渐变可以有效地抑制反射

及色散谱的振荡,从而制作形成的光栅称之为切趾光纤光栅。

# (6) 相移光纤光栅(Phase shift FBG-PSFBG)[34,35]

当光栅周期中存在相位跳变或者光栅写入过程中有与光栅周期可比拟的错位位移时,就会形成相移光纤光栅。其表现形式是在光栅透射谱上的阻带中会出现带宽很窄的通带。

# (7) 摩尔光纤(Moirě)光栅(Moirě-FBG)[36,37]

摩尔光栅是一种由周期不同的一系列光栅在空间上折射率调制强度叠加而 形成的,其光谱范围内仍可获得多个透(反)射峰,且间距及反射率可调。

# (8) 取样光纤光栅(Sampled-FBG)[38,39,40]

取样光纤光栅是通过取样函数来控制光栅写入部分的有无来形成新的周期性折射率调制强度分布,从而在光谱上形成多峰结构。

在干线波分复用(WDM)传输的色散补偿领域,使用等周期取样的线性啁啾光纤光栅可以补偿色散,且每信道内的色散特性是相同的。但在每信道10Gb/s或40Gb/s的高速传输情况下仅补偿色散是不够的,由于光纤色散曲线的不平坦,长距离传输后不同信道累积的色散值有差异,如果各信道等值色散补偿,必然会出现有的信道过补偿,有的信道欠补偿,造成整体信号质量的下降。本课题组前一阶段的理论研究表明,如果在取样周期上引入啁啾,可以使不同信道的色散补偿量产生变化。对不同的波长信道,等效的啁啾系数不同,合理地选择取样周期系数,可以同时补偿色散与色散斜率。

# (9) 群时延曲线可控的光纤光栅(Group Delay Controlled-FBG)[41,42]

针对具有任意形式的取样周期啁啾的取样结构,本课题组的冯佳同学在其论文中提出了一个坐标变换模型,在取样函数中引入了描述取样周期啁啾的相位因子,从而对取样周期啁啾产生等效光栅周期啁啾的原因进行了具有普适意义的理论分析。通过设计具有取样周期啁啾的取样结构,获得实际所需要的一定波长范围内的群时延谱的方法。按照此方法,提出了三种典型的具有取样周期啁啾的取样结构,它们的非零级反射带分别具有一次、二次、和三次群时延谱,可分别用于光纤通信系统的色散补偿、色散斜率补偿、可调谐色散补偿、动态偏振模弥散补偿和可调谐色散斜率补偿。对这些光栅的-1 级反射带共振波长分布的计算和分析进一步展示了取样周期啁啾与共振波长啁啾之间的联系。

# (10) 内插相位取样光纤光栅(Interleaved-FBG)[43]

从取样光栅的结构特点可见,在一个取样周期长度内,只有在一小段内有有效的光栅,而在另一段,完全是空白,没有光栅的写入,因此造成平均折射率调制强度与耦合系数的下降,并带来透射系数的下降,使器件产生较大的插入损耗。虽然增加光栅长度可以弥补耦合系数下降带来的损失,但是由于控温等封装工艺的限制,光栅长度会受到一定限制,因此这个方法实行起来受到许多限制。一种解决的思路是可以在原来的空白段也写入光栅,在保证多信道、反射峰等强度的情况下,尽可能地提高平均折射率调制强度与耦合系数的大小。于是人们设计了内插取样光纤光栅,在原取样空白段写入新的光栅,并且分别引入不同的初始相位分布,相当于 N 组取样光栅 "内插"在一起,其对应的平均调制强度较通常的幅度取样光栅提高了 N 倍。

在前面提到的很多类型的光纤光栅中,啁啾布拉格光纤光栅(CFBG)是得到广泛重视的一种。啁啾一词来源于某些鸟类或蝙蝠发出的声音中音调的变化。而在光栅中沿长度方向上不均匀的周期分布也可认为是被啁啾化的结果。光栅中的啁啾有很多不同的表现形式。光栅周期可以是呈现对称分布,即相对于光栅的中间部分周期是分别向两边增大或者减小的。啁啾也可以是线性的,光栅周期大小随着光栅长度线性变化<sup>[44]</sup>。当然光栅周期大小也可以与光栅长度是二次函数关系<sup>[45]</sup>或者在光栅周期分布中有跳变发生<sup>[46]</sup>,甚至光栅周期在光栅长度方向是正弦变化<sup>[47]</sup>或随机变化<sup>[48]</sup>。大多数情况下布拉格光栅分为均匀和线性啁啾两种。啁啾的引入主要有以下几种方法:在不均匀强度紫外干涉条纹下曝光;使均匀周期光栅的平均折射率沿长度方向变化<sup>[49]</sup>;改变交流耦合系数,使其成为与位置相关联的函数<sup>[50]</sup>;在刻入光栅的模板周期中引入啁啾<sup>[51]</sup>;在锥形渐变的光纤上制作光栅<sup>[52]</sup>;在光栅两端施加不均匀应力<sup>[53]</sup>等等。啁啾光栅有很多应用,特别是线性小啁啾光栅,在光学中有其特殊的地位,可以作为色散改善和补偿器件<sup>[54,55,56]</sup>。小啁啾光纤光栅的一些其它应用还包括啁啾脉冲的放大<sup>[57]</sup>、增益半导体激光器的啁啾补偿<sup>[58]</sup>、光纤传感<sup>[59]</sup>、高阶的光纤色散补偿<sup>[60]</sup>等等。

大啁啾光纤光栅的啁啾系数一般大于 1nm/cm, 反射带宽通常大于 10nm, 因此有很多不同于小啁啾光栅的特性和应用, 比如可用于自发辐射噪声的抑制 [61]、放大器的增益平坦[62], 还可作为带阻或者带通滤波器[63]等等。本论文研究

的主要方向为从大啁啾光纤光栅的特性分析入手,设计与制作满足相应需要的 大啁啾光纤光栅器件。由于国内外研究者在光纤光栅领域也缺乏针对大啁啾光 纤光栅这种特定类型的光栅结构开展相应的系统研究,本论文的主要目的在 于阐述和总结光栅结构中拥有大啁啾系数的特点,结合取样控制、折射率调 制分布等制作方式来实现大啁啾光纤光栅更多更广的应用功能。

# 1.5 论文各部分的主要内容

本论文研究的主要方向为大啁啾光纤光栅的特性分析,包括研究与它相关的设计、制作和应用。论文主要由以下几个部分构成:

在第一章中主要介绍了课题背景和选题方向。第一节是引言部分,简单介绍了光通信的发展趋势。第二节介绍了目前国际国内光纤光栅研究状况和进展。第三节总结了大啁啾光纤光栅在光通信中的一些应用。第四节中阐述了本课题目的和意义,选定大啁啾光纤光栅的特性分析为本论文的研究方向。

在第二章中主要讨论了光纤光栅的分立层剥算法(DLP)。第一节简单阐述了光纤光栅的工作原理。第二节给出了耦合波方程和传输矩阵法的推导。第三节中简单介绍了光栅的分立层剥算法。第四节中利用分立层剥算法设计了几种常用类型的光纤光栅。第五节中介绍了 DLP 算法可作为光栅结构重构分析的原理。第六节中给出了使用 DLP 重构算法重构分析出的一些光栅实例,其中重点在于重构了宽谱的大啁啾光纤光栅结构。

在第三章中主要讨论了基于大啁啾光纤光栅的宽带滤波谱设计。第一节中介绍了大啁啾光纤光栅的特性分析。第二节中分别提出了宽带滤波谱形的插值查询法设计原理和利用 DLP 算法构造设计原理。第三节中介绍了基于大啁啾光纤光栅的宽带滤波谱实验分析。

在第四章中主要讨论了多信道功率均衡滤波器设计及制作。第一节中针对 宽带多信道滤波器设计时的信道反射率不平坦性,在理论上给出了其存在的原因,提出了两种可行的解决方案。第二节中结合大啁啾条件下设计宽带多信道滤波器的特点,提出了基于信道包络滤波的宽带光纤光栅滤波器的设计方法,首次 制作得到了相应滤波形状的多信道功率均衡补偿器。

在第五章中主要讨论了两种特殊的大啁啾结构光纤光栅设计。第一节中

先讨论了逐段大啁啾光栅的特性,分析了其等效于连续啁啾光栅的条件,给 出了三种判决标准。第二节中利用逐段大啁啾光栅设计了多信道滤波器。在 第三节中首次提出了一种基于大啁啾特性的光栅周期取样的新型光纤光栅设计 方法,仿真模拟结果表明能够将其用于光纤传输系统的色散补偿。

本论文的最后是结论及在学期间的研究成果及发表的论文情况。

# 第二章 光纤光栅分立层剥算法

### 2.1 光纤布拉格光栅的工作原理

布拉格光纤光栅(FBG)的周期较短,约为0.523μm 左右,其光栅中的模式耦合只发生在正向传输的导波模式与反向传输的导波模式之间<sup>[64]</sup>。

FBG 的折射率沿光栅长度方向的分布形式可表示为:

$$n(\omega) = n_0 + f(z)\Delta n \cos(\frac{2\pi}{\Lambda(z)}z + \varphi(z))$$
 (2-1)

其中, $n_0$ 为光纤的初始折射率, $\Delta n$ 为折射率调制强度幅度,f(z)为折射率调制强度分布因子, $\Lambda(z)$ 为周期因子, $\varphi(z)$ 为相位因子。对上述三个因子进行调制,可以获得不同性质的 FBG。例如,对 f(z)的调制可以获得切趾光栅,对  $\Lambda(z)$ 的调制可以获得啁啾光栅,对  $\varphi(z)$ 的调制可以获得相移光栅等等。

# 2.2 耦合波方程和传输矩阵法

在光纤 Bragg 光栅中,前向和后向传输模式之间的耦合可用耦合波方程描述。有关光纤光栅的耦合波方程及传输矩阵形式的推导如下<sup>[65]</sup>:

在不均匀介质中沿 z 向传播的电磁场满足 Maxwell 方程:

$$\frac{d^2 E(z)}{dz^2} + (\frac{\omega}{c} n(z))^2 E(z) = 0$$
 (2-2)

在光栅中,折射率分布函数n(z)经过紫外光照射后,受到调制。设其函数分布形式为沿单模光纤芯区长度方向均匀正弦形式分布(考虑了折射率调制函数相位 $\rho$ 的影响):

$$n(z) = n_0 + n_1 \cos(Kz + \varphi)$$
 (2-3)

 $K=2\pi/\Lambda$ 

其中  $\Lambda$  为光栅周期,  $n_0$  为光纤初始折射率,  $n_1$  为折射率调制强度幅度。则有:  $n^2(z) = n_0^2 + 2n_0n_1\cos(Kz + \varphi) + n_1^2\cos^2(Kz + \varphi)$  (2-4)

由于 $n_1 << n_0$ ,上式中第三项远远小于前两项,因此可忽略,代入式(2-2)中

$$\frac{d^2 E(z)}{dz^2} + \frac{\omega^2}{c^2} (n_0^2 + 2n_0 n_1 \cos(Kz + \varphi)) E(z) = 0$$
 (2-5)

对于单模光纤来说,只有最低阶模式才能传播。设在光栅中存在前向和后向 传输模:

$$E(z) = A(z)\exp(-ik_0z) + B(z)\exp(ik_0z)$$

$$k_0 = 2\pi n_0 / \lambda = n_0\omega/c$$
(2-6)

代入到式(2-5)可得到:

$$A''e^{-ik_0z} + B''e^{ik_0z} - 2ik_0A'e^{-ik_0z} + 2ik_0B'e^{ik_0z} + 2\frac{\omega^2}{c^2}n_0n_1^*$$

$$(Ae^{-ik_0z} + Be^{ik_0z})\cos(Kz + \varphi) = 0$$
(2-7)

由于电场强度随 z 向变化得很慢,有 
$$|A^*| << |k_0 A^\prime| \mathcal{D} |B^*| << |k_0 B^\prime|$$
,则上式变为: 
$$2ik_0 A^\prime e^{-ik_0 z} - 2ik_0 B^\prime e^{ik_0 z} = 2\frac{\omega^2}{c^2} n_0 n_1 (Ae^{-ik_0 z} + Be^{ik_0 z}) *$$
  $\cos(Kz + \varphi)$ 

上式两端同时乘上exp(ik,z)进一步化简为:

$$ik_0 A' - 2ik_0 B' e^{2ik_0 z} = 2\frac{\omega^2}{c^2} n_0 n_1 (A + Be^{2ik_0 z}) *$$

$$\cos(Kz + \varphi)$$
(2-9)

由于在 z 向空间积分平均中,  $<\cos(Kz+\varphi)>=0$  及  $<\exp(\pm i2k_0z)>=0$  ,于是:

$$ik_0 A' = \frac{\omega^2}{c^2} n_0 n_1 < \cos(Kz + \varphi) B e^{2ik_0 z} >$$
 (2-10)

由于只有在相位匹配  $K \approx 2k_0$  附近空间积分平均才有显著值,因此

$$A' = -i\frac{\omega}{2c} n_1 B e^{i((2k_0 - K)z - \varphi)}$$
 (2-11)

上式简化中用到关系式:  $\cos(Kz + \varphi) = (\exp(i(Kz + \varphi)) + \exp(-i(Kz + \varphi)))/2$ 定义耦合系数 $\kappa = \omega n_1/(2c) = \pi n_1/\lambda$  , 相位失配  $\Delta k = 2k_0 - K$  , 则有:

$$A' = -i\kappa B e^{i(\Delta kz - \varphi)} \tag{2-12}$$

同样可以在式(2-8)两端同时乘上exp(-ik,z)可以得到:

$$B' = -i\kappa A e^{-i(\Delta kz - \varphi)} \tag{2-13}$$

由上两个方程可以得到关于 A(z)的方程:

$$A'' - i\Delta kA' - \kappa^2 A = 0 \tag{2-14}$$

上述方程的通解为:

$$A(x) = [C_1 \cosh(sz) + C_2 \sinh(sz)]e^{i((\Delta k/2)z - \varphi)}$$
(2-15)

在这里  $s^2 = \kappa^2 - (\Delta k/2)^2$  而  $C_1$  和  $C_2$  为由边界条件决定的待定系数由式(2-12)可知:

$$B(z) = \frac{i}{\kappa} e^{-i(\Delta kz - \varphi)} A'$$
 (2-16)

考虑长度为 L 的均匀光栅反射系数 r 可表示为:

$$r = \frac{E^{-}(0)}{E^{+}(0)} = \frac{B(0)e^{ik_0z}}{A(0)e^{-ik_0z}}$$
(2-17)

在 L 处光栅的反向波 B(L)=0,可以通过零点处 A(0)的值来表示式(2-15)中  $C_1$  及  $C_2$ ,即:

$$E^{+}(z) = \frac{s * \cosh(s(L-z)) + i \cdot \Delta k/2 \cdot \sinh(s(L-z))}{s * \cosh(sL) + i \cdot \Delta k/2 \cdot \sinh(sL)} A(0)e^{-i(\beta_B z - \varphi)}$$
(2-18)

$$E^{-}(z) = \frac{-i\kappa \cdot \sinh(s(L-z))}{s * \cosh(sL) + i \cdot \Delta k/2 \cdot \sinh(sL)} A(0)e^{i(\beta_B z - \varphi)}$$
(2-19)

$$\beta_B = K/2 = \frac{\pi}{\Lambda}$$

所以:

$$r = \frac{E^{-}(0)}{E^{+}(0)} = \frac{-i\kappa \cdot \sinh(sL)}{s \cdot \cosh(sL) + i \cdot \Delta k/2 \cdot \sinh(sL)} e^{-2\varphi}$$
(2-20)

则有反射率

$$R = r * r^* = \frac{\kappa^2 \sinh^2(sL)}{s^2 \cosh^2(sL) + (\Delta k/2)^2 \sinh^2(sL)}$$
(2-21)

当相位完全匹配时, $\Delta k = 0$ ,此时  $R_{max} = \tanh^2(\kappa L)$ 。图 2-1 中给出了均匀 光栅最大反射率随耦合系数与光栅长度乘积的变化关系

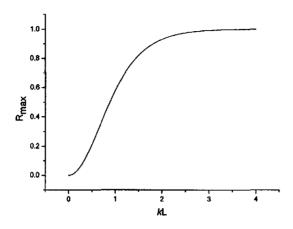



图 2-1 均匀光栅最大反射率随耦合系数与光栅长度乘积的变化关系 另外光栅中 z<sub>0</sub>处及 z 处的场可以通过传输矩阵的方式联系起来,即:

$$\begin{pmatrix}
E^{+}(z_0) \\
E^{-}(z_0)
\end{pmatrix} = \mathbf{T} \cdot \begin{pmatrix}
E^{+}(z) \\
E^{-}(z)
\end{pmatrix}$$

$$T = \begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix}$$
(2-22)

则有:

$$\begin{split} E^{+}(z_{0}) &= [C_{1}\cosh(sz_{0}) + C_{2}\sinh(sz_{0})]e^{-i\beta_{B}z_{0}} = T_{11}E^{+}(z) + T_{12}E^{-}(z) \\ &= T_{11}[C_{1}\cosh(sz) + C_{2}\sinh(sz)]e^{-i\beta_{B}z} + T_{12}\frac{i}{\kappa}e^{i\beta_{B}z}[(C_{1}s*\sinh(sz) + C_{2}s*\cosh(sz)) \\ &+ i\frac{\Delta k}{2}(C_{1}\cosh(sz) + C_{2}\sinh(sz))] \end{split}$$

对比  $C_1$  和  $C_2$  前的系数可求  $T_{11}$  及  $T_{12}$ ,同理利用  $E^-(z_0)$ 的表达式可求  $T_{21}$  及  $T_{22}$ 。 于是传输矩阵 T 的形式为:

$$T_{11} = \left[\cosh(s(z-z_0)) + i \cdot \Delta k / 2s \cdot \sinh(s(z-z_0))\right] e^{i\beta_B(z-z_0)}$$
(2-23)

$$T_{12} = i \cdot \kappa / \sinh(s(z - z_0)) e^{-i\beta_B(z_0 + z)} e^{-i\varphi}$$
 (2-24)

$$T_{21} = -i \cdot \kappa / \sinh(s(z - z_0)) e^{i\beta_B(z_0 + z)} e^{i\phi}$$
 (2-25)

$$T_{22} = [\cosh(s(z - z_0)) - i \cdot \Delta k / 2s \cdot \sinh(s(z - z_0))] e^{-i\beta_B(z - z_0)}$$
(2-26)

定义光纤光栅的反射系数 r、反射相移 $\psi$ 、群延迟 $\tau_{g}$ 、色散 D 分别如下:

$$r = |E^{-}(z_{0})/E^{+}(z_{0})| \tag{2-27}$$

$$\psi = \arg(E^{-}(z_{0})/E^{+}(z_{0})) \tag{2-28}$$

$$\tau_{g} = \frac{d\psi}{d\omega} \tag{2-29}$$

$$D = \frac{d\tau_g}{d\lambda} = -\frac{2\pi n_0 c}{\lambda^2} \frac{d^2 \psi}{d\omega^2} = -\frac{\lambda^2}{2\pi n_0 c} \frac{d^2 \psi}{d\lambda^2}$$
 (2-30)

由于线性啁啾光纤光栅的周期不是常数,因此(2-23)与(2-26)中的  $\beta_B$  不是常量,这时耦合波方程没有解析解,但可用传输矩阵法来仿真。传输矩阵法假设光栅是由 N 段小光栅构成,每一小段都有相同的周期和折射率调制强度,则每一段都有解析解满足(2-23)至(2-26)式。这些传输矩阵顺序相乘,就得到了起点处的入射振幅  $E^+(-L/2)$ 、反射振幅  $E^-(-L/2)$ 和终点处的入射振幅  $E^+(L/2)$ 、反射振幅  $E^-(L/2)$ 之间的传输矩阵关系。其中假设光栅在± L/2 间分布。

$$\begin{pmatrix}
E^{+}(-L/2) \\
E^{-}(-L/2)
\end{pmatrix} = T \cdot \begin{pmatrix}
E^{+}(L/2) \\
E^{-}(L/2)
\end{pmatrix}$$
(2-31)

$$T = \prod_{k=1}^{N} T_k$$

上式中T就是总体的传输矩阵,是由每一小段等强度、等周期光栅的 $T_{k}$ 顺序相乘获得,则复反射系数T和复透射系数T可以表示为:

$$r = \frac{T_{21}}{T_{11}} \tag{2-32}$$

$$t = \frac{1}{T_{11}} \tag{2-33}$$

一个由上述的耦合波方程一传输矩阵法仿真所得的等折射率调制强度的线性啁啾光栅的反射谱与时延谱如下图所示:

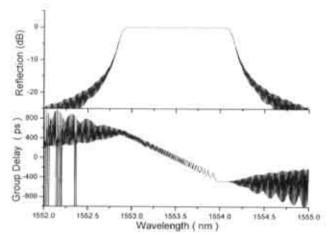



图 2-2 线性啁啾光纤光栅的反射和时延谱

# 2.3 分立层剥 (Discrete Layer Peeling-DLP)算法简介[66,67]

光栅的分立层剥(DLP)模型就是把光栅看成由一系列数目为 N,间隔为  $\Delta$  的复反射率镜子所构成。其场在坐标位置 z 处与 z +  $\Delta$  处的关系由两矩阵积  $T_{\Delta}T_{\rho}$  给出:

$$\begin{bmatrix} u(z+\Delta,\delta) \\ v(z+\Delta,\delta) \end{bmatrix} = T_{\rho} T_{\Delta} \begin{bmatrix} u(z,\delta) \\ v(z,\delta) \end{bmatrix}$$
(2-34)

$$T_{\rho} = (1 - |\rho|^2)^{-1/2} \begin{bmatrix} 1 & -\rho^* \\ -\rho & 1 \end{bmatrix}$$
 (2-35)

$$T_{\Delta} = \begin{bmatrix} e^{i\delta\Delta} & 0 \\ 0 & e^{-i\delta\Delta} \end{bmatrix}$$
 (2-36)

在这里复反射系数表示为

$$\rho = -\tanh(|q|\Delta)\frac{q^*}{|q|}$$

矩阵 $T_{\rho}$ 表示分立的反射镜,矩阵 $T_{\Delta}$ 表示场的传播。 $u(z,\delta)$  和 $v(z,\delta)$  分别表示前向和后向场的强度慢变近似。q=q(z) 是耦合系数的分布, $\delta=\beta-\beta_B$  是相对光栅中心波长处的传输常数差。依赖于时间谐波变化的因子 $\exp(-i\omega t)$  以及空

间变化的因子  $\exp(\pm i\beta_B z)$  已经从中略掉。光栅耦合系数在间隔  $[z,z+\Delta]$  中可看成均匀分布, $(1-|\rho|^2)^{1/2}$  为传输系数。定义在第 j 段处前向和后向传播的场分别为 $u_i(\delta)$  和 $v_i(\delta)$ ,见图 2-3:

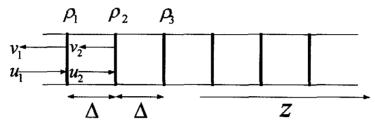



图 2-3 光纤光栅的 DLP 模型

由于在 DLP 算法中,耦合系数沿光栅长度方向的分布 q(z) 为已知量。既然知道了每层处的  $\rho_i$ ,通过矩阵积  $T_{\rho_i}T_{\Delta i}$  使场转移到下一层处。在下一层处,又可以采用相同的方法直到最后得到光经过整个光栅后的场分布:

$$\begin{bmatrix} u(L,\delta) \\ v(L,\delta) \end{bmatrix} = \prod_{i=1}^{N} T_{\rho_i} T_{\Delta_i} \begin{bmatrix} u(0,\delta) \\ v(0,\delta) \end{bmatrix}$$
(2-37)

设:

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = \prod_{i=1}^{N} T_{\rho_i} T_{\Delta_i}$$
 (2-38)

解出T矩阵之后,就得到了光栅的复反射系数 r、复透射系数 t:

$$r = \frac{T_{21}}{T_{11}} \qquad t = \frac{1}{T_{11}}$$

# 2.4 利用DLP算法设计各种类型的光纤光栅

- (1) 均匀光纤光栅设计
- (a) 折射率调制强度相同  $\Delta n = 2*10^{-4}$ ,光栅长度不同时均匀光栅设计谱图:

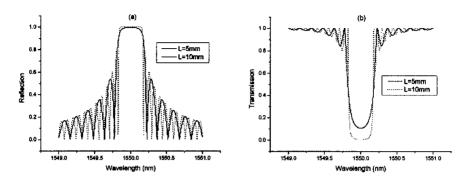



图 2-4 均匀光纤光栅谱图 (a) 反射谱 (b) 透射谱

(b) 光栅长度相同 L=10mm, 折射率调制强度不相同时均匀光栅设计谱图:

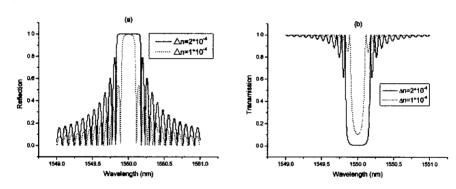



图 2-5 均匀光纤光栅谱图 (a) 反射谱 (b) 透射谱

### (2) 啁啾光纤光栅设计

光栅长度 L=50mm, 啁啾系数 Cg<sub>1</sub>=0.1nm/cm, 设计谱图如下:

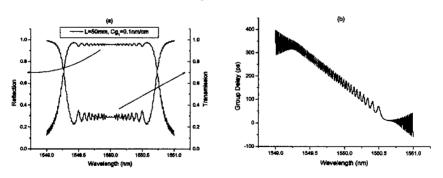
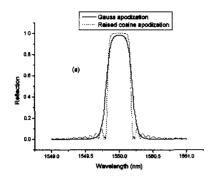



图 2-6 啁啾光纤光栅谱图 (a) 反(透)射谱 (b) 时延谱


#### (3) 切趾光纤光栅设计

理论及实验研究表明,折射率调制强度或耦合系数的渐变可以降低反射谱的 旁瓣,提高抑制比,还可以使时延谱的波纹降低。这种折射率渐变耦合的方式通常称为"切趾"(Apodization)或"变迹"。光纤光栅中常用的切趾分布 q(z) 有很多种,但基本形式都是折射率调制强度或耦合系数中间最大、两端逐渐下降,到端点趋近为零。常用的切趾函数如表 2-1 所示:

| 函数名称          | 函数形式                                                                                                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| Hamming       | $q(z) = q_0 \frac{1 + H\cos(2\pi z/L)}{1 + H}$                                                                          |
| Blackman      | $q(z) = q_0 \frac{1 + (1+B)\cos(2\pi z/L) + B\cos(4\pi z/L)}{2 + 2B}$                                                   |
| Gauss         | $q(z) = q_0 \exp[-G(\frac{z}{L})^2]$                                                                                    |
| Raised Cosine | $q(z) = q_0 \left( 1 + \cos \left( \frac{z \cdot \pi}{L} \right) \right)$                                               |
| Tanh          | $q(z) = q_0 \left\{ 1 + \tanh \left[ \beta \left( (1 - 2 \left  \frac{2z}{L} \right ^{\alpha} \right) \right] \right\}$ |
| Sinc          | $q(z) = q_0 \sin c^a \left[ \frac{1}{2} \left( \frac{2z}{L} \right)^{\beta} \right]$                                    |
| Cauchy        | $q(z) = q_0 \frac{1 - (2z/L)^2}{1 - (2Cz/L)^2}$                                                                         |

表 2-1 常用的切趾函数

利用升余弦及高斯函数进行光栅切趾仿真结果:



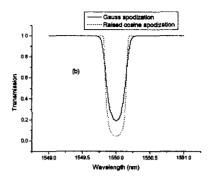



图 2-7 切趾光栅谱图 (a) 反射谱 (b) 透射谱

# (4) 取样光纤光栅设计

取样光栅长度 L=40mm, 折射率调制  $\Delta n = 2*10^{-4}$ , 占空比(duty cycle)分别 取为 0.2 和 0.5,在设计中采用了高斯函数切趾。

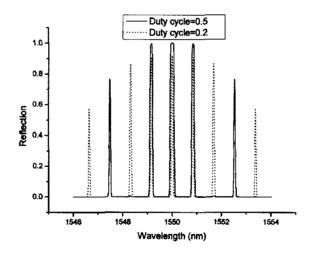



图 2-8 取样光栅反射谱

# (5) 多信道色散补偿光纤光栅

光栅长度 L=10cm,啁啾系数  $Cg_1$ =-2.74\*10 $^{-2}$ nm/cm,取样周期 sp=1.025mm,占空比为 0.2。

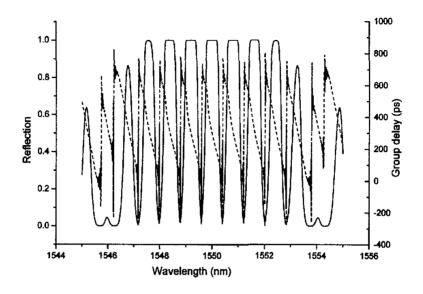



图 2-9 多信道色散补偿光栅反射及时延谱

光栅信道内色散量约为 1011.7ps/nm, 能够满足约 60 公里普通单模光纤传输系统的色散补偿需要。

# (6) 多信道群组滤波器(Interleaver)

50 GHz 的多信道群组滤波器设计中啁啾系数取  $Cg_1=2.74 nm/cm$ ,光栅长度 L=50 mm,取样周期 sp=1.025 mm,占空比为 0.5。

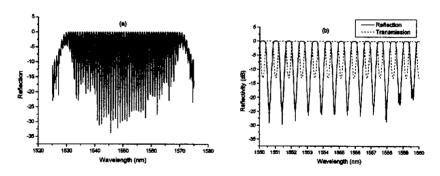



图 2-10 多信道群组滤波器谱图 (a) 反射谱 (b) 局部放大的反(透)射谱

# (7) 讨论

可以看出, DLP 算法求解光栅适合于各种非均匀光栅, 包括切趾光栅、啁

啾光栅以及取样光栅等等。实际上 DLP 算法中用到的矩阵  $T_\rho$  可以从传输矩阵法中用到的矩阵 T 中得到,只需让耦合聚集发生在一点处,即此时耦合系数  $\kappa \to \infty$  而保持  $\kappa L$  的乘积不变。另外矩阵  $T_\Delta$  则仅仅表示一段距离  $\Delta$  的传输特性。

# 2.5 DLP重构算法简介[66,67]

对于一个可以实现的复反射谱  $r_1(\delta)$ , 光栅 DLP 重构算法的目标是如何来分析得出一系列的复反射镜的强度  $\rho_i$  (j=1, 2, ···, N)。

在光栅分立层剥模型第一层前,场的形式为: 
$$\begin{bmatrix} u_1(\delta) \\ v_1(\delta) \end{bmatrix} = \begin{bmatrix} 1 \\ r_1(\delta) \end{bmatrix}$$
 (2-39)

对于时间 t=0 时的激励响应与  $j \ge 2$  后面的各层反射镜反射系数无关,因为此时光还没有经历足够的时间传播到第 2 层及更高层,因此此时仅需考虑第一层的作用效果。可以通过式子 $r_1(\delta) = v_1(\delta)/u_1(\delta)$  的傅立叶逆变换计算得到  $\rho_1$  的大小。既然知道了  $\rho_1$ ,通过矩阵积  $T_\Delta T_{\rho 1}$  使场转移到下一层处。在下一层处,发现又可以采用相同的方法直到最后得到整个光栅的耦合系数分布 q(z)。

为了得到由傅立叶逆变换所决定的  $\rho_1$  的明确表达式,可以将谱图  $r_1(\delta)$  写成由激励响应  $h_1(\tau)$  表示的离散时间傅立叶级数形式:

$$r_1(\delta) = \sum_{\tau=0}^{\infty} h_1(\tau) e^{(i\delta\tau 2\Delta)}$$
 (2-40)

因为激励响应是以取样周期  $2\Delta$  为间距离散的,其中  $2\Delta$  等于一层中往返传播的长度。定义  $\tau = t/2\Delta$  作为归一化的离散时间变量。既然当  $\tau = 0$  时的激励响应仅由第一层反射所决定,那么  $\rho_1$  可以简单地看成(2-38)中零级傅立叶系数:

$$\rho_1 = h_1(0) = \frac{\Delta}{\pi} \int_{\frac{\pi}{2\Delta}}^{\frac{\pi}{2\Delta}} r_1(\delta) d\delta$$
 (2-41)

为了数值计算的方便,光谱形状也应该离散化,于是又可以得到:

$$\rho_1 = \frac{1}{M} \sum_{m=1}^{M} r_1(m) \tag{2-42}$$

在这里, $r_1(m)$ 表示 $r_1(\delta)$ 在 $|\delta| \le \frac{\pi}{2\Delta}$ 范围内的离散化的光谱, $M \ge N$  是光谱范围内波长数。需要注意的是式(2-38)-(2-40) 对于所有光栅层均成立,只需将下标 1 换成 j。

理想的激励响应 $h_i(\tau)$ 应该在 $\tau=0$ 时开始,并且在 $\tau\geq0$ 时应该为非零的。如果需要的话,还可以通过切趾技术来减小吉伯斯现象。切趾加窗函数可以用来减小由于有限长的激励响应带来的这种不好的振荡。N 的大小选择需考虑到光栅自身的长度或者失谐光谱范围来保证理想的计算精度。而 M 同时也是激励响应中的分段点数,应该保证大于或等于所分的层数 N。

# 2.6 利用DLP重构算法重构几种光栅结构[68,69]

- (1) 零色散的窄带滤波器
- (a) 高斯反射谱形状

设目标反射谱可表示为 
$$r(\delta\lambda) = \sqrt{R} \exp[-(\frac{\delta\lambda}{\Delta\lambda})^2]$$
 (2-43)

取反射率 R=0.90, 带宽范围  $\Delta \lambda = 1 nm$ , 重构得到的光栅耦合系数分布如图 2-11(a)所示。用此分布通过 DLP 算法模拟得到的光栅光谱和时延谱见图 2-11(b) 及图 2-11(c), 可见其重构结果能够和目标谱很好地吻合。

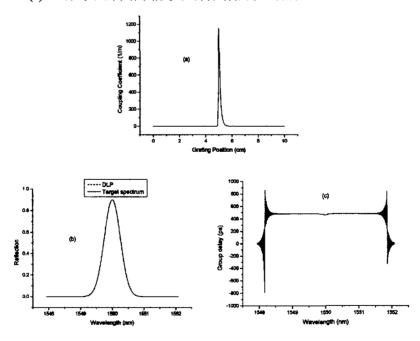



图 2-11 光栅重构结果 (a) 耦合系数分布 (b) 目标谱及光栅模拟反射谱 (c) 时延谱

## (b) 理想方波反射谱形状

目标谱可表示为: 
$$r(\delta\lambda) = \begin{cases} \sqrt{R} & |\delta\lambda| \le \Delta\lambda \\ 0 & |\delta\lambda| > \Delta\lambda \end{cases}$$
 (2-44)

仍取 R=0.90,  $\Delta \lambda = 1$ nm。

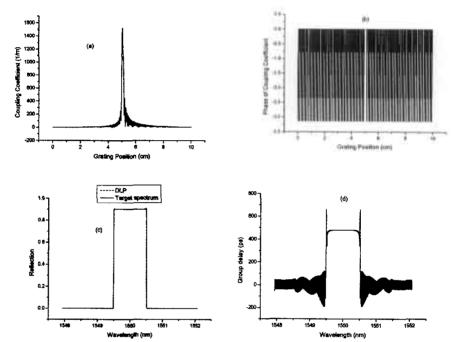



图 2-12 光栅重构结果 (a) 耦合系数分布 (b) 耦合系数相位分布 (c) 目标谱及光栅模拟反射谱 (d) 时延谱

从理想方波反射谱形状的重构结果可知,如果要在实验中实现这种光栅制作,除了调整光栅耦合系数大小的分布变化外,还需要在多处引入π相位跳变。

# (2) 一阶色散补偿光纤光栅的设计

目标谱表示为: 
$$r(\delta\lambda) = \sqrt{R} \exp[-(\frac{\delta\lambda}{\Delta\lambda})^2] \exp[-iD_f L_F(\frac{\delta\lambda}{\lambda})^2 c\pi]$$
 (2-45)

取 R=0.95,  $\Delta \lambda = 0.54$ nm, 光纤中色散量  $D_f = 17$   $ps/km \cdot nm$ ,

由光栅中色散量 
$$D = -\frac{\lambda^2}{2\pi c} \frac{d^2 \varphi}{d\lambda^2} = D_f L_F$$
 可知:

(a) 实现 30km 色散补偿时,L<sub>F</sub>=30km, 光栅长度 L=12cm。

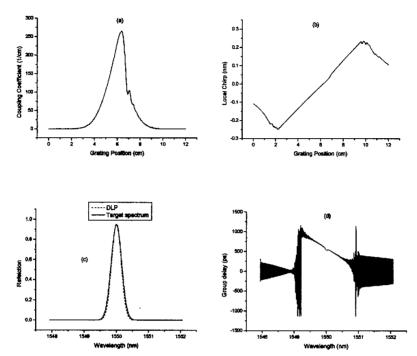
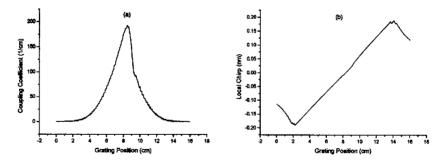




图 2-13 一阶色散补偿光纤光栅重构结果 (a) 耦合系数分布 (b) 相位模板 啁啾分布 (c) 目标谱及光栅模拟反射谱 (d) 时延谱

光栅色散量约为 500.2ps/nm, 能补偿 29.42 公里的普通单模光纤传输系统。

(b) 实现 60 km 色散补偿时,L<sub>F</sub>=60km,光栅长度 L=18cm。



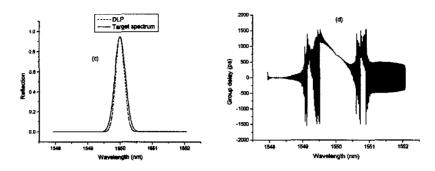



图 2-14 一阶色散补偿光纤光栅重构结果 (a) 耦合系数分布 (b) 相位模板 啁啾分布 (c) 目标谱及光栅模拟反射谱 (d) 时延谱

光栅色散量约为 1004.8ps/nm, 能补偿 59.1 公里的普通单模光纤传输系统。

# (3) 二阶色散补偿光纤光栅设计

目标谱可表示为:  $r(\delta\lambda) = \sqrt{R} \exp[-(\frac{\delta\lambda}{\Delta\lambda})^2] \exp[i\beta_3 L_F (\frac{c^2\delta\lambda}{\lambda^2})^3/3!]$  (2-46) 取 L<sub>F</sub>=100km, L=0.8cm,  $\beta_3 = 0.1 ps^3/km$ ,  $\Delta\lambda = 3.68nm$ .

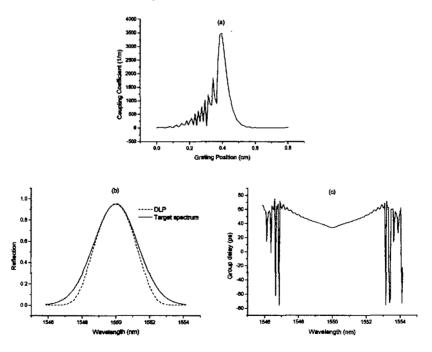



图 2-14 二阶色散补偿光纤光栅重构结果 (a) 耦合系数分布 (b) 目标谱及光栅模拟反射谱 (c) 时延谱

# (4) 取样光纤光栅设计

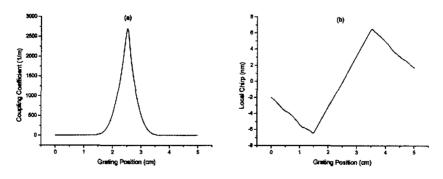
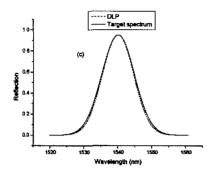




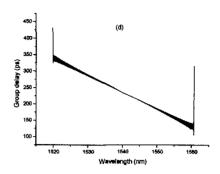
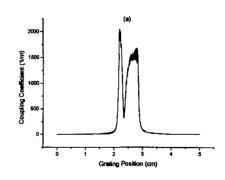

图 2-16 取样光纤光栅重构结果 (a) 耦合系数分布 (b) 局部放大的耦合系数分布 (c) 目标谱及光栅模拟反射谱 (d) 光栅时延谱

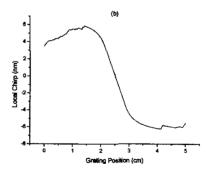
从上面的结果可知,对于多信道光谱的重构,其得到的光栅耦合系数分布也 是分段取样组成的,但一般变化趋势比较复杂,不适于指导实验制作。

# (5) 大啁啾光纤光栅设计







图 2-17 大啁啾光纤光栅重构结果 (a) 耦合系数分布 (b) 相位模板 啁啾分布 (c) 目标谱及光栅模拟反射谱 (d) 时延谱

由重构结果可知大**啁啾光**纤光**栅的**耦合系数分布较平滑,在制作过程中不需要复杂的相移工艺。

### (6) 宽带滤波形状可控的光纤光栅设计

在利用 DLP 重构算法设计滤波形状可控的大啁啾光栅时,其目标谱的形状由所控宽带滤波形状所决定,而关键在于综合考虑滤波器带宽和色散大小来选定反射谱相位项  $\exp[-iD_f L_F (\frac{\delta \lambda}{\lambda})^2 c\pi]$ 中  $L_F$  取值大小。不同的  $L_F$  取值会得到不同的光栅耦合系数及模板啁啾分布。在下面的模拟仿真中,考虑到滤波谱宽约 16nm,取  $L_F$ =0.3km,得到的光栅长度约为 1.5cm,模板线性啁啾系数约为 6.94nm/cm。





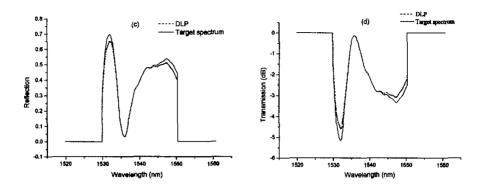



图 2-18 宽带滤波形状可控的光纤光栅重构结果 (a) 耦合系数分布 (b) 相位 模板啁啾分布 (c) 目标谱及光栅模拟反射谱 (d) 目标谱及光栅模拟透射谱

## 2.7 本章小结

在本章中,第一节简述了光纤光栅的工作原理,然后在第二节中给出了光栅的耦合波方程和传输矩阵法的推导。第三节和第四节介绍了光栅分立层剥(DLP) 算法以及利用 DLP 算法模拟仿真了几种常用类型的光纤光栅。第五节中介绍了 DLP 算法可作为光栅的结构重构分析的原理。第六节中给出了使用 DLP 重构算法重构分析出的一些光栅实例,其中重点在于分析重构了宽谱的大啁啾光纤光栅结构,包括宽带滤波形状可控的光纤光栅设计。

## 第三章 基于大啁啾光纤光栅的宽带滤波谱形设计与制作

## 3.1 大啁啾光纤光栅的特性分析

布拉格光纤光栅按照其周期随光栅长度方向变化大小可分为均匀光栅、小啁啾光栅以及大啁啾光栅。均匀光栅的啁啾系数为零,这种光栅多用于单波长或单信道的滤波;小啁啾光栅其啁啾系数一般小于 1nm/cm,多用于光通信系统的色散补偿;而目前日益新起的是对于大啁啾光纤光栅的研究,其啁啾系数一般大于 1nm/cm,带宽较大,改变了传统的光栅只针对某个波长窄带滤波的特点,可用于宽带滤波器的设计,放大器的增益平坦以及光栅传感等方面[70]。

大啁啾光纤光栅的反射波长 2 可以表示成:

$$\lambda = 2 * n_{eff} * (\Lambda_0 + Cg_1 z) - L/2 \le z \le L/2$$
 (3-1)

其中 $n_{ef}$ 为光纤有效折射率大小, $\Lambda_0$ 为光栅零坐标处周期,L为光栅总长度, $Cg_1$ 为光栅啁啾系数(为模板啁啾系数一半),z是相对应的光栅中的反射位置。

由(3-1)可知: 大啁啾光纤光栅的总带宽大小可表示为;

$$\Delta \lambda = 2 * n_{eff} * Cg_1 * L \tag{3-2}$$

通常来说,大啁啾光纤光栅的带宽均大于 10nm。考虑到不同的光纤类型,可以选择合适的模板啁啾系数和光栅写入长度来得到所需大小的滤波带宽。

由于大啁啾光纤光栅的周期可表示为:

$$\Lambda(z) = \Lambda_0 \left( 1 + \frac{Cg_1}{\Lambda_0} z \right) \tag{3-3}$$

耦合波方程中的相移项可表示为:

$$B(z) = 2\beta - \frac{2\pi}{\Lambda_0} \left(1 - \frac{Cg_1}{\Lambda_0}z\right)$$
 (3-4)

$$\delta\beta = \beta - \beta_0 \tag{3-5}$$

$$\beta_0 = \frac{2\pi}{\lambda_0} \tag{3-6}$$

上式中 $\delta\beta$ 为传播常数的失谐量, $\lambda_0$ 为光栅中心波长。在相速度同步或静态相位近似条件下,假设只有周期与波长匹配的一段光栅参与反射,则对某一失谐量  $\delta\beta$ ,只有 B(z)=0 时的光栅参与反射,则对应失谐量的时间延迟为:

$$\tau_{g}(\delta\beta) = \frac{2n_{0}}{c} \left(\frac{L}{2} - z\right) \tag{3-7}$$

由 $\omega = c\beta$ ,可得大啁啾光栅的色散D为:

$$D = \frac{d\tau_g}{d\lambda} = -\frac{2\pi n_0 c}{\lambda_0^2} \frac{d\tau_g}{d\omega} = \frac{1}{cCg_1}$$
 (3-8)

由式(3-8)可知,大啁啾光纤光栅的色散量仅与光栅啁啾系数有关。当大啁啾光栅的啁啾系数为 1nm/cm 时,其色散量约为 33ps/nm。一般来说,大啁啾光纤光栅的啁啾系数均大于 1nm/cm,所以其色散量一般是很小的,大约为几个 ps/nm或几十个 ps/nm。这样当大啁啾光纤光栅用于宽度滤波或放大器增益平坦时,在不考虑很多数目级连的情况下,其引入的色散量可以忽略不计。

下面由光栅的传输矩阵法算法模拟给出一种等耦合系数分布的大啁啾光纤光栅的设计。

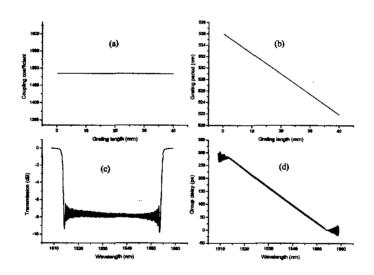



图 3-1 大啁啾光纤光栅的设计 (a) 耦合系数分布 (b) 光栅周期分布 (c) 透射谱 (d) 时延谱

从图 3-1(c)中可以看出大啁啾光栅的滤波带宽约为 40nm。由于光栅两端没有进行切趾,所以光谱两边振荡较厉害,但是在相同耦合系数条件下光栅带宽以内各个波长的反射率基本上是相等的。

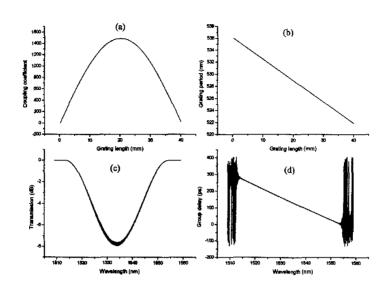



图 3-2 切趾处理的大啁啾光纤光栅的设计 (a) 耦合系数分布 (b) 光栅周期分布 (c) 透射谱 (d) 时延谱

从图 3-2(c)中可以看出大啁啾光纤光栅经过升余弦切趾后,它的中心反射率没有较大变化,改变的只是其它波长处的反射率。另外波长反射率大小是和相对应处的光栅耦合系数大小成单调变化的,于是就可以通过建立反射率和耦合系数大小的关系来分析得到在已知某个反射率情况下所需耦合系数的大小。对于啁啾量较大的光栅而言,在相同光栅长度下,它的带宽会比小啁啾量的光栅宽许多。而且由于在大啁啾条件下,光栅里各个不同波长的反射率是由在光栅长度方向上不同位置区域的耦合强度所决定的。对于每个特定波长,存在一个等效有用长度这个概念,超过这个有用长度作用范围的其它地方的耦合效率对这个特定波长的反射率贡献就非常小。对于大啁啾量的光栅来说,通常这个有用长度会远小于制作的整个光栅长度。而均匀光栅或小啁啾量光栅的波长反射率是由与光栅整个制作长度可比拟的一段折射率调制强度分布所决定。从下面图 3-3 中可以看到,当折射率调制范围大于一定长度时,某处波长的反射率大小已不再随调制范围的增大而增加,而是趋于一个稳定值。

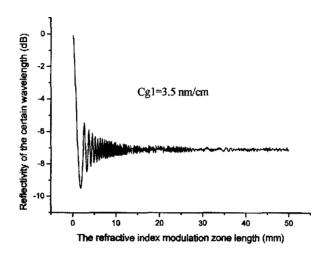



图3-3 在啁啾系数不变的条件下某处波长反射率 与折射率调制分布范围的关系

于是大啁啾光纤光栅可以被看成由很多短的、连续的小光栅共同组成。每个小光栅都有其各自的中心波长和相应的调制折射率区域。每个小光栅中心波长处的反射率主要是由位于与其相对应的区域内的折射率调制所提供,超过这个特定区域的折射率调制对这个特定的中心波长反射率贡献就非常小了。其相应折射率调制所在位置可以根据公式(3-1)得到。

针对大啁啾系数的特性,还可以讨论在光栅不同位置处这些小光栅的反射率和耦合系数间的关系。选取了光栅长度上分别位于三个不同坐标位置处的相同长度的小光栅,即最前端的小光栅,中间位置处的小光栅以及最后端的小光栅来对比这种关系。如图3-4中所示。

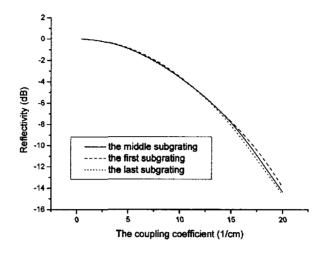



图3-4 三个不同位置处小光栅的反射率与耦合系数间的关系

由上图可发现无论这些小光栅处于什么位置,这种关系基本上都是保持不变的。由于这些小光栅中除了中心波长不同之外,反射率大小随调制折射率变化的特性都非常相似,可以通过分析其中的一个小光栅的特性,然后把它应用到其它小光栅及其它反射波长处。对某一个频率下不同耦合系数对反射率的影响的分析来类比推出其它频率下影响的规律,这既是本章设计滤波谱形可控算法的建立基础,也是光栅制作工艺的直接反映。

在同一光栅长度和耦合系数大小,不同的啁啾量条件下,大啁啾光纤 光栅的反射带宽及波长反射率大小均有很大的差别,如图 3-5 中所示。

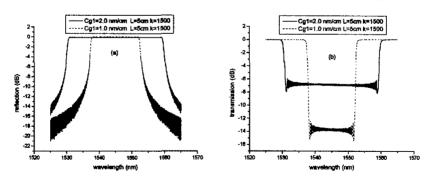
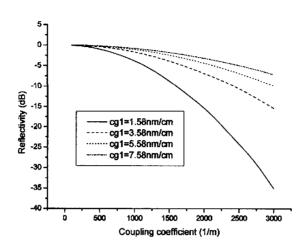




图 3-5 不同啁啾量下光栅谱图 (a) 反射谱 (b) 透射谱 另外啁啾量的不同,光栅波长反射率随耦合系数的变化规律都是有很



大区别的,图 3-6 中比较了几种啁啾量下的这种规律变化:

图 3-6 不同啁啾量下光栅波长反射率随耦合系数的变化规律

从上图中可以看到光栅的啁啾量越大,为了得到相同的光栅反射率所需要的耦合系数就会越大。由于在制作光纤光栅过程中受曝光条件及光纤光敏性的影响,引入的光纤折射率大小变化是存在最大值的,所以对于要写入较高的光栅反射率,在选择模板啁啾系数时需考虑到波长反射率随耦合系数的变化规律。

# 3.2 基于大啁啾光纤光栅的宽带滤波谱设计原理

### 3.2.1 插值查询法设计原理[71]

在上面研究过大啁啾特性的光纤光栅的诸多性质后,就可以进行相应滤波谱形的宽度滤波器的设计。文献<sup>[72]</sup>提到了同时进行色散补偿和滤波谱形设计的啁啾光栅设计。但是为了实现色散补偿,所使用的模板啁啾量很小,并且为了满足宽带宽需要,需要制作很长的光栅。对于大啁啾光栅而言,在本论文中提出的插值查询法设计原理的思路是先找到一个特定波长处的反射率随耦合系数的变化趋势,再把这个变化规律推广到光栅谱宽范围内任一波长上。由于光栅中心波长处反射率的变化较为直接,容易通过实验或是计算获取,通常取光栅中心波长来总结在啁啾系数确定条件下耦合系数的变化带来的波长反射率改变的规律。在得到这种关系后,就可以通过需要得到的滤波谱形曲线上任一波长处的反射率大小

反向查询得到所需耦合系数的大小,从而得到在整个光栅制作长度上的需要的耦合系数分布,制作出其传输谱形状和所需曲线一样的光栅滤波器。一般来说在寻找某个特定大啁啾系数条件下的光栅反射率与耦合系数的关系时,不可能得到每一个耦合系数条件下反射率的值,这样既加大运算复杂性又不可能在实际制作过程中实现,因此当需要的反射率的值和计算或实验中得到的一些值不相同时,由于前面提到过的这种关系的单调性,可以采用一些插值处理的方法,如下图所示:

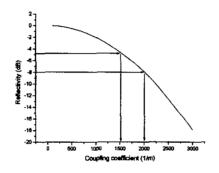



图 3-7 利用插值法查询反射率和耦合系数的关系

使用插值算法可以在保证一定精度的条件下大大缩短实验过程中的工作量。在下面给出按照以上设计思路计算模拟的结果。

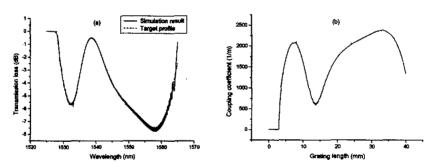



图 3-8 设计结果 (a) 模拟得到的滤波器谱图 (b) 耦合系数的分布

通常来说要找到某个波长处反射率和耦合系数的关系需要前期进行大量的准备工作,在每次改变耦合系数的条件下写入多个光栅,记录下其波长反射率的一系列值,然后根据这些值拟合得到在这种大啁啾系数下波长反射率和耦合系数的对应关系。相应的设计思路和流程已经在申请的专利<sup>[73]</sup>中有详细的叙述。

但是由于上述方法的建立需要进行大量的前期实验,使得成本升高,效率降低。而下面介绍一种基于光栅分立层剥(DLP)算法的新方法,它能够迅速地找到波长反射率合耦合系数的对应关系,其前提是只需要先行写入一个已知特定耦合系数分布形状的光栅。

### 3.2.2 利用光栅分立层剥构造算法设计可控滤波谱形状的原理[74]

大多数光纤光栅的应用要依赖于光栅的传输函数设计,也就是如何决定光 栅中沿光栅长度方向的周期和耦合强度分布[75]。简单的方法有傅立叶变化的分 析方法,它是利用滤波响应和光栅耦合系数间存在近似的傅立叶变换关系[76]。 这种方法也可称作一级的波恩近似。但由于它只考虑到介质间的一次反射, 所以 对设计高反射率的光栅有其局限性。其它方法还包括遗传算法[77]、逆向层剥算 法和 Gelfand-Levitan-Marchenko (GLM)迭代算法[78]等。利用这些算法设计制作出 的光栅已经验证了这些算法的可行性。但是以上提到的算法多只用于均匀光栅或 者小嘚啾系数的光栅的设计。其分析结果通常是唯一的,包括模板啁啾系数大小 的确定,耦合系数的分布以及光栅所需制作的总长度等。但是在实际的光栅制作 中, 计算得到的模板啁啾系数或长度通常和已拥有的模板参数不相匹配, 而且有 时计算得到的光栅耦合系数的分布比较复杂,很难从实际的制作过程中实现。这 时就需要一种能够结合实际光栅制作的实用算法。在本节里提出了一种基于分立 层剥算法(DLP)的新算法,它在已知模板大啁啾系数条件下,通过先行构造或制 作一种线性耦合系数分布的宽带滤波器,然后根据计算或实验结果和需要设计的 光谱形状相比较来得到所需要的光栅耦合系数的分布或实验中所需采用的制作 条件。采用这种方法的特点是总结利用了大啁啾光纤光栅自身的特性,大大地提 高了光栅的写入过程效率和减小了实验偏差。

当光栅长度和啁啾系数给定时,可以先由下面的式子来构造一种已知耦合系数分布的光栅结构,通过 DLP 算法(具体见第二章介绍)得到这种光栅的传输谱。

$$q(z) = |q(z)|e^{i\phi(z)} \tag{3-9}$$

其中: 
$$|q(z)| = z/L^* |q(z)|_{\text{max}}$$
 (3-10)

$$\phi(z) = -2 * \pi * cg_1 * ((z - L/2)/\Lambda_0)^2$$
(3-11)

在这里 |q(z)| 是耦合系数的强度分布,而其相位分布为 $\phi(z)$ 。下面给出模拟结果:

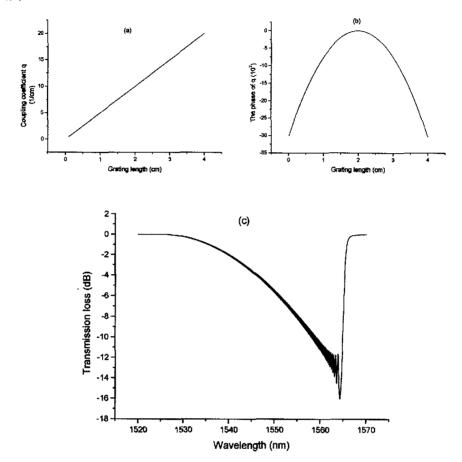
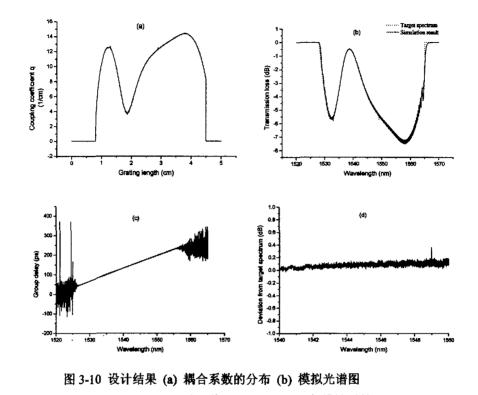




图 3-9 模拟结果 (a) 线性耦合系数分布 (b) 耦合系数的相位分布 (c) 光栅传输谱图

由前面提到过的大啁啾光栅的特性,即耦合系数和波长反射率大小的关系与对应波长或光栅位置基本无关,可以先将需要设计的光谱形状按波长分段,依次通过在图 3-9(c)中查询每个波长处的反射率对应的位置,然后在图 3-9(a)中找到所需耦合系数的大小。下面给出利用这种方法实现的设计结果,可以看出采用这种新方法设计出的大啁啾光栅传输谱形状能够和所需设计的谱形很好地吻合。



(c) 时延谱 (d) 局部设计误差

# 3.3 基于大啁啾光纤光栅的宽带滤波谱实验分析

#### 3.3.1 相位模板扫描法介绍及简单均匀光纤光栅的制作

### (1) 实验装置图[79]

在实验制作系统中,激光器选用的是 Tuilaser 公司的 Braggstar 准分子脉冲式激光器,其紫外波长为 248nm,光斑面积为 6mm\*2mm,光场能量在光斑水平和垂直方向均为超高斯型,脉冲的峰值能量为 19mJ/cm²。在光栅制作过程中,精密平移台移到每个特定位置之后光阑才打开,紫外激光通过平移台上的反射镜,经过垂直方向的透镜聚焦,形成垂直方向长度与光纤包层直径可比的曝光光斑,而其水平方向长度由光澜的狭缝宽度所决定,尽量选取靠近光斑中心均匀部分。

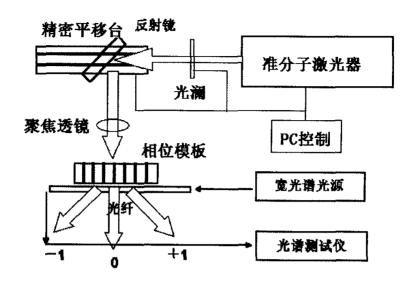



图 3-11 相位模板扫描法装置图

紫外激光垂直入射到相位模板上,在相位模板后面形成周期性干涉条纹,在 紧贴相位模板背面的光纤中写入光栅。经过一段时间的照射,达到所需折射率调 制强度,光阑关闭,然后平移台移到下一个所需曝光位置,重复刚才的动作,最 终制作成所需设计类型的光纤光栅。在这套装置中,平移台、光阑等均由计算机 相连,进行统一控制。

#### (2) 均匀光纤光栅制作

制作中使用的光纤为加氢的普通单模光纤(SMF-28)。载氢条件为常温 20 天, 120 个大气压。采用分段扫描的制作方法,步进间距 0.24mm,光栅长度 24mm,相位模板中心周期 1.071um。激光器能量保持 12.4mJ,在光栅长度方向上均匀曝光,每段曝光数目 100 下。其制作得到的均匀光栅反射及透射谱图如下所示:

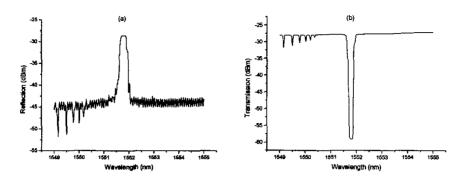



图 3-12 均匀光栅制作谱图 (a) 反射谱 (b) 透射谱

在光纤中,因为包层/空气和芯层/包层两个界面的作用,包层波导内含有数目众多的包层模。当光在光纤光栅中传播时,在中心波长短波方向的导波模受到光栅矢量的调制,耦合到了一系列的包层模中,其能量在包层中经过短距离传递,被高折射率的有机物外皮所耗散,造成光栅透射谱在短波方向上的众多损耗峰,如图 3-12(b)中所示。这就是短波损耗效应。加深光栅折射率调制,会使短波损耗变大。

### (3) 均匀切趾光纤光栅制作

首先给出采用高斯轮廓切趾的均匀光纤光栅的仿真结果。仿真条件中光栅长度 25mm, 折射率调制强度 4\*10<sup>-4</sup>, 其光栅折射率直流调制分布见图 3-13(a)。

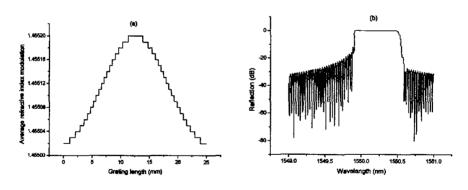



图 3-13 仿真条件及结果 (a) 折射率分布 (b) 反射谱

从图 3-13(b)中可见在短波长处反射谱曲线较为不光滑,其原因在于由于折射率调制的直流分量不均匀,造成反射波长的重叠,在短波长一边形成了法布里一珀罗(Fabry-Perot)干涉效应,在实验中也观察到了这个现象。实验中采用的曝

光脉冲分布为:

Pulse number=
$$100*exp(-G*((z-length/2)/length)^2)$$
 (3-12)

其中 z 为分段扫描时光栅位置坐标, length 为光栅长度 24mm, G=10。其余条件与制作均匀光栅时相似。得到的光栅制作谱图如图 3-14 所示。

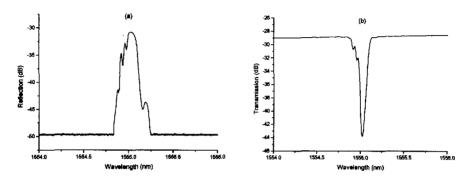



图 3-14 切趾均匀光栅制作谱图 (a) 反射谱 (b) 透射谱

由于高斯曝光切趾会带来折射率调制直流分量不均匀,所以需要进行直流部分补偿,可以通过取下相位模板对光栅进行再一次曝光来修正折射率调制直流分量的不均匀性,实现恒定切趾(DC-Apodization)。其仿真效果见图 3-15(a)及图 3-15(b)所示。

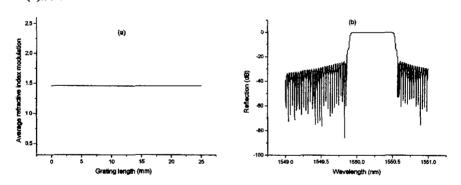



图 3-15 仿真条件及结果 (a) 折射率分布 (b) 反射谱

从图 3-15(b)中可以看到采用曝光补偿的方法已经基本消除法布里一珀罗干涉效应带来的影响。这也从相应的实验制作中得到了验证。



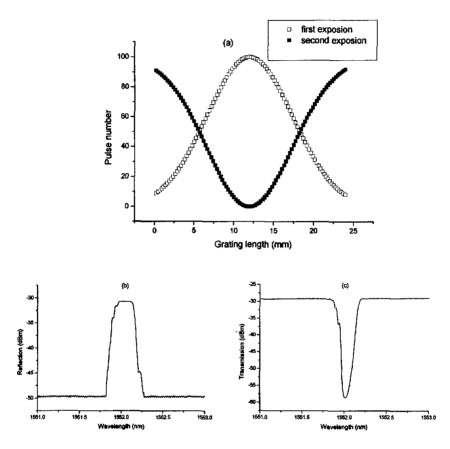



图 3-16 制作条件及结果 (a) 两次曝光法中脉冲分布 (b) 均匀光栅反射谱 (c) 均匀光栅透射谱

### 3.3.2 带通、带阻宽带滤波器设计及制作[80]

图 3-17 给出的是紫外曝光光源采用氫离子倍频连续激光器,相位模板啁啾系数为 5.2nm/cm 时的带阻滤波器实验制作结果。其中光栅长度 2.64cm,采取相位模板扫描法每段均匀等量曝光,得到带宽约 20nm,反射率大于 10dB 的带阻滤波器。

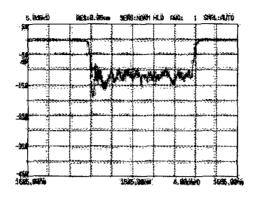



图 3-17 宽带带阻滤波器透射谱

另外还设计制作了特定带阻(通)形状滤波器,见图 3-18 及图 3-19 所示。

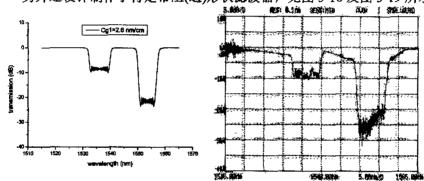
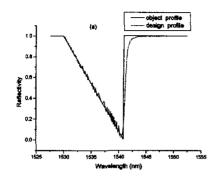




图 3-18 设计特定带阻(通)形状滤波谱 图 3-19 制作出的光栅滤波谱

由于使用了 Fibercore 公司的光敏光纤并经过加氢处理,其折射率变化对紫外曝光量的微小改变都非常敏感。而氩离子倍频激光器的出射光斑较小,经透镜聚焦后和光纤的包层直径可比拟,对光路调节提出了很高的要求,因此制作得到的谱形不平滑,抖动较大。

## 3.3.3 线性形状透过率分布的宽度滤波器设计及制作[81]

采用分立层剥算法模拟了线性形状透过率分布的光栅传输谱,如图 3-20(a) 所示。光栅长度为 2.2cm,相位模板的啁啾量为 3.5nm/cm,光纤的有效折射率取 1.456。可以看到模拟设计结果和所需得到的滤波形状非常一致。图 3-20(b)中给出了相应的沿光栅长度方向的折射率调制大小分布。



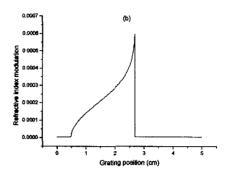



图 3-20 设计结果 (a) 目标及设计的线性滤波谱形状 (b) 折射率分布

光栅制作过程中将出射光斑通过相位模板形成干涉条纹映射到加拿大魁北克 Lasiris 公司生产的 PS-RMS50 型光敏光纤上。这种单模光纤的纤芯和包层均对紫外光敏感。通过有效抑制包层模,使传输损耗减至最小。该光纤在1275/1650nm 下工作,其模场直径和数值孔径可以使接续损耗降至普通光纤水平,而且 PS-RMS50 不需要氢气加载。

在曝光过程中,需要保证在光纤长度方向上合适的紫外曝光量。当曝光量变化时,有效折射率大小也会相应发生变化。对于脉冲紫外光源来说,光纤上某一处的曝光量变化可以采用变化曝光脉冲个数的方法来实现。一般来说当每次曝光脉冲能量不变时,光纤中由紫外曝光引入的折射率变化是随曝光脉冲个数单调变化的。为了得到所需要的折射率调制分布,可以把它转化成沿光纤长度方向的紫外曝光脉冲个数的分布。

由于紫外光源出射光斑为 6mm\*2mm, 光强呈高斯形分布, 在实验中用光澜取其中光强较均匀的 2mm\*2mm, 然后在竖直方向通过透镜聚焦。由于采用的是逐段扫描方法, 选取的步进距离为 0.2mm。也就是说为了制作长为 2.4cm 的光栅, 需要将其沿长度方向分为 120 段来逐段控制其曝光强度, 在光纤某段处所得到的总的曝光脉冲个数应该是其相邻 10 段运动过程中曝光脉冲个数之和。这样做的优势在于很大程度上能够平滑折射率调制分布, 节约光源能量, 减少制作时间。采用相位模板扫描法, 通过前期的工艺条件准备工作结合前一节中提到的差值查询法, 控制好每段上的曝光量就可以制作得到所需谱形的光栅器件。

在图 3-21 中形象地给出了实验的原理<sup>[82]</sup>,采用的相位模板啁啾量为 3.5nm/cm,最后的制作结果在图 3-22 中给出。可以看到其反射率随波长的变化

#### 大致成线性关系。



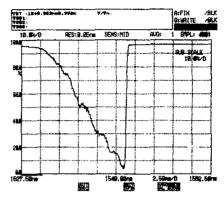



图 3-21 制作原理示意图

图 3-22 制作得到的滤波器透射谱图

西北核技术研究所曾提出需要我们帮忙制作用于动态应变传感方向的线性 透过率分布的宽带滤波器,其谱宽范围为 10nm 左右。由于所需要的宽带滤波器 中心波长为 1555nm,而实验室拥有的大啁啾模板的中心波长不合适(1535nm), 但在论文工作中还是完成了满足其它相应指标的滤波器谱形设计。

#### 3.3.4 大啁啾模板下的实验曝光条件特性

(1) 曝光光斑大小一致时,采取不同曝光点数分布 图 3-23 中给出了分段扫描法中曝光点数沿光栅长度方向的分布情况。

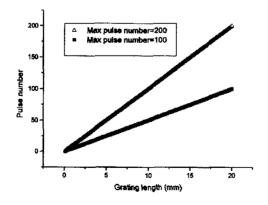



图 3-23 不同曝光点数分布

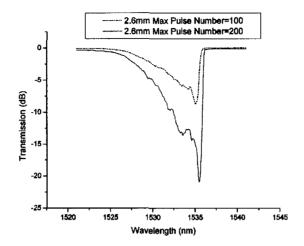



图 3-24 相应制作光栅透射谱图

从图 3-24 中可知在曝光光斑大小一致条件下,改变曝光分布会得到不同的 光栅透射谱形,也就是得到不同的波长反射率与曝光条件的关系。

#### (2) 曝光光斑大小与曝光点数之积一致

调节曝光光斑大小使得两次曝光条件下,在光栅每个所需曝光段上曝光光斑 与曝光点数之积一致。其得到的相应光栅透射谱图如下。

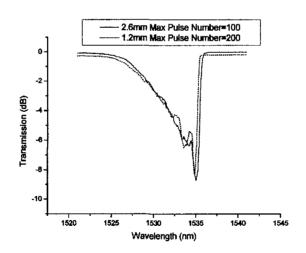



图 3-25 相应制作光栅透射谱图

从上图中可以知道当光栅曝光段上曝光光斑大小与曝光点数之积一致时,

所对应波长处的反射率大小也近似一致。所以通过单独改变曝光光斑的大小也能够改变光栅中不同的波长与对应反射率大小的关系。

#### 3.3.5 设计制作一定谱宽及反射率形状的滤波器

### (1) 设计制作一定谱宽及反射率形状的单凹陷滤波器

由 3.2.2 节中论述可知,为了实现一定谱宽及反射率形状的滤波器设计,首先需要依照所选模板大啁啾系数大小设计制作出按照某种特定脉冲曝光分布的光栅传输谱形。在这里模板啁啾系数仍为 3.5nm/cm,模板长度 12mm,因此可知在此大啁啾模板条件下能得到的光栅最大谱宽约为 12.2nm。选取图 3-26 中光斑宽度 2.6mm,最大曝光个数 100 下的实验条件下制作得到的光栅传输谱形作为在此啁啾系数下波长反射率与曝光脉冲数目的关系曲线。

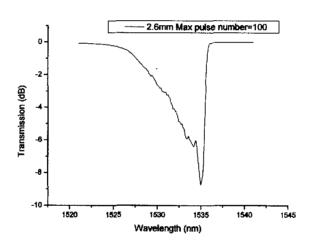



图 3-26 制作得到的滤波器透射谱图

在已知了波长反射率与曝光脉冲数目的关系曲线条件下,为了方便激光器曝光脉冲计数,选取了特定谱宽及反射率形状的单凹陷滤波目标谱,其所需脉冲分布如图 3-27 所示。

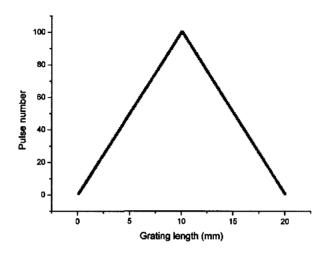



图 3-27 曝光脉冲沿光栅长度分布

下图中给出了制作得到的滤波器透射谱形与预期谱形的比较。其中预期谱形是由图 3-27 中采用的曝光脉冲分布于已知其分布与反射率大小关系曲线(图 3-26)中查询得到。实验过程中 Braggstar 激光器利用其自身的能量监测及反馈功能保证每次出射脉冲能量相等。实验中使用的光谱分析仪为 ADVANTEST Q8384型,其采用的分辨率为 0.01nm。实验及分析结果表明,采用 3.2.2 节中提到的这种宽谱滤波形状设计方法能够很好的设计制作出所需一定谱宽及反射率的单凹陷滤波器。其最大误差存在于低反射率波长范围处,约为 1dB。分析原因可能在于两次制作夹放光纤时所施加应力不同造成应力释放的效果也不同,而这种应力释放效果的不同对于曝光脉冲较少、反射率要求较低处的影响更为明显。

又如在设计一定谱宽的滤波器谱形时,其可设计带宽由模板的啁啾系数及长度共同决定。实际上在前面提到的基于 DLP 算法的构造方法适用范围很广,如果有更多合适的模板,则可以灵活方便地实现满足各种需要的器件设计和制作。

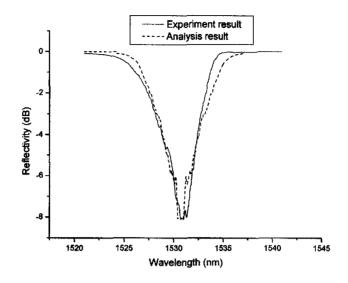



图 3-28 制作得到的滤波器透射谱形与预期谱形

# (2) 设计制作一定谱宽及反射率形状的双峰滤波器

另外还设计制作了一定反射率形状的双峰滤波器。其所需脉冲分布如图 3-29 所示。

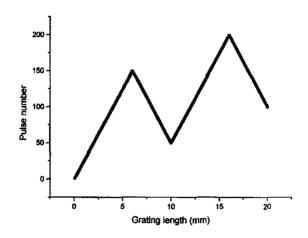



图 3-29 曝光脉冲沿光栅长度分布

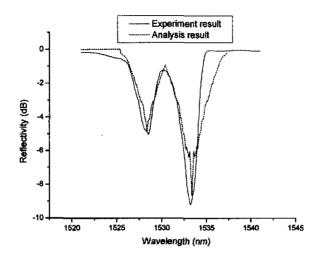



图 3-30 制作得到的滤波器诱射谱形与预期谱形

在图 3-30 中给出了制作得到的滤波器透射谱形与预期谱形的比较。在这里 预期谱形是由选取图 3-25 中光斑宽度 1.2mm,最大曝光个数 200 下的实验条件 下得到的曝光分布与波长反射率关系结合图 3-29 中曝光脉冲分布分析得到。发现最大误差仍发生在反射率要求较低处。减小此误差的方法可以通过改善实验条件,包括提高实验装置的稳定性、加强紫外激光曝光强度的一致性等条件上。

## 3.4 本章小结

在本章中主要讨论了基于大啁啾光纤光栅的宽带滤波谱设计。第一节中介绍了大啁啾光纤光栅的特性分析。第二节中分别讨论了宽带滤波谱的插值查询法设计原理和利用光栅分立层剥构造算法设计原理。第三节中介绍了基于大啁啾光纤光栅的宽带滤波谱实验分析,其中包括相位模板扫描法实验装置介绍及简单均匀光纤光栅的制作实验。实验结果表明采用分立层剥构造算法的设计原理能够方便、迅速、较准确地设计制作出所需一定滤波形状的大啁啾光纤光栅器件。

## 第四章 多信道功率均衡滤波器制作

4.1 采用大啁啾相位模板实现多信道滤波的光纤光栅设计及制作

#### 4.1.1 背景介绍

为了形成多信道滤波谱形,需要光栅制作时覆盖宽的滤波带宽。如果使用 均匀相位模板幅度取样的制作方法,只能采用很小的占空比。由于光栅取样周期 内很大部分没有得到紫外曝光,所以在保证一定信道反射率大小的前提下,对光 栅上的折射率调制强度提出了很高的要求。而前面提到的采用相位取样模板的方 法虽然能够大大降低折射率调制要求,但是相位取样模板本身制造困难,价格昂 贵,并且在实际制作中需要对折射率调制进行一定程度上的优化工作<sup>[83]</sup>。但是 当采用大啁啾相位模板时,由于其模板本身就能够提供较宽的滤波带宽,这时如 果能再结合折射率调制幅度取样设计就能够很好的实现多信道滤波机制。

#### 4.1.2 设计原理

基于大啁啾相位模板制作多信道滤波器的思想是由陈向飞等人最先提出的 <sup>[84]</sup>,但是缺乏对其产生机理的物理形象描述。在本文中提出幅度取样大啁啾光 栅可被视为一系列的中心波长不同的均匀光栅的级联。每个取样反射的中心波长 差满足下式:

$$\Delta \lambda = \lambda_k - \lambda_{k-1} = 2n_{\text{eff}} Cg_1 sp \tag{4-1}$$

其中 sp 是取样周期。另外大啁啾幅度取样的光栅对于每个信道可以看成以其为中心波长的一个均匀取样展开,即满足信道间隔:

$$\Delta v = \frac{c}{2n_{\text{eff}}sp} \tag{4-2}$$

$$\Delta v = \frac{-c\Delta\lambda}{\lambda^2} \tag{4-3}$$

其中, c 是光在真空中传播速度, λ为该信道处波长。化简上式可以得到:

$$Cg_1 = -\left(\frac{\lambda}{2n_{\text{eff}}sp}\right)^2 \tag{4-4}$$

如果忽略信道波长差异带来的啁啾系数差异,则对于取样大啁啾光栅,满足形成多信道条件的啁啾系数主要与取样周期相关,而取样周期又与所需信道间隔有关。因此对于相应信道间隔的多信道滤波器设计,其所需相位模板的大啁啾系数也是唯一确定的。

#### 4.1.3 基于大啁啾条件下的多信道滤波器的制作

由于相位模板啁啾系数 Cg1=3.5nm/cm,由式(4-4)可知,在此啁啾系数下要形成多信道滤波机制,其取样周期 sp 只能取 1.2mm。下面给出实验得到的光栅反射谱形和透射谱形,其信道间隔约为 0.6nm,制作过程中采取每段相同的曝光数目 1000 下。

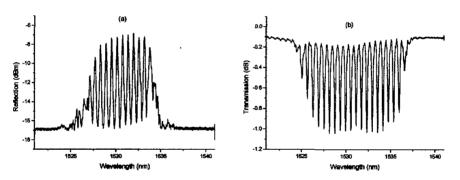
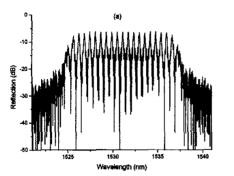




图 4-1 光欄制作谱图 (a) 反射谱 (b) 透射谱

同时可以通过模拟仿真来对比实验结果,其仿真条件为取样周期 sp=1.2mm,折射率调制强度大小  $\Delta n=1*10^4$ ,相位模板啁啾系数  $Cg_1=3.5nm/cm$ ,光栅长度 Length=24mm,占空比 duty cycle=0.5。



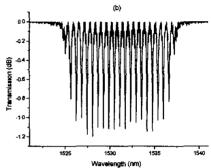
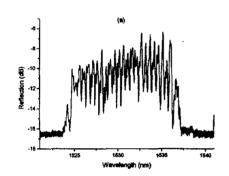




图 4-2 光栅模拟谱图 (a) 反射谱 (b) 透射谱

当在实验中为了保证约 0.8nm 的信道间隔而选取常用的取样周期间隔 sp=1mm 时,在其它实验条件不变的条件下,制作得到的光栅反射谱形和透射谱形如下所示:



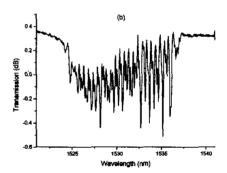



图 4-3 光栅制作谱图 (a) 反射谱 (b) 透射谱

可以从上面图上发现当取样周期变化时,在已经确定的模板啁啾系数下已经无法形成多信道滤波机制,从而验证了式(4-4)的正确性。另外模拟仿真也给出了实验中类似的结果。仿真条件中取样周期 sp=1mm,其余同图 4-2(a)及图 4-2(b)中所用参数。

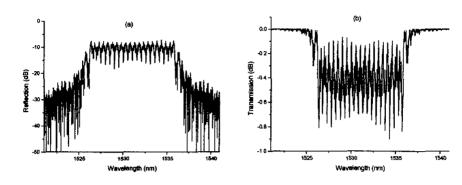



图 4-4 光栅模拟谱图 (a) 反射谱 (b) 透射谱

### 4.1.4 高平坦度多信道滤波器设计原理

下面首先给出一个基于大啁啾模板的多信道滤波器设计例子。

设计条件中采用的光栅长度 L=50mm, 取样周期 sp=1.025mm, 占空比 duty cycle=0.5, 由式(4-4)可知所需啁啾系数 Cg1=2.74nm/cm。

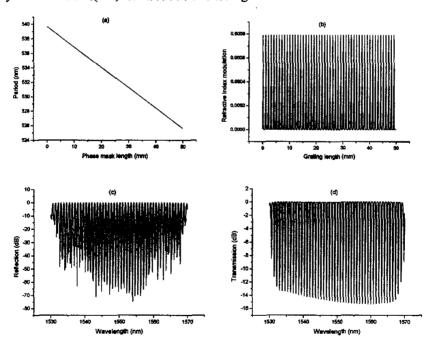
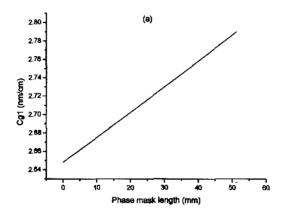




图 4-5 设计条件及结果 (a) 大啁啾模板周期分布 (b) 折射率调制分布 (c) 反射谱形 (d) 透射谱形

图 4-5(b)中给出了光栅上折射率调制分布,每个取样内采用高斯切趾形式。

由于忽略了信道波长差异带来的啁啾系数差异,因此从上图光栅透射谱中可以看到,在相同强度折射率调制下,其各个信道的反射率有一定的差别。原因在于宽的带宽范围内信道波长间的差异,从而使远离中心波长处的谐振关系得不到满足。为了使每个信道处都能满足公式(4-4)中的关系,可以采用以下两个办法;

(1) 使用特殊的非线性啁啾模板,而保持取样间隔不变,如图 4-6(a)中所示。相应的光栅模拟反射及透射谱见图 4-6(b)及图 4-6(c)。



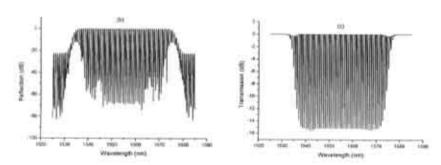



图 4-6 设计条件及结果 (a) 啁啾系数沿相位模板长度方向分布 (b) 反射谱 (c) 透射谱

(2) 采用变取样间隔,而保持模板线性啁啾系数不变,如图 4-7(a)中所示。相应的光栅模拟反射及透射谱见图 4-7(b)及图 4-7(c)。

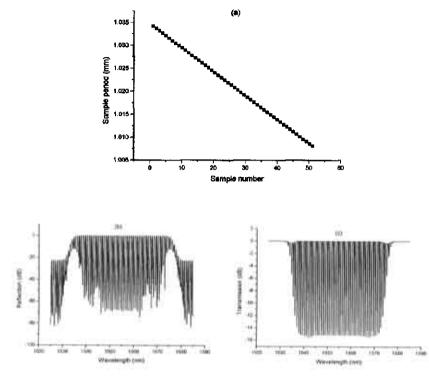
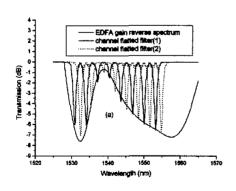
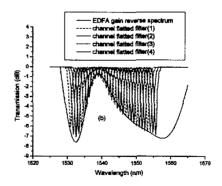



图 4-7 设计条件及结果 (a) 取样周期大小分布 (b) 反射谱 (c) 透射谱

#### 4.1.5 讨论

大啁啾光纤光栅可以被看成由很多短的,连续的小光栅共同组成。每个小光栅都有其各自的中心波长和相应的调制折射率区域,其区域所在位置可以根据公式(3-1)得到。每个小光栅中心波长处的反射率主要是由位于与其相对应的区域内的折射率调制所提供,超过这个特定区域的折射率调制对这个特定的中心波长反射率贡献就非常小了。在每个小光栅处谐振条件都能得到满足的条件下,每个信道的反射率大小随调制折射率变化的特性都非常相似。为了实现在宽带宽范围内每个信道的谐振条件都能得到满足,分别提出了采用非线性啁啾系数相位模板、不变取样周期以及变取样周期、不变啁啾系数的两种不同解决方法。采用方法(1)的好处是制作工艺方便,但难点是设计制作非线性啁啾系数分布的相位模板。采用方法(2)的好处是如果受实验室条件限制,能利用现拥有的线性啁啾相


位模板条件,但会造成信道间隔间的微小差别。


### 4.2 采用大啁啾相位模板实现多信道功率均衡器的制作新方法

#### 4.2.1 背景介绍

在光通信系统及网络中,由于密集波分复用(DWDM)技术的应用,在宽带宽内使用多个信道,而各个信道由于传播途径、色散、非线性、放大等因素不同会出现功率谱上的波动。这样就需要一种专门针对某种信道包络均衡的滤波器来实现信道间的功率平坦。但是常用的取样光栅设计方法都是基于均匀相位模板或者小啁啾相位模板,从它们中间产生的也只能是符合某种特定形状(如 Sinc 函数)的频谱响应。通常采用的方法是针对每个信道制作得到相应中心波长处的所需反射率大小的均匀光纤光栅,然后将这些中心波长和反射率不一致的光纤光栅级连起来。如 M.Rochette 等人[85]提到在放大器增益平坦过程中采用 8 个中心波长及反射率不同的均匀光栅级连起来的方案。所使用的窄带光纤光栅的中心波长恰在WDM 系统中的信道波长上,反射率从 13%到 100%不等,最终得到波动在 0.1dB 左右的 EDFA 的平坦增益谱。但是采取这种方案的缺点在于信道数目很多时,级连的光栅数目会很多,最后级连得到的光栅长度会很长,制作过程和最后封装的复杂度都很大。

如果考虑到在整个 EDFA 放大带宽内针对每个信道单独平坦这个方案。可以利用大啁啾光栅特性仿真计算出下面的结果,它在制作上只需要将两个或者四个这种多信道光栅级连起来便可以得到更多信道的平坦。





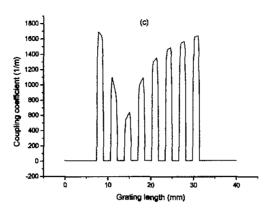



图 4-8 设计条件及结果 (a) 16 个信道的平坦滤波器 (b) 32 个信道的平坦滤波器 (c) 其中一个光栅耦合系数分布

上面设计中之所以无法使用一个大啁啾光栅一次形成多信道滤波谱的原因在于当模板大啁啾系数一定时,每个信道的滤波反射率大小写入只是由相应位置处折射率调制范围得到。当需要反射率较高时,由于有效的折射率强度调制范围很小,必须有很高的耦合系数要求。也就是说上面的设计只是建立在用一块大啁啾模板在不同位置写入相应中心波长和反射率的光栅,可等效看成一系列光栅的级连。另外当信道数较多时,就很难控制相邻两处小光栅写入的折射率调制区域和谱形不发生重叠。

对于基于大啁啾模板设计的取样光棚而言,有其自身独特的一些性质。在下面一节中针对大啁啾光栅的折射率调制强度分布特性,结合大啁啾条件下设计多信道滤波器的经验,提出了一种取样折射率包络调制的设计方法,制作得到了相应滤波形状的多信道滤波器。这种独特的设计制作方法关键在于将大啁啾光栅的独特折射率调制强度分布特性和大啁啾条件下设计多信道滤波器的原理两者有机的结合,大大地提高了取样光纤光栅的应用范围。

#### 4.2.2 设计原理

由前面提到的大啁啾光栅特性可知,对于取样大啁啾光栅形成的每个信道存在一个各自相对应的等效折射率贡献区域,其长度为光栅取样量级。如果改变这个区域内折射率调制的大小,也只会对其相应的信道反射率大小有影响。所以可

以通过针对信道滤波包络谱形来设计光栅中每个取样范围内折射率调制的大小分布,从而可以在形成多信道的同时得到特定的宽带取样包络分布的谱形。

取样大啁啾光纤光栅的折射率调制轮廓 $\delta n(z)$ 为:

$$\delta n(z) = S(z) \cdot \Delta n \cdot f_A(z) \cdot e^{-2j\beta_B(z)z}$$
(4-5)

上式中 S(z)为取样函数, $\Delta n$  为折射率调制强度幅度, $f_A(z)$ 为切趾函数,其不同与常用均匀取样光纤光栅的地方在于光栅的传播常数  $\beta_B(z)$  是沿光栅长度方向变化的。因此在其它设计条件不变的情况下,改变折射率调制沿光栅长度方向的分布就可以设计得到一定形状的多信道滤波包络谱形。图 4-9 中给出了某种折射率调制强度沿光栅长度方向上的分布,图 4-10 中则给出了利用此种分布模拟得到的多信道滤波器的传输谱形。可以看到在整个光栅宽的带宽范围内不仅能形成间隔一定的多个信道,而且各个信道的反射率大小受到某种包络形状的调制。如果改变取样过程中光栅上折射率调制分布则可以得到不同的多信道包络调制谱形。

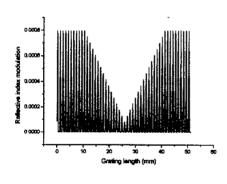



图 4-9 折射率调制分布

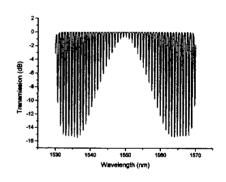



图 4-10 光栅透射谱图

#### 4.2.3 实验结果

由于受实验室条件限制,只有一块啁啾系数为 3.5nm/cm 的相位模板可用。依据前面提到的形成取样大啁啾光栅的条件,在啁啾系数固定的条件下,只能选择固定的 1.2mm 的取样周期,从而只能得到约为 0.6nm 间隔的多信道滤波器。虽然和通常密集波分复用系统中 0.8nm 信道间隔有差异,但是主要的基于折射率调制分布设计思想还是完全可以得到验证。

光栅制作过程中采用 KrF 准分子脉冲激光器光源, 其紫外波长为 248nm, 将

出射光斑通过相位模板形成干涉条纹映射到 SMF28 普通单模加氢光纤上。在曝光过程中,需要保证在光纤长度方向上合适的紫外曝光量。当曝光量变化时,有效折射率大小也会相应发生变化。对于脉冲紫外光源来说,光纤上某一处的曝光量变化可以采用变化曝光脉冲个数的方法来实现。所以为了得到所需要的折射率调制分布,可以把它转化成沿光纤长度方向的紫外曝光脉冲个数的分布。

下面是实验中按照不同曝光脉冲分布制作得到的三个取样大啁啾光栅反射率形状。第一个光栅是采用均匀曝光脉冲分布制作得到的,其多信道反射谱形中每个信道的反射率也基本一致;而第二个光栅中是采用特定形状的曝光脉冲分布得到的,其多信道反射谱形中每个信道的反射率也随曝光脉冲的变化而变化;第三个光栅是在第二个光栅基础上增加每个取样的曝光点数得到的,发现每个信道的反射率均比第二个光栅中有所增加。实验结果表明可以通过控制每个取样的曝光脉冲个数从而起到调整相应信道处的反射率大小的作用。

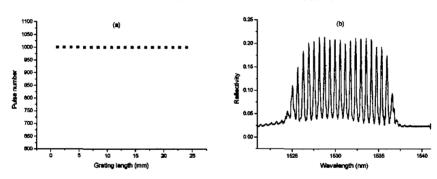



图 4-11 制作条件及结果 (a) 光栅上脉冲个数分布 (b) 光栅反射率

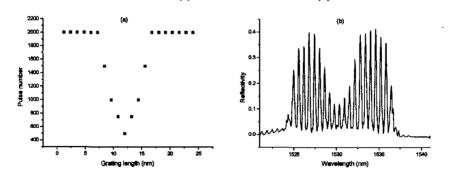



图 4-12 制作条件及结果 (a) 光栅上脉冲个数分布 (b) 光栅反射率

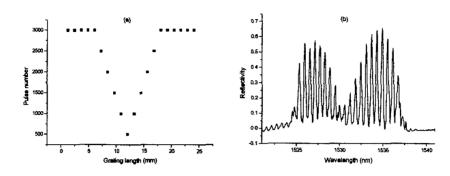



图 4-13 制作条件及结果 (a) 光栅上脉冲个数分布 (b) 光栅反射率 下面给出根据实验参数进行的仿真验证,可以发现仿真结果和实验结果能 够很好的吻合。

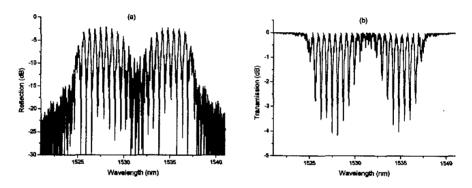



图 4-14 光栅模拟谱图 (a) 反射谱 (b) 透射谱

### 4.2.4 讨论

由于采用这种方法能设计的信道数目是由光栅长度上取样段数所决定的。如图 4-11、图 4-12 及图 4-13 所示,当制作的光栅长度约为 24mm,取样间隔为 1.2mm 时,其取样段数为 20 段,因此相应信道数目也为 20。当模板啁啾系数较大或者光栅制作长度较长时,能够拥有更大的取样段数,可得到更宽带宽内的信道包络滤波。另外由于改变某个局部区域内折射率调制的强度大小,也只会对其相应的信道反射率大小有影响,所以可以通过紫外修整的方法来使制作得到的光栅谱形更精确地和所需要的宽带取样包络分布谱形相吻合。

### 4.3 本章小结

在本章中主要讨论了基于大啁啾光纤光栅的多信道功率均衡滤波器的设计 及制作。第一节中分析了采用大啁啾相位模板来实现多信道滤波的光纤光栅设 计及制作原理。针对宽谱范围内信道反射率的不平坦性,分别提出了采用非线性 啁啾系数相位模板、不变取样周期以及变取样周期、不变啁啾系数的两种不同的 可行解决方案。第二节中提出了一种设计制作宽带信道均衡用的滤波器的新方 法。新方法关键是在于将大啁啾折射率调制特性和取样大啁啾条件下设计多信道 滤波器的两者关系有机结合起来。最后在实验中采用大啁啾相位模板和脉冲紫外 光源,在普通单模加氢光纤上制作得到了这种可用于信道均衡的取样大啁啾光纤 光栅滤波器。

# 第五章 新型大啁啾光栅结构分析

## 5.1 逐段大啁啾光栅

一般来说线性啁啾光栅的周期大小是随着光栅长度单调线性变化的,如图 5-1 所示。但是当不同中心波长的均匀小光栅级连成一定长度的光栅时,它也能够表现出同线性啁啾光栅一样的特性。在这里整个光栅被分成很多小段,每段小光栅内的周期是相同的,但是不同段内的周期是不同的。

Uniform period



Chirped bandwidth Al

图 5-1 均匀光栅、连续啁啾光栅及逐段啁啾光栅示意图

下面简单给出连续光栅和逐段啁啾光栅的表达式:

连续光栅表达式: 
$$\Lambda(z) = \Lambda_0 + Cg_1 z$$
  $(z \le L_g)$  (5-1)

逐段啁啾光栅表达式: 
$$\Lambda_N = \Lambda_0 + Cg_1\delta_N \qquad (\delta_{N-1} \le z < \delta_{N+1})$$
 (5-2)

大啁啾光栅写入时所需模板的啁啾量都在几个 nm/cm 之上,而采用逐段啁啾的方法来设计大啁啾光栅所需模板在工艺上更容易实现。那么如何设计逐段光栅来近似等效连续线性大啁啾光栅的一些特性呢?在这里,根据所需设计光栅关心的重点提出三种可以判决的标准,下面一一加以论述:

## (1) 从光栅带宽上来判决[86]

设每段均匀小光栅的长度  $\delta$  都是相同的,则由耦合模理论给出的均匀光纤光栅的解析解表达式为:

$$\rho = \frac{-\kappa_{ac} \sinh(\alpha \delta l)}{\delta \sinh(\alpha \delta l) - i\alpha \cosh(\alpha \delta l)}$$
(5-3)

其中
$$\alpha = \sqrt{\left|\kappa_{ac}\right|^2 - \delta^2}$$
,  $\delta = \kappa_{dc} + \Delta\beta - \frac{1}{2} \frac{d\phi(z)}{dz}$  (5-4)

光栅带宽可以看成中心波长两边第一个反射率取极小值时的频谱宽,即令(5-3) 中

$$\alpha \delta l = \sqrt{\kappa_{\alpha c}^2 - \delta^2} \delta l = i\pi \quad \mathbf{E} \Xi f: \quad \delta = 1/\delta l \sqrt{\kappa_{\alpha c}^2 \delta^2 + \pi^2}$$
 (5-5)

只考虑耦合系数的交流分量,则 $\kappa_{dc}=0$ ,均匀光栅中 $d\phi/dz=0$ 

故由(5-4)知:  $\delta = \Delta \beta$  然后代入到(5-5)中

$$\Delta \beta \mathcal{A} = \sqrt{\kappa_{ac}^2 \mathcal{A}^2 + \pi^2} \tag{5-6}$$

又由  $\Delta \beta$  的定义可知:

$$\Delta \beta = \frac{2\pi n_{\text{eff}} (\lambda_B - \lambda)}{\lambda \lambda_B} \approx \frac{\pi n_{\text{eff}} \delta \lambda}{\lambda_B^2}$$
 (5-7)

且有 $\lambda_B = 2\Lambda_e n_{eff}$ ,

故最后得到的光栅带宽为:

$$\delta \lambda = \frac{\lambda_B^2}{\pi n_{\text{eff}} \, \delta l} \sqrt{(\kappa_{\infty} \delta l)^2 + \pi^2} \tag{5-8}$$

一般而言,  $\kappa_{ac} \approx 10^3$ ,  $\delta l = 10^{-4}$  m, 所以

考虑
$$(\kappa_{\alpha c} \delta l)^2 << \pi^2$$
的情况,又由 $\delta l = L_g / N$ 可得:  $\frac{N}{L} = \frac{n_{eff} \delta \lambda}{\lambda^2}$  (5-9)

设定这样的一个判据,就是当每个小光栅的带宽都大于等于整个大啁啾光 栅的总带宽时,逐段大啁啾光栅和连续大啁啾光栅的特性可以看成是近似一样 的。

 $\mathfrak{R} \delta \lambda = \Delta \lambda_{chirp}$ 

对于大啁啾光栅来说,有  $\Delta \lambda_{chip} = 2 * n_{eff} * cg_1 * L_g$ ,则

$$N = \frac{2 * n_{eff}^2 * cg_1 * L_g^2}{\lambda_B^2}$$
 (5-10)

比如对于中心波长为 1550nm 的光栅, 当线性啁啾系数  $Cg_I=2nm/cm$ , 光栅长度 L=3cm 时, 光栅总带宽约为 14.6nm, 此时  $N\approx315$ 。

下面给出连续大啁啾光栅,逐段大啁啾光栅 N=50, N=100, N=315 情况时的光栅透射谱及时延曲线的比较。

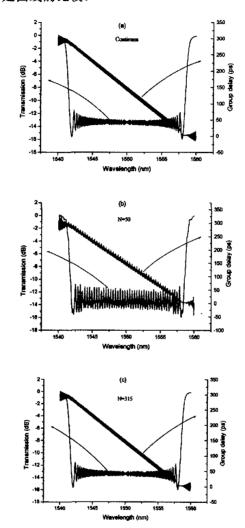



图 5-2 几种大啁啾光栅透射及时延谱 (a) 连续 (b) 分段(N=50)(c) 分段(N=315)

可以发现只有当 N=315 时,逐段大啁啾光栅才能够比较好的近似于连续大啁啾的光栅。

# (2) 根据时延抖动幅度来判决[87]

另外还可以采取通过比较时延谱上时延抖动大小的标准来确定所需采用分

段的段数。一般可以取波长范围内最大时延量的百分比定为时延抖动大小的偏移 极限,超过这个极限则认为在光栅长度方向上所分段数数目还不够多。

下面针对上例中的光栅参数,考虑所取百分比为 3%,即针对 5cm 长的光栅 允许时延抖动在 15ps 左右,可以得到当 N=150 时光栅的时延抖动偏移满足所设 标准。如下图所示:

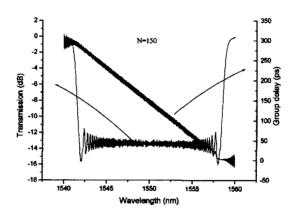



图 5-3 逐段大啁啾光栅(N=150)的透射及时延谱

#### (3) 从相应波长处的反射率大小变化来判决

还有一种判别标准是选定一个特定波长,比较分段数目不同时它的反射率大小改变。设反射率偏离极限为 0.05dB, 取光栅带宽内中心波长处反射率变化来评定,则有当 N=255 时满足设定要求。其透射谱与时延谱见下图;

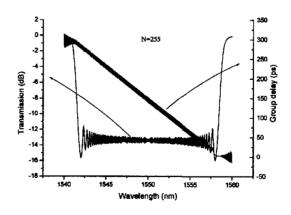
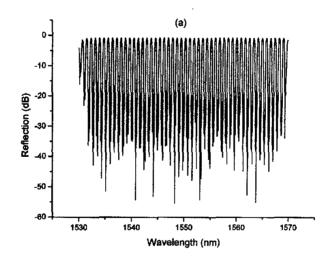
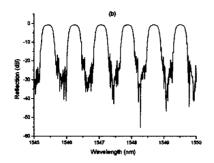



图 5-4 逐段大啁啾光栅(N=255)的透射及时延谱


### (4) 三种判据结果的简单比较分析


可以看到当每段均匀小光栅的带宽大于或等于整个光栅带宽时,其时延曲线和谱特性都能够较好的近似于连续大啁啾光栅。但是如果以时延抖动偏移量为判据,由于和所选能容忍的百分比标准相关,如果容忍度选取较松,则所需段数会比带宽要求的段数少。从波长反射率谱特性得到的标准也有相同的问题,它必须根据合适的容忍度来设计选择所需级连的均匀小光栅的数目。

## 5.2 利用逐段大啁啾光栅设计多信道滤波器

利用逐段大啁啾光栅的特性结合取样光纤光栅的设计思路可以在宽带宽范围内设计得到适合高速光纤通信系统中应用的多信道滤波器。

光栅设计参数为: 光栅啁啾系数  $Cg_1$ =2.74nm/cm, 光栅长度 L=5cm, 光纤有效折射率  $n_{eff}$ =1.455, 占空比 duty cycle=0.5, 取样周期 sp=1.025mm, 采用升余弦切趾函数, 逐段啁啾光栅的段数 N=150。下面是设计得到的光栅反射及时延谱图:





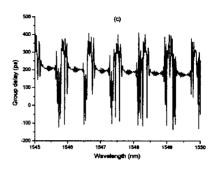



图 5-5 基于逐段大啁啾光栅的多信道滤波器设计结果

(a) 反射谱 (b) 放大的反射谱 (c) 时延谱

从上面图中可以看出所设计的多信道滤波器反射谱中,光栅总带宽达到40nm,每相邻两信道的间隔为0.8nm,各信道的边模抑制比都在20dB以上且色散量均很小。对比前面的设计原则可以发现,当利用逐段啁啾光栅来设计多信道滤波器时,逐段啁啾光栅在段数选择上并不需要使每段小均匀光栅的带宽覆盖整个啁啾光栅的总带宽,只需要大于相邻数个小光栅长度上的带宽即可,因为针对大啁啾特性,特定波长处的干涉区域只限于周围数个小光栅的长度。同时取样的设计还会带来干涉效果,从而大大减小了折射率调制的强度。

# 5.3 光栅周期分布上取样的新型大啁啾光纤光栅的设计

光纤光栅已经在光波分复用系统中得到了很广泛的应用<sup>[88]</sup>,但是高信道数目的光栅器件还是比较难以制作得到。一种可行的方法是在均匀光栅紫外写入时加上一个周期性调制的强度模板,从而可以在光谱上产生等频率间隔的多信道峰<sup>[89]</sup>。当这种方法用于小啁啾光栅写入过程中时,就可以得到多信道补偿的色散补偿光栅。在起初多数采用的是简单二进制的取样函数和小的占空比,接着为了得到更高质量的光栅反射和时延谱形,复杂函数如 Sinc 函数也逐渐被采用。一个22.5 厘米长的 Sinc 函数取样色散补偿光栅已经在 200 公里 4 信道 10 Gb/s 的传输中得到了使用<sup>[90]</sup>。

但是对于信道数增多的情况而言,二进制矩形和 Sinc 函数的强度调制都是 非常低效的方法,因为它们的占空比都很低,在光栅的大多数地方都没有紫外写 入。最近有人提出了在这些没有写入的地方写入一系列的针对各自信道的强度调 制图案,它们在相位上的关系是间插复用的,可以通过相位调制模板写入实现。这样得到的多信道相位取样的光栅在得到相同的反射率前提下只需要与信道数目平方根成正比的折射率调制强度,而不是象普通强度调制光栅那样需要与信道数成正比的折射率调制强度。另外相位取样得到的多信道反射谱及时延特性在每个信道中都几乎是一样的[91]。

前面提到了强度取样调制和相位取样调制的多信道光栅的设计和应用,那么如果考虑在光栅周期分布上采用取样方式会产生何种效果和应用呢?在这节中分析和设计了一种可用于系统色散补偿的新型周期分布取样的光纤光栅(PSBG),这种光栅在宽的光谱范围内拥有多个信道,并且每个信道的带宽和色散特性都各不相同。

### 5.3.1 在折射率调制强度上进行取样的光纤光栅设计及实验

## (1) 强度调制取样光纤光栅原理[92,93]

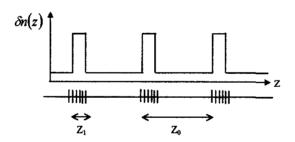



图 5-6 取样光纤光栅示意图 (简单二进制取样)

如图 5-6 所示,取样光纤光栅引入了新的折射率周期性调制。以简单二进制取样函数为例,取样周期为  $z_0$ ,在此周期内,有效的光栅段为  $z_1$ ,其它的  $z_0-z_1$ 段中没有光栅,为空白段。取样函数的周期大约为 1mm,对应 0.8nm 的信道间隔。取样光纤光栅的折射率调制轮廓  $\delta n(z)$ 为:

$$\delta n(z) = S(z) \cdot \Delta n \cdot f_A(z) \cdot e^{-2j\beta_B z}$$
 (5-11)

上式中S(z)为取样函数, $\Delta n$ 为折射率调制强度幅度, $f_A(z)$ 为切趾函数, $\beta_B$ 为 光栅的传播常数。对取样函数作傅立叶展开:

$$S(z) = \sum_{n=0}^{+\infty} C_S(n) e^{-2\beta \beta_S nz}$$
 (5-12)

$$\beta_{\rm S} = \frac{\pi}{z_0} \tag{5-13}$$

则取样光纤光栅的耦合系数 κ 。可以表示为:

$$\kappa_S = \kappa_0 \sum_{n=-\infty}^{+\infty} C_S(n) e^{-2j(n\beta_S + \beta_B)x}$$
(5-14)

上式中 $\kappa_0$  为未作取样时的耦合系数。注意指数项 $(n\beta_S + \beta_B)$ ,当n = 0 时,对应的耦合结构就是未作取样时的情况,而当 $n = \pm 1, \pm 2, \pm 3$  … 时,产生了新的耦合结构,对应新的工作信道,这些信道具有如下特点:

1,信道间隔相同。各信道与中心信道差  $\beta_s$  的整数倍,近邻信道之间间隔都是  $\beta_s$ ,只与取样周期相关,1mm 的取样周期大约对应 0.8nm 的信道间隔,0.5mm 的取样周期对应 1.6nm 的取样间隔。 当  $z_0 >> \lambda_n$  时,反射谱中第 n 个信道的波长  $\lambda_n$  为:

$$\lambda_n = \lambda_0 \pm n \cdot \Delta \lambda \tag{5-15}$$

$$\Delta \lambda = \frac{\lambda_0^2}{2n_{eff}z_0} \tag{5-16}$$

上式中 $\lambda_0$ 为未作取样时光栅的波长,也是作了取样后光栅的中心信道波长。 $\Delta\lambda$ 是信道间隔。

2, 各信道的耦合系数与取样函数在该信道对应的傅立叶系数成正比。例如对第n个信道,耦合系数 $\kappa_n$ 为:

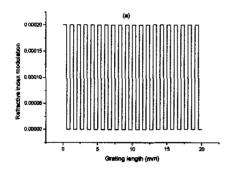
$$\kappa_n = 2\kappa_0 C_S(n) \tag{5-17}$$

系数 2 是由于系数±n都对应于第n个信道。

3,各信道的时延与色散特性相同。光栅的色散特性只与 $\beta_B$ 相关,而与 $\beta_S$ 无关,因此,各信道的色散特性都与未作取样时的光栅相同,且各信道色散特性也相同。取样并不影响每个信道的色散特性。

常用的二进制取样函数 S(z)为:

$$S(z) = \begin{cases} 1 & 0 < z < z_1 \\ 0 & z_1 < z < z_0 \end{cases}$$
 (5-18)


$$S(z + nZ_0) = S(z) \tag{5-19}$$

其特点是光栅中每一个周期内有效段写入了光栅, 而空白段没有写入光栅, 其示意图如图 5-6 所示。

(2) 强度调制光纤光栅的切趾

在第二章中已经提过,对单信道光纤光栅而言,作折射率渐变的切趾处理是

提高反射谱抑制比,平滑时延谱波纹的不可或缺的手段。同样,对取样光栅而言,切趾也是非常重要的。图 5-7(a)和图 5-8(a)给出了未做切趾和做切趾处理后的折射率调制轮廓分布。



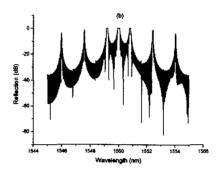
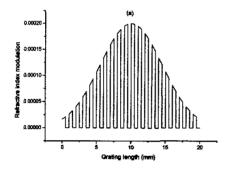




图 5-7 未做切趾的取样光栅设计 (a) 折射率调制轮廓分布 (b)反射谱



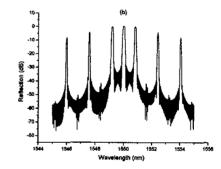
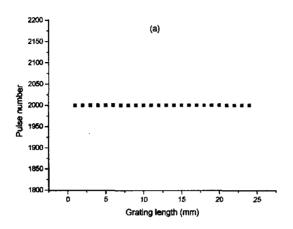




图 5-8 切趾处理的取样光栅设计 (a) 折射率调制轮廓分布 (b) 反射谱 比较图 5-7(b)和图 5-8(b)可知,切趾对取样光栅同样是非常重要的,可以提高信道间抑制比,尤其是对整个取样包络进行切趾能对每个信道的滤波形状起很大的改善。

### (3) 实验结果

### 1, 均匀取样光栅实验

在实验制作中,选取取样间隔 sp=1mm,光澜狭缝大小约为 0.3mm,则信道数目约为: 1mm/0.3mm\*2-1≈6 个。另外控制光栅长度上脉冲分布如图 5-9(a)所示,能够起到等效控制折射率强度调制的作用。制作得到的取样光栅谱图见如图 5-9(b)及图 5-9(c)。



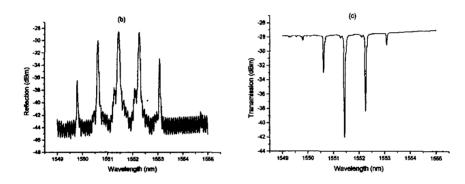
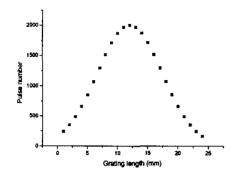



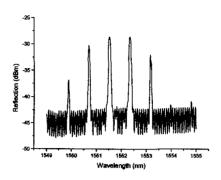
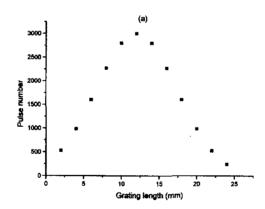

图 5-9 实验条件及结果 (a) 采用的脉冲分布 (b) 制作光栅反射谱 (c) 制作光栅透射谱

从上图可见没有经过切趾处理的取样光栅反射谱边模抑制比较低,影响其作 为滤波特性的使用。

### 2, 切趾取样光纤光栅实验

在实验制作中,选取取样间隔 sp=1mm,光襕狭缝大小约为 0.3mm,则信道数目约为: 1mm/0.3mm\*2-1≈6 个。控制光栅长度上脉冲分布能够起到等效控制折射率强度调制的切趾作用,其具体分布情况如图 5-10,制作得到的取样光栅反射谱图如图 5-11。



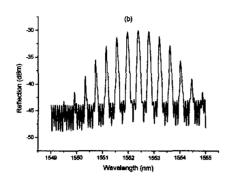


图 5-10 实验中光栅长度上脉冲分布

图 5-11 制作光栅反射谱

另外在实验制作中,当取样间隔 sp=2mm,光澜狭缝大小约为 0.3mm 时,则信道数目约为: 2mm/0.3mm\*2-1≈13。切趾时脉冲分布为高斯形,即:

Pulse number= $3000*exp(-G*((z-length/2)/length)^2)$  (5-20) 其中 G=10,length 为光栅总长度,z 为光栅长度方向上取样位置坐标。实验中 采用的脉冲分布如图 5-12(a)所示,其制作得到的光栅反射及透射谱图见图 5-12(b) 及图 5-12(c)。





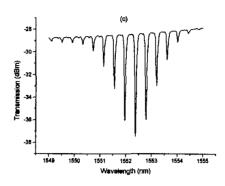
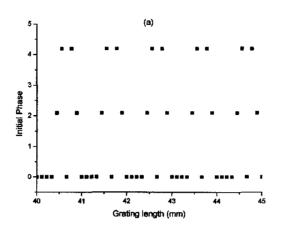
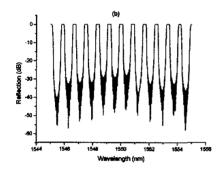



图 5-12 实验条件及结果 (a) 采用的脉冲分布 (b) 制作光栅反射谱 (c) 制作光栅透射谱


从上面切趾取样光栅的反射和透射谱图中可见,经过切趾处理的取样光栅 反射谱边模抑制都较高,其各个信道的滤波谱形也较平滑。


## 5.3.2 在相位上进行取样的光纤光栅设计[91]

由于可以将取样周期 sp 分成 N=m²等份,每一段的长度为  $\Delta z = sp/m²$ ,每一段的初始相位为  $(\phi_0,\phi_1,...\phi_{N-1})$ 。这 m²段小光栅可以看成是 m 组,每组 m 个间距为 sp/m 的一系列小光栅间插构成。每组小光栅都会产生间隔为  $c/(2n_0sp/m)=m\Delta v$  的多信道图案。而当第 k 组的相位由  $\phi_{k,j}=2njk/m$   $0\leq j,k\leq m-1$  决定时(j 是 k 组内小光栅序号),这样 k 组内各个小光栅间相位有  $\Delta \phi=2nk/m$  的线性增长。于是由 k 组小光栅产生的多信道均会平移  $k\Delta v$ ,从而 k=0,1,...m-1 组使得原来间隔  $m\Delta v$  的地方间插形成  $\Delta v$  的多信道图案,这就是相位取样的原理。下面给出一系列的相位取样光纤光栅设计的仿真模拟结果:

#### 1,9信道相位取样光栅设计

光栅啁啾系数  $Cg_1=1$ nm/cm, 折射率调制  $3.3*10^4$ , 高斯切趾函数中 G=10, 取样周期 sp=1mm, 光栅长度 L=10cm, 其每取样段相位分布见图 5-13(a), 模拟得到的光栅反射及透射谱如图 5-13(b)及 5-13(c)。





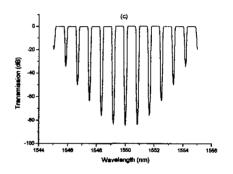
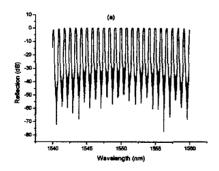
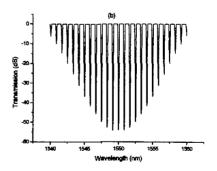





图 5-13 相位取样光栅设计 (a) 初始取样相位分布 (b) 模拟反射谱 (c) 模拟透射谱

# 2,16 信道色散补偿用的相位取样光栅设计





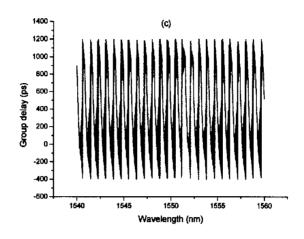



图 5-14 相位取样光栅谱图 (a) 模拟反射谱 (b) 模拟透射谱 (c) 模拟时延谱

### 5.3.3 在光栅周期分布上进行取样设计的原理[94]

对于大啁啾光栅而言,在光栅长度固定的条件下,光栅的啁啾系数越大,光栅的反射带宽越大,而相应的色散量会变小。因为在小啁啾情况下不同波长的光在光栅中的反射位置不一样,因此有些波长的光反射很快而有些波长的光直到传播到光栅内部很远处才反射回来。但是对于大啁啾光栅,一定波长范围内的光在光栅的反射位置都非常接近,从而表现出只有几个或者十几个 ps/nm 的色散量。

但是当光栅的周期在光栅长度方向上以一定距离重复变化时,不仅可以得到 多信道的光谱,而且发现每个信道内有不同的带宽和色散量。光栅长度方向上的 周期分布可以表示为:

$$\Lambda_0(z) = \Lambda_0 - Cg_1 z \qquad (|z| \le sp/2) \tag{5-21}$$

$$\Lambda(z) = \Lambda_0(z - nsp) \qquad (sp/2 < |z| \le l/2) \qquad (n = ... -2, -1, 0, 1, 2...) \qquad (5-22)$$

 $Cg_1$ 是光栅线性啁啾系数,sp 是取样周期的长度,z 是以光栅中心为零点的坐标位置,I 是光栅的长度, $\Lambda_0$ 是光栅中心处的周期, $\Lambda_0$ (z) 是光栅中心范围内的一段周期分布, $\Lambda(z)$ 是光栅其余位置的周期分布。其它的一些结构参数还包括平均折射率分布  $n_{\rm eff}$  和折射率调制强度幅度  $\Delta n$ 。光栅采用升余弦函数切趾。 在表 5-1 中给出这些参数的相应取值,在图 5-15 中给出了相应的光栅周期和折射

率调制强度的分布,可以通过光栅的矩阵传输算法模拟得到这种光栅的反射谱和时延谱,如图 5-16 中所示。

表 5-1 PSBG 参数

| l (mm) | sp (mm) | Cg1 (nm/cm) | n <sub>eff</sub> | Δn                 | $\Lambda_0$ (nm) |
|--------|---------|-------------|------------------|--------------------|------------------|
| 102.5  | 1.025   | -15         | 1.45             | 1*10 <sup>-3</sup> | 536.207          |

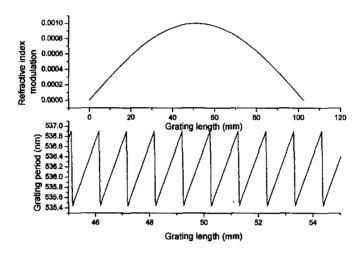



图 5-15 光栅长度方向上的折射率调制强度及周期分布

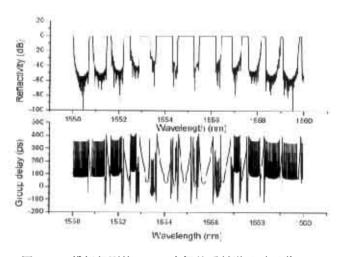



图 5-16 模拟得到的 PSBG 光栅的反射谱及时延谱

从文献<sup>[95]</sup>中可知如果在强度取样光栅的取样周期中又引入啁啾(CSP),则可以得到一种信道带宽随信道离光栅中心波长距离变化的多信道光栅结构。它里面每个信道的啁啾量随信道级数成傅立叶级数变化。从上图中可以看到,周期取样的光栅的光谱又有很大的不同。它的信道带宽随信道离光栅中心波长距离越远反而越窄而且色散量也越来越大。如在中心信道,它的带宽约为 0.7nm,色散量几乎为零。而在±2 级信道处,它们都有较窄的约为 0.3nm 的带宽,而且信道内几乎是线性的时延特性。色散量大约为 1214.9ps/nm 而且随着信道级次的正负而色散符号也完全相反。

如果改变取样周期的重复长度 sp,可以得到不同间距的信道间隔,就象采用强度取样调制一样。比如当 sp=1.025mm 时,可以得到 0.8nm 的信道间隔;而 当 sp=0.512mm 时,可以得到 1.6nm 的信道间隔。

#### 5.3.4 PSBG 用于系统色散补偿的仿真结果

采用表 5-1 中的参数来设计一个 PSBG, 然后用它的-2 级信道来进行系统的 色散补偿模拟。所使用的系统结构如下所示:

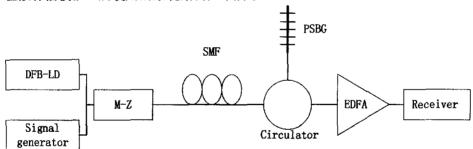



图 5-17 色散补偿系统模型

DFB 激光器的频率选在 1553nm, 出光功率为 1mw。激光器连续输出光通过 无啁啾的 Mach-Zehnder 外调制器由 10Gb/s 的 NRZ 伪随机二进制序列调制, 消光比为 30dB。光纤的损耗由光放大器(EDFA)完全补偿。计算光在光纤中传播的算法采用普遍使用的分步傅立叶变换算法<sup>[96]</sup>。EDFA 则采用与波长无关的增益模型并且噪声被忽略掉因为系统主要考虑的是色散和非线性的影响。光纤的参数如表 5-2 所示。光纤长 100km,放大器增益 20dB。

| 表  | 5-2 | 光纤参数      |
|----|-----|-----------|
| 4. | 7-2 | 762 32 33 |

|               |             | , <del></del> |              |  |
|---------------|-------------|---------------|--------------|--|
| 色散 (ps/nm/km) | 色散斜率        | 非线性系数         | 损耗系数 (dB/km) |  |
|               | (ps/nm²/km) | (mW/km)       |              |  |
| 17.0          | 0.050       | 0.0012        | 0.20         |  |

眼图的强度根据其最大值归一化。图 5-18 是从 M-Z 调制器中出来的信号眼图;图 5-19 是经过 100 公里传输没有色散补偿的眼图;图 5-20 是经过系统传输且通过 PSBG 补偿的眼图。从图中可以看到系统中的累积色散已经被完全补偿掉。

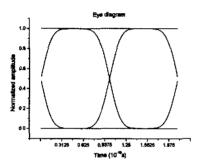



图 5-18 信号从调制器中 出来后的眼图

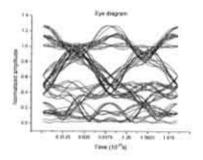



图 5-19 信号传输 100km 没有 经过色散补偿时的眼图

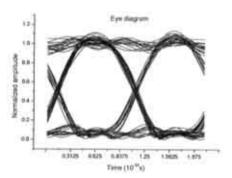



图 5-20 信号传输 100km 后经过 PSBG 进行色散补偿后的眼图

#### 5.3.5 PSBG 可行性制作方法讨论

由于受实验室条件的限制,无法将设计思想用相应的实验结果加以验证。下面来简单讨论一下这种光栅的制作方法。一种方法是先制作一个复杂的相位模板,使所需的取样周期分布和啁啾分布利用电子束曝光的方法写入到相位模板中。现有的模板写入技术使得写入 30nm/cm 的模板啁啾量成为可能。这样在实际的光栅制作过程中就变得非常简单,只需要采用常用的紫外相位模板曝光的方法就可以制作得到这种周期取样的光纤光栅。另外还有一种制作方法就是使用光纤移动扫描的方法。这种方法只需要一个普通的线性大啁啾相位模板。啁啾和周期取样结构的写入通过紫外光在模板一定位置上重复扫描写入到光纤上而形成。实际上光的整形技术[97]可以使得连续两段周期取样的连接在相位上更加平滑。

周期取样的光栅在产生相同大小的色散量时所需的长度同强度取样的光栅 所需的长度大小相同,但是它的优势在于每个信道的带宽和色散量都不一样而且 在中心信道两边色散的符号也不一样。甚至可以采用这种光栅实现同时对一个信 道滤波,对另一个信道进行色散补偿的功能。

由于折射率调制的强度需要高达  $10^{-3}$ ,所引入的双折射效应由光纤类型和曝光条件共同决定。如果在 240nm 的漂白带上使紫外光高度极化可以大大减小引入的双折射大小。在实际制作中,采用 p 方向极化的紫外光制作得到的光栅有很好的各向同性、极低的引入双折射值  $[^{98]}$  (0.2%)。当折射率调制强度达  $10^{-3}$  时,所引入的双折射大小仅有  $2*10^{-6}$ ,不会引起严重的偏振模色散问题。

## 5.4 本章小结

本章介绍了两种新型大啁啾光栅的结构。在第一节中对利用逐段大啁啾的光栅近似连续大啁啾光栅的条件做了一定的分析,给出了可以依据的三个判决标准。第二节中利用逐段大啁啾光栅设计得到多信道滤波器,每个信道均具有良好的滤波形状,高的边模抑制比,非常小的色散量。第三节中分析了基于光栅周期取样的大啁啾光栅结构并给出了其不同于其它光栅的特殊性质,仿真模拟表明能够将其用于光纤传输系统的色散补偿。

## 结论

大啁啾光纤光栅是高速光纤通信系统中常用的光纤器件,本论文对大啁啾光 纤光栅的设计、制作和应用进行了详细研究并获得如下结论:

- 1. 通过对大啁啾光纤光栅中存在的几种关系特性的分析,提出了通过插值 查询法来设计制作宽带滤波形状可控的大啁啾光纤光栅方法。在实验中采用这种 方法制作得到了可用于光纤传感的线性形状透过率分布的宽带滤波器。
- 2. 首次通过光栅层剥算法先行构造设计一个特定折射率分布的光栅,从而在模板啁啾系数和长度不变的条件下,很容易制作得到其它特定滤波谱形状的大啁啾光纤光栅滤波器。实验结果表明这种新方法能够在一定条件限制下灵活方便地设计制作所需要的滤波谱形。
- 3. 结合大啁啾条件下设计宽带多信道滤波器的特点,首次提出了基于信道 包络滤波的宽带光纤光栅滤波器的设计方法,并制作得到了相应滤波形状的多信 道功率均衡器。其独到的设计方法增添了大啁啾光纤光栅新的应用点。
- 4. 首次提出了一种基于大啁啾特性的光栅周期取样新型光纤光栅设计方法。这种光栅的特点在于能产生多信道光谱结构,并且位于中心信道两边的信道内色散符号相反,色散大小随信道级次的升高而增大。设计了可以在系统上实现色散补偿的这种光栅器件,分析了在制作中可能要考虑到的影响因素。
- 5. 在光栅写入过程中采用控制准分子脉冲激光器出射脉冲数目及光斑面积 大小的方法来实现在光栅长度方向上折射率调制强度不同的分布。通过实验条件 摸索得到了当光栅所在位置处脉冲数目和光斑面积的乘积一定时,其相应光栅波 长处反射率大小也一定的规律。同时通过改变脉冲数目或者光斑面积均起到了调 节波长反射率大小的作用。

本论文在理论和实验上获得的结果对推动我国光纤光栅相关领域的研究和产业化具有积极意义。

# 参考文献

- K.O.Hill, Y.Fujii, D.C.Johnson, and B.S.Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," App.Phys.Lett., vol.32, pp.647-649, 1978.
- [2] B.S.Kawasaki, K.O.Hill, D.C.Johnson, and Y.Fujii, "Narrow-band Bragg reflectors in optical fibers," Opt.Lett., vol.3, pp.66-68, 1978.
- [3] A.Yariv, "Coupled-mode theory for guided-wave optics," IEEE J.Quantum Electron., vol.Qe-9, pp.919-933, 1973.
- [4] H.Kogelnik, "Filter response of nununiform almost-periodic structures," J.Opt.Soc.Amer.A, vol.11, pp.1307-1320, 1994.
- [5] G.Meltz, W.W.Morey, and W.H.Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt.Lett., vol.14, p.823, 1989.
- [6] K.O.Hill, B.Malo, F.Bilodeau, D.C.Hohnson, and J.Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl.Phys.Lett., vol.62, pp.1035-1037, 1993.
- [7] D.Z.Anderson., V.Mizrahi, T.Erdogan, and A.E.White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett., vol.29, pp.566-568, 1993.
- [8] K.O.Hill, B.Malo, K.A.Vineberg, F.Bilodeau, D.C.Johnson, and I.Skinner, "Efficient mode conversion in telecommunication fiber using externally written gratings," Electron. Lett., vol.26, pp.1270-1272, 1990.
- [9] B.Malo, K.O.Hill, F.Bilodaeu, D.C.Johnson, and J.Albert, "Point-by-point fabrication of Micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques," Electron. Lett., vol.29, p.1668, 1993.
- [10] Olivier Durand, "Simple and low-cost realization method of low reflective and almost flat 200-GHz multichannel filter over 50 nm with sampled FBG." OFC2002, TUO2.
- [11] J.rothenbeg, et al, Phaethon Communications, "Phase-Only Sampling for Fabrication and Design of High Channel-Count Fiber Bragg Gratings", OFC2003, ThL3.
- [12] Yves Painchaud, "Multi-channel fiber Bragg gratings for dispersion and slope compensation," OFC2002, ThAA5.
- [13] Joshua E. Rothenberg, "High channel count fiber Bragg gratings fabricated by phase only sampling," OFC2002, ThAA1.
- [14] Michel Morin, et al, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," OFC2004, WK1.

- [15] I.Petermann, E.Coupe, P.Fonjallaz, Acreo AB, Klsta. Sweden, "Characterization of Fibre Bragg Gratings Using the Interferometric Side Diffraction technique with an Ultraviolet Light source," OFC2003, WL4.
- [16] L.Baskin, M.Sumetsky, P.Westbrood, P.Reyes, B.Eggleton, OFS Labs, "Side-Diffraction Technique for Highly Accurate Characterization of Fiber Bragg Grating Index Modulation," OFC2003, WL5.
- [17] Dmitrii Yu. Stepanov, et al, "Monitoring of the fiber Bragg grating fabrication process," OFC2004. ThC1.
- [18] C.Goh, et al, "Greater Than 90nm Continuously Wavlength-tunable Fibre Bragg Gratings," OFC2003, FC5.
- [19] Xinyong Dong, J.H.Ng, N.Q.Ngo, P.Shum, "CFBG-Based Tunable Dispersion Compensator with Fixed Center Wavelength," ECOC2003, We4.P.7.
- [20] Martin Guy, et al, "用做 EDFA 增益平坦滤波器的啁啾布拉格光纤光栅", WDM SOLUTIONS 2001 年 3 月刊。
- [21] Tilsch,M., Hulse, C.A., Hendrix, K.D. and sergeant, R.B., "Design and Demonstration of a Thin Film Based Gain Equalization Filter for C-Band EDFAs", NFOEC'99.
- [22] Xiang-fei Chen, Chong-cheng Fan, Y.Luo, Shi-zhong Xie, and S.Hu, "Novel Flat Multichannel Filter Based on Strongly Chirped Sampled Fiber Bragg Grating," IEEE Photon. Technol. Lett., Vol 12, No.11, pp.1501-1503, November, 2000.
- [23] Xiangfei Chen, et al, "High-channel-count comb filter with a simple structure," OFC2004, TuD2.
- [24] Fallon, R.W., et al, "Identical broadband chirped grating interrogation technique for temperature and strain sensing," Electronics Letters, Vol.33, 1997, pp.705-706.
- [25] Kersey, A.D., M.A.Davis, and T.Tsai, "Fiber optic Bragg grating strain sensor with direct reflectometric initerrogation," Proceedings of the Optical Fiber Sensors Conference (OFS-11), Sapporo, Japan, 1996, pp.634-637.
- [26] Vengsarkar A.M., Lemaire P.J., Judkins J.B., Bhatia V., Erdogan T., and Sipe J.E., "Long period fiber gratings as band rejection filters," IEEE J.Lightwave.Technol. 14, 58-64 (1996).
- [27] Meltz, G., and W.W.Morey, Conference on Optical Fiber Communication, 1991, Paper TuM2
- [28] Morey, W.W., OFC1991, San Diego, California PDP 20, 96.
- [29] Ouellette, F., "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Optical Letters, Vol.12, 1987, pp.847-849.
- [30] Brady, G.P., et al. "Extended range, coherence tuned, dual wavelength interferometry using a

- superfluorescent fiber source and chirped fibre Bragg gratings, "Optics Communications, Vol.134, 1997, pp.341-346.
- [31] Albert, J., et al, "Apodisation of the spectral response of fibre Bragg gratings using a phase mask with variable diffraction efficiency," Electronics Letters, Vol.31, 1995, pp.222-223.
- [32] Malo, B., et al, "Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask," Electronics Letters, Vol.31, 1995, pp.223-225.
- [33] Kashyap, R., A.Swanton, and D.J.Armes, "Simple technique for apodising chirped and unchirped fibre bragg gratings," Electronics Letters, Vol.32, 1996, pp.1226-1228.
- [34] R.Zengerle and O.Leminger, "Phase-shifted Bragg-grating filters with improved transmission characteristics," J.Lightwave Technol., vol.13, pp.2354-2358, Dec.1995.
- [35] Kashyap, R., P.F.McKee, and D.Armes, "UV written reflection grating structure in photosensitive optical fibers using phase-shifted phase masks," Electronics Letters, vol.30, 1994, pp.1977-1978.
- [36] Legoubin, S., et al, "Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method," Electronics Letters, Vol.27, 1991, pp.1945-1946.
- [37] Zhang, L., et al, "Wide-stopband chirped fiber moire grating transmission filters," Electronics Letters, Vol.31, 1995, pp.477-479.
- [38] Yuzhe Yin, Zongqiang Lin, et al, "Apodization Compensation of Sampled Bragg Grating by Off-Coherent Zone Second Exposure", Optics Communications, Vol.209(2002), 125-129.
- [39] W.H.Loh, F.Q.Zhou, and J.J.Pan, "Sampled Fiber Grating Based-Dispersion Slope Compensator," IEEE. Photon. Technol. Lett., Vol 11, No.10, pp.1280-1282, October, 2000.
- [40] Eggleton, B.J., et al, "Long periodic superstructure Bragg gratings in optical fibres," Electronics Letters, Vol.30, 1994, pp.1620-1622.
- [41] Lin Zhu, Guozhong wang, Li Xia, and Shizhong Xie, "System simulation of dispersion compensation with specially sampled fiber Bragg grating," Optics Communications, 198(2001) 89-93.
- [42] Jia Feng, Xiangfei Chen, Chongcheng Fan, Xuhui Li, Xia Li, Kun Xu, Shizhong Xie, "A novel method to achieve various equivalent chirp profiles in sampled Bragg gratings using uniform-period phase masks," Optics Communications, 205(2002) 71-75.
- [43] J.E.Rothenberg, H.Li, Y.Li, J.Popelek, Y.Sheng, Y.Wang, R.B.Wilcox, and J.Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Tech. Lett. 14(9), 1309-1311, 2002.
- [44] Byron K.C., Sugden K., Bircheno T., and Bennion I., "Fabrication of chirped Bragg gratings

- in photosensitive fibre," Electron, Lett. 29(18), 1659(1993).
- [45] Eggleton B., Krug P.A., and Poladin L., "Dispersion compensation by using Bragg grating filters with self induced chirp," in tech. Digest of Opt. Fib. Comm. Conf., OFC'94, p.227.
- [46] Farries M.C., Sugden K., Reid D.C.J., Bennion I., Molony A., and Goodwin M.J., "Very broad reflection bandwidth (44nm) chirped fibre gratings and narrow-bandpass filters produced by the use of an amplitude mask," Electron. Lett. 30(11), 891-892 (1994).
- [47] Lin Zhang, Changxi Yang, Yinbai Yan and Guofan Jin, "Sinusoidally Chirped Fiber Bragg Grating for DWDM Applications," CLEO pp.195, 2002.
- [48] Ouellette F., "The effect of profile noise on the spectral response of fiber gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol.17, OSA Technical Digest Series (Optical Society of America, Washington, DC, 1997), paper BMG13, pp.222-224.
- [49] Hill K.O., bilodeau F., Malo B., Kitagawa T., Theriault, Johnson D.C., and Albert J.,"Aperiodic in fibre gratings for optical fiber dispersion compensation," in Technical Digest of Post-Deadline Papers, PD2-1, Opt. Fib. Comm. Conf., OFC'94.
- [50] Stephens T., Krug P.A., Brodzeli Z., Doshi G., Ouellette F., and Poladin L., "257km transmission at 10 Gb/s in non dispersion shifted fibre using an unchirped fibre Bragg grating dispersion compensator," Electron. Lett. 32(17) 1559-1561 (1996)
- [51] Kashyap R., McKee P.F., Campbell R.J., and Williams D.L., "A novel method of writing photo-induced chirped Bragg gratings in optical fibers," Electron. Lett. (12), 996-997 (1994)
- [52] Okude S., sakai T., Wada A., and Yamauchi R., "Novel chirped fiber grating utilizing a thermally diffused taper-core fiber," in Proc. of OFC'96, paper TiO7, pp.68-69.
- [53] Putnam M.A., Williams G.M., and Friebele E.J., "Fabrication of tapered, strain-gradient chirped fibre Bragg gratings," Electron. Lett. 31(4), 309-310 (1995).
- [54] Laming R.I., Ibsen M., Durkin M., Cole M.J., Zervas M.N., Ennser K.E., and Gusmeroli V., "Dispersion compensation gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol.17, OSA Technical Digest Series (Optical Society of America, Washington, DC,1997), Paper BTuA7, pp.271-273.
- [55] Loh W.H., Laming R.I., Robinson N., Cavaciuti A., Vaninetti, Anderson C.J., Zervas M.N., and Cole M.J., "Dispersion compensation over distance in excess of 500km for 10Gb/s systems using chirped fibre gratings," IEEE Photon. Tchnol. Lett. 8,944(1996).
- [56] Garrett L.D., Gnauck A.H., Forgherieri, and Scarano D., "8\*20Gb/s-315km-480km WDM transmission over conventional fiber using multiple broadband fiber gratings," in Tech.

- Digest of Conf. On Opt. Fiber Commun., OFC'98, Post-Deadline paper, PD18/1-4.
- [57] Boskovic A., Guy M.J., Chernikov S.V., Taylor J.R., and Kashyap R., "All fiber diode pumped, femtosecond chirped pulse amplification system," Electron. Lett. 31(11), 877-879 (1995).
- [58] Gunning P., Kashyap R., Siddiqui A.S., and Smith K., "Picosecond pulse generation of <5ps from gain-switched DFB semiconductor laser diode using linearly step-chirped fibre grating," Electron. Lett. 31(13), 1066-1067 (1995).
- [59] Kersey A.D. and Davis M.A., "Interferometric fiber sensor with a chirped grating distributed sensor element," Proc. OFS'94, pp.319-322, Glasgow, UK (1994).
- [60] Willams J.A.R., Bennion I., and Doran N.J. "The design of in-fiber Bragg grating systems for cubic and quadratic dispersion compensation," Opt. Commun., 116(1-3), 62-66 (1995).
- [61] Farries M.C., Ragdale G.M., and Reid D.C.J., "Broadband chirped fiber Bragg grating filters for pump rejection and recycling in erbium doped fibre amplifiers," Electron, Lett., 28, 487-489 (1992).
- [62] Kashyap R., Wyatt R., and McKee P.F., "Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings," Electron. Lett. 29(11), 1025 (1993).
- [63] Zhang L., Sugden K., Williams J.A.R., and Bennion I., "Postfabrication exposure of gap-type bandpass filters in broadly chirped fiber gratings," Opt. Lett. 20(18), 1927 (1995).
- [64] Laming R.I., Zervas M.N., "Fibre Bragg gratings and their applications," Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (Conf. Publ. No.: 448), Volume 4, 22-25 Sep 1997.
- [65] Edward R.Lyons, "Tunable All-Fiber Devices for Optical fiber Communications," Doctor Dissertation, 2001.
- [66] R.Feced, M.N.Zervas, and M.A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," J.Quantum Electron., vol.35, pp.1105-1115, 1999.
- [67] Johannes Skaar, Ligan Wang, and Turan Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," J.Quantum Electron., vol.37, pp165-173, 2001.
- [68] Hongpu Li and Sheng Y., "Direct Design of Multichannel Fiber Bragg Grating With Discrete Layer-Peeling Algorithm," IEEE Photon. Technol. Lett., Vol 15, No.9, pp.1252-1254, 2003.
- [69] Rosenthal, A., Horowitz, M., "Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings," J.Quantum Electron., vol.39, pp1018-1026, 2003.
- [70] A.Othonos and K.Kalli, "Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing," Artech House Press, Norwood, 1999.

- [71] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "Custom Design of large Chirped Bragg Gratings on Application of Gain Flattened Filtering," SPIE Asia-Pacific Optical and Wireless Communications Conference (APOC2003), Dec, Wuhan, China.
- [72] Morten Ibsen, Michael K.Durkin, Michalis N.Zervas, Anatoly B.Grudinin, and Richard I.Laming, "Custom Design of Long Chirped Bragg Gratings: Application to Gain-Flattening Filter with Incorporated Dispersion Compensation," IEEE. Photon. Technol. Lett., Vol 12, No.5, pp.498-500, May 2000.
- [73] 夏历,李栩辉,谢世钟,"透(反)射形可控的大啁啾光纤光栅的制作方法",中国发明专利,专利申请号:02129307.4。
- [74] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "Custom Design of large Chirped Fiber Bragg Gratings on Application of Arbitrary Profile Filtering," Optics Communications, vol 226/1-6 pp.175-179, 2003.
- [75] L.Poladian, "Simple grating synthesis algorithm," Opt.Lett., vol.25, pp.787-789, 2000.
- [76] K.A.Winick and J.E.Roman, "Design of corrugated waveguide filters by Fourier transform techniques," IEEE J. Quantum Electron, vol.26, pp.1918-1929, Nov. 1990.
- [77] Johannes Skaar and Knut Magne Risvik, "A Genetic Algorithm for the Inverse Problem in Synthesisi of Fiber Gratings," J. Lightwave Technol. 10 (1998) 1928-1932.
- [78] Eva Peral, Jose Capmany, and Javier Marti, "Iterative solution to the Gel'Fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings," IEEE J. Quantum Electron, vol.32, pp.2078-2084, Dec. 1996.
- [79] W.H.Loh, M.J.Cole, M.N.Zervas, S.Barcelos, and R.I.Laming, "Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique," Opt.Lett., vol.20, pp.2051-2053, 1995.
- [80] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "The fabrication of short period and large chirped fiber grating," SPIE Asia-Pacific Optical and Wireless Communications Conference (APOC2002), Oct, Shanghai, China.
- [81] Li Xia, Li XH, Chen XF, Wang P, Xie SZ, "Design of Broadband and Arbitrary Profile Filter Using The Large Chirped Fiber Grating," Microwave and Optical Technology Letters, no 2, pp.115-117, 2003.
- [82] Adel Asseh, Helge Stonoy, Bengt E.sahlgren, Simon Sandgren, and Raoul A.H. Stubbe, "A Writing Technique for Long Fiber Bragg Gratings with Complex Reflectivity Profiles," IEEE J. Lightwave. Technol., vol. 15 pp.1419-1423, 1997.
- [83] A.V.Buryak, K.Y.Kolossovski, and D.Y.Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J.Quantum Electron., vol.39,

- pp.91-98, Jan.2003.
- [84] Xiang-fei Chen, Chong-cheng Fan, Y.Luo, Shi-zhong Xie, and S.Hu, "Novel Flat Multichannel Filter Based on Strongly Chirped Sampled Fiber Bragg Grating," IEEE Photon. Technol. Lett., Vol 12, No.11, pp.1501-1503, November 2000.
- [85] M.rochette, M.Guy, S.laRochelle, J.Lauzon, and F.Trepanier, "Gain Equalization of EDFA's with Bragg Gratings," IEEE Photon. Technol. Lett., Vol 11, No.5, pp.536-538, May 1999.
- [86] Raman Kashyap, "Fiber Bragg Gratings", Chapter 7, Academic Press, San Diego, 1999.
- [87] Kashyap R. "Design of step chirped gratings," Optics Commun. 136(5,6), 461-469 (1997).
- [88] C.R.Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15 (1997) 1391-1404.
- [89] B.Eggleton, P.A.Krug, L.Poladian, and F.Oullette, "Long periodic superstructure Bragg gratings in optical fibers," Electron. Lett., vol.30, pp.1620-1622, 1994.
- [90] M.Ibsen, A.Fu, H.Geiger, and R.I.Laming, "All-fiber 4\*10Gb/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator," Electron. Lett. vol.35, pp.982-983, 1999.
- [91] J.E.Rothenberg, H.Li, Y.Li, J.Popelek, Y.Sheng, Y.Wang, R.B.Wilcox, and J.Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Tech. Lett. 14(9), 1309-1311, 2002.
- [92] B.Eggleton, P.A., Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibers," Electron. Lett., vol.30, pp.1620-1622, 1994.
- [93] M. Ibsen, M.K. Durkin, M.J. Cole, and R.I. Laming, "Sinc-sampled fiber Bragg grating for identical multiple wavelength operation," IEEE Photon. Lett., vol. 10, pp.842-844, 1998.
- [94] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "A Novel Fiber Grating Design Using the Large Chirp Parameter and Period Sampled distribution," Optics Communications, Optics Communications, vol 227/4-6 pp.311-315,2003.
- [95] Xiang-Fei Chen, Yi Luo, Chong-Cheng Fan, Tong Wu, and Shi-Zhong Xie, "Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system," IEEE Photon. Tech. Lett. 12(8), 1013-1015, 2000.
- [96] J.A.Fleck, J.R.Morris, and M.D.Feit, Appl. Phys. 10,129 (1976).
- [97] Kashyap R., Maxwell G.D., and Ainslie B.J., "Laser trimmed four-port bandpass filter fabricated in singlemode planar waveguides," IEEE Photon. Tech. Lett. 5(2) 191, 1993.
- [98] Albert, J., et al. "Dichroism in the absorption spectrum of photobleached ion-implanted silica," Optics Letters, Vol. 18, 1993, pp.1126-1128.

## 致 谢

本论文是在导师谢世钟教授的悉心指导下完成的,对谢老师在本论文的选题、研究方法、工作指导等方面给予的无私帮助致以最深的谢意。谢老师广博的专业知识、敏锐的洞察力、严谨科研态度以及丰富的人生阅历给我留下了深刻印象,他的言传身教将使我终生受益。

在此还要特别感谢陈向飞副教授以及李栩辉老师的精心指导,两位老师扎实的学术功底、严谨的治学态度是作者学习的榜样。

感谢本组其他同学戴一堂、王鹏、邹明渊等的热心帮助。

感谢我的父母,他们多年来对我无微不至的关心与支持使我顺利完成学业。

感谢所有帮助过我的人们!

# 声明

本人郑重声明: 所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。

签 名: 15 月 期: 7,004.414

# 个人简历、在学期间的研究成果及发表的论文

# 个人简历

1976 年 4 月 12 日出生于湖北省武汉市,1994 年 9 月考入清华大学电子工程 系物理电子与光电子专业,1999 年 7 月本科毕业并获得工学学士学位,同年 9 月兔试保送清华大学电子工程系攻读电子科学与技术学科的博士至今。

# 在国际和国内学术刊物上发表的论文

- [1] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "Custom Design of large Chirped Fiber Bragg Gratings on Application of Arbitrary Profile Filtering," Optics Communications, vol 226/1-6 pp.175-179, 2003. (SCI 738QE EI 03437693909)
- [2] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "A Novel Fiber Grating Design Using the Large Chirp Parameter and Period Sampled distribution," Optics Communications,vol 227/4-6 pp.311-315, 2003. (SCI 741QJ EI 03467723526)
- [3] Li Xia, Li XH, Chen XF, Wang P, Xie SZ, "Design of Broadband and Arbitrary Profile Filter Using The Large Chirped Fiber Grating," Microwave and Optical Technology Letters, no 2, pp.115-117, 2003. (SCI 720BW EI 03417665956)
- [4] 夏历,王鹏,李栩辉,陈向飞,谢世钟,"一种宽带线性反射率形状滤波器的设计与制作"全国第 11 次光纤通信暨第 12 届集成光学学术会议,2003 年 10 月,南京。
- [5] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "Custom Design of large Chirped Bragg Gratings on Application of Gain Flattened Filtering," SPIE Asia-Pacific Optical and Wireless Communications Conference (APOC2003), Dec, Wuhan, China.

- [6] 夏历,李栩辉,殷玉喆,冯佳,毛晋,陈向飞,谢世钟,"在保偏光纤上制作光纤光栅的应用研究" 光学学报,2002 年第 22 卷第 8 期,pp.1004-1007。(EI 02447167555)
- [7] Li Xia, Xuhui Li, Xiangfei Chen, Shizhong Xie, "The fabrication of short period and large chirped fiber grating," SPIE Asia-Pacific Optical and Wireless Communications Conference (APOC2002), Oct, Shanghai, China.
- [8] 夏历,李栩辉, "光纤光栅在 EDFA 中的应用研究" 光纤通信,2002 年 第 3 期,pp.14-18。
- [9] 夏历,李栩辉,谢世钟等,"用于 EDFA 增益锁定的光纤光栅的制作"光电子·激光,2001 年第 12 卷第 5 期,pp.461-463。
- [10] 李栩辉,夏历,冯佳,陈向飞,谢世钟,"一种新的长周期光纤光栅制作技术" 光学学报,2003 年第 23 卷第 3 期,pp.310-312。
- [11] Lin Zhu, Guozhong Wang, Li Xia, Shizhong Xie, "General Computer Model for Both Erbium-Doped Fiber Amplifier and Fiber Raman Amplifier", Optical Engineering, Vol. 41, pp.1805-1808, 2002.
- [12] Li XH, Yue CY, Xia L, Chen XF, Xie SZ,"Novel technique for long period gratings fabrication using broad spectrum ultraviolet source," Microwave and Optical Technology Letters, 33 (5), pp.368-370, 2002.
- [13] Xiang-fei Chen, Xu-hui Li, Li Xia, Jian-ping Wang, Shi-zhong Xie, Yu-zhe Yin "Numerical investigation of a stress-gradient sampled Bragg grating for dispersion compensation applications in wavelength division multiplexing systems" Optics Communications, 187 (2001) 363-367.
- [14] 李栩辉, 夏历, 刘晶雯, 王建萍, 谢世钟, "啁啾和切趾函数可调的光纤光栅扫描写入法" 半导体光电, 2001 年第 22 卷第 1 期, pp.15-17。
- [15] 夏历,李栩辉,谢世钟,"透(反)射形可控的大啁啾光纤光栅的制作方法"中国发明专利,专利申请号:02129307.4。