
probably caused by charge traps that screened
the influence of the gate.

An alternative method to achieve an expo-
nential dependence of the tunneling current on
gate voltage would be to use a barrier dielectric
with a smaller D, which would be comparable
with typicalEF realizable in graphene. One of such
candidatematerials isMoS2,which has a band gap
of about 1.3 eVand can be obtained in a mono- or
few-layers state similar to hBN and graphene (21).
Our first graphene-MoS2–based devices demon-
strate ON-OFF ratio close to 10.000 (fig. S5),
which is sufficient for certain types of logic circuits.

We conclude that our tunneling devices offer
a viable route for high-speed graphene-based ana-
log electronics. The ON-OFF ratios already ex-
ceed those demonstrated for planar graphene FETs
at room temperature by a factor of 10 (3–7). The
transit time for the tunneling electrons through the
nanometer-thick barriers is expected to be extreme-
ly fast (a few femtoseconds) (13–17) and exceeds
the electron transit time in submicrometer planar
FETs. It should also be possible to decrease the lat-
eral size of the tunneling FETs down to the 10 nm
scale, a requirement for integrated circuits. Further-
more, there appears to be no fundamental limitation

to further enhancement of the ON-OFF ratios by
optimizing the architecture and by using higher-
quality gate dielectrics and, in particular, lower tun-
nel barriers (D < maximum achievable EF).
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The Local Structure of
Amorphous Silicon
M. M. J. Treacy1* and K. B. Borisenko2,3

It is widely believed that the continuous random network (CRN) model represents the structural
topology of amorphous silicon. The key evidence is that the model can reproduce well experimental
reduced density functions (RDFs) obtained by diffraction. By using a combination of electron
diffraction and fluctuation electron microscopy (FEM) variance data as experimental constraints
in a structural relaxation procedure, we show that the CRN is not unique in matching the
experimental RDF. We find that inhomogeneous paracrystalline structures containing local cubic
ordering at the 10 to 20 angstrom length scale are also fully consistent with the RDF data.
Crucially, they also matched the FEM variance data, unlike the CRN model. The paracrystalline
model has implications for understanding phase transformation processes in various materials
that extend beyond amorphous silicon.

Amorphous silicon (a-Si) can be regarded
as a classic example of a disordered four-
coordinated covalentmaterial.Understand-

ing its structure has implications for understanding
structures and structure-properties correlations
not only for similar covalently bonded networks
but also for a wider range of other amorphous
materials. In general, having the correct structural
model of an amorphous state is important in
order to understand the structural origins of glass
transitions and associated phenomena. Previous
studies rely on spatially heterogeneous dynamics

using either crystalline (1, 2) or noncrystalline
(3, 4) inhomogeneities to explain kinetics of glass
transitions and phenomena of glass-forming ability.
Such knowledge is essential for a number of
industrially important materials, such as phase-
changememorymaterials for information storage
(5, 6). Accurate structural models are crucial for
understanding mechanisms of deformation in me-
tallic glasses (7). This knowledge is needed to
ultimately build novel materials with the required
properties. It is widely believed that the structure
of a-Si is well represented by the continuous
random network (CRN) model, which was first
introduced by Zachariasen as a model for network
glasses (8). The ideal CRN for a-Si is a fully four-
coordinated, nonperiodic structure that is meta-
stable with respect to crystalline silicon and is
constructed primarily from five-, six- and seven-
membered rings. Crystalline Si comprises six-

membered rings only. High-quality CRN models,
which reproduce the experimental density, have
been developed by applying bond-swapping
algorithms (9, 10), in conjunction with framework
relaxation using appropriate potentials (11, 12).
The models generate a reduced density function
(RDF) that matches the essential features of ex-
perimental data obtained by high-energy x-ray and
neutron diffraction (13), as well as electron
diffraction (14). In addition, the models broadly
reproduce features observed in Raman spectra
(15), as well as the vibrational density of states
obtained by neutron diffraction (12, 16).

Other models for a-Si have been proposed.
The paracrystallite model of Hosemann and
Baggchi (1962) (17) and the microcrystallite
model of Turnbull and Polk (1972) (18) are
generally discredited because they are thought to
be inconsistent with RDF data. Both models de-
scribe materials containing small grains of or-
dered material that are just a few nanometers in
extent, but in the paracrystallite model there are
strain gradients throughout the grains. The width
of the second peak in the RDF suggests a range
of Si-Si-Si angles that is thought to be incon-
sistent with either type of crystalline order. How-
ever, it has been argued that fluctuation electron
microscopy (FEM) data provide irrefutable evi-
dence for the presence of substantial topological
crystallinity in a-Si at the 10 to 20 Å length scale
(19). Although the FEM evidence has been
reproduced by several groups for various samples
of a-Si that were amorphized by different meth-
ods (20–22), the presence of topologically crys-
talline ordering in a-Si is not widely accepted as it
appears to contradict carefully conducted RDF
experiments (13). It has been asserted that claims

1Department of Physics, Arizona State University, Tempe,
AZ 85287, USA. 2Department of Materials, University of
Oxford, Parks Road, Oxford OX1 3PH, UK. 3Research Com-
plex at Harwell, Rutherford Appleton Laboratory, Harwell
Oxford, Didcot OX11 0FA, UK.

*To whom correspondence should be addressed. E-mail:
treacy@asu.edu

24 FEBRUARY 2012 VOL 335 SCIENCE www.sciencemag.org950

REPORTS



of longer-range order in glasses are unjustified
because the random models, such as the CRN, ac-
count for all the observed features (23). We point
out that although matching diffraction data are a
necessary criterion for any successfulmodel, alone
it is not sufficient to identify a unique model.
There exist topologically distinct homometric struc-
tures that also match the RDF data.

Experimentally, a-Si typically has a density
about 1 to 2% less than that of the cubic crys-
talline phase. The area under the first-nearest
neighbor peak of the RDF, G(r), shows that a-Si
has a coordination number less than 4, typically
about 3.8 (13), which would account for the
reduced density. Transmission electron micros-
copy (TEM) evidence shows that voids can occur
in a-Si (24). Further, an experimentally con-
strained molecular relaxation (ECMR) study by
Biswas et al. (25), using both diffraction (RDF)
and FEM diffraction variance data as constraints,
was found to support the void model. The impli-
cation is that a-Si can be described satisfactorily
by an interrupted CRN model, with no topolog-
ical order necessary to explain the data. However,
the topology of the Biswas void model was not
examined. The voids were introduced artificially,
and it can be argued that the free void surfaces
provide nucleation sites for paracrystallinity, which
would explain the match to the FEM data.

Here we use a procedure similar to ECMR,
but with a Tersoff atomic potential applied as an
additional constraint. We show that refinements,
made without introducing additional bias, yield
inhomogeneous models containing topological
crystallinity at the 10 to 20 Å length scale, with
no voids, that are fully consistent with both the
RDF and FEM data.

A serious deficiency of the ideal CRN model
is that it is inconsistent with the FEM data (19).
FEM examines the variability in microdiffraction
patterns from small volumes of the sample, typ-
ically with probes of width R ≈ 10 to 20 Å. The
RDF and FEM techniques are complementary;
the RDF method informs us about the mean
diffraction, and FEM informs us about the varia-
bility of that diffraction from subregions of the
sample. The RDF, being a volume-averaging tech-
nique, is insensitive to details about sample in-
homogeneities. FEMmicrodiffraction simulations
across CRN models (with 10 to 60 Å probes)
confirm that different regions are qualitatively
similar, as revealed by the featureless normalized
variance of the microdiffraction pattern inten-
sities. The normalized variance is obtained from
the set of microdiffraction pattern intensities,
I(rp, k, R), via

V ðk,RÞ ¼
〈I2ðrp,k,RÞ〉rp
〈Iðrp,k,RÞ〉2rp

− 1 ð1Þ

rp is the location of the probe of width R (spatial
resolution), and the angular brackets represent the
averaging over all probe locations. For probe
widths R ≥ 10 Å, the two-dimensional variance
pattern V(k, R) computed for typical CRN mod-
els is essentially flat, confirming that there are no
special structural periodicities corresponding to a
scattering vector k. However, experimental FEM
variance patterns from many different a-Si sam-
ples always show peaks near the 111, 200, 220,
and 311 locations of the cubic Si structure. This
indicates that there is crystalline topology present
at length scales R = 10 to 20 Å. For larger probes,
R > 30 Å, the variance fades as the probed width

exceeds the typical correlation length. A recent
correlograph study of such patterns (22) confirms
this interpretation of inhomogeneity in a-Si.

Large models containing N atoms, and there-
fore 3N coordinate degrees of freedom, are un-
derconstrained by electron diffraction data, which
typically comprise about 400 experimental points
after radial averaging. This underconstraint creates
a broad solution space of homometric structures—
those that will reproduce the diffraction intensity—
even when models are additionally constrained
by appropriate potentials for a-Si. The CRN itself
is not a unique structure; there are many topo-
logically equivalent arrangements. Thus, the so-
lution space will be amply populated with similar
CRN structures. However, CRN models are not
the only viable structural arrangement consistent
with diffraction data. The solution space is further
confined when FEM data are added as con-
straints. When this is done, we find that CRN
structures are excluded as solutions.

We recently applied an experimentally con-
strained structural relaxation (ECSR) computa-
tional procedure (26), closely similar to the ECMR
method of Biswas et al. (27, 28), to search for
structural solutions for four different types of a-Si
using electron diffraction data and FEM variance
data (26). For each structural configuration, the
ECSR algorithm evaluates a cost function that
contains three terms: (i) the Tersoff potential, U,
for the siliconmodel (29); (ii) the integrated square
difference of the experimental and computed
reduced electron diffraction intensities ϕ(k) in
the range 0 ≤ k ≤ 2.5 Å−1; and (iii) the integrated
square difference of the experimental and com-
puted FEM variance V(k) in the range 0.12 ≤ k <
1.0 Å−1. Variance calculations assume a probe size
(resolution) of 10 Å. The x,y,z coordinates of a
randomly selected atom are adjusted by a small
random amount, and the cost function is reeval-
uated. The move is accepted or rejected via the
Metropolis algorithm (30). The diffraction and
variance costs wereweighted relative to the Tersoff
potential so that the typical changes in all three
terms, arising from random atom moves, were ap-
proximately equal. Details of our experimental and

Fig. 1. (A) Reduced
density functions, G(r),
obtained for an a-Si
specimen and computed
for fourmodels by aMonte
Carlo (MC)procedureusing
the experimental diffrac-
tion (D) and variance (V)
data as a constraint. Both
crystalline (X) and ran-
dom (R) starting struc-
tures were used. A Tersoff
potential (T) was applied
as an additional con-
straint. (B) Variance plots,
V(k), for the experiment
and four models. The
braces, {}, in the legend indicate those traces that overlap.

Table 1. Selected structural and energetic properties of the four a-Si models. See text for details.

Model U (eV/Si) R3% R6% NC N2 Np

MC X TD –3.99 0.2 84.6 3.58 611 281
MC R TD –3.65 6.6 23.1 3.67 111 0
MC X TDV –3.95 0.3 82.6 3.59 419 94
MC R TDV –3.73 5.8 61.8 3.74 367 82
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computational methods are described elsewhere
(26, 31, 32).

Results for an a-Si sample that was amorph-
ized by implantation of high-energy Si ions are
presented here. The experimental RDF, G(r),
obtained from electron diffraction, is presented in
Fig. 1A along with the simulated G(r) plots for
four different ECSR runs. Both crystalline (X)
and random (R) starting configurations were used.
For each of these there were two runs: one with
electron diffraction only as an experimental con-
straint (i.e., the variance weight was set to zero);
the second with the experimental variance in-
cluded. All four runs included the Tersoff po-
tential. The notable feature of these five plots is
that they are essentially identical. Yet, the struc-
tural topology of each model is substantially dif-
ferent, as revealed by the variance simulations for
each model (Fig. 1B). For the two simulations
that were not constrained by the variance (labeled
“MC X TD” and “MC R TD”), the resulting
variance plots are markedly different. For the crys-
talline starting configuration, strong variance peaks
arise, indicating substantial inhomogeneity per-
sisting in the final model. For the random starting
configuration, the variance curve is essentially
flat, indicating a homogeneous structure. It has a
high density of three-membered rings, and so is
appreciably different from an ideal CRN, which
has mostly five-, six-, and seven-membered rings.
Neither plot matches the variance data. The two
plots for the models that were constrained by the
variance data (labeled “MC X TDV” and “MC R
TDV”) match the experimental variance perfect-
ly. Despite the dissimilarity of the starting struc-
tures, these two models are topologically similar.
The model properties are summarized in Table 1.

Models that started from a crystalline con-
figuration (X) have the lowest Tersoff energiesU
and retain the highest densities of six-membered
rings,R6. Conversely, themodels that were seeded
by a random, CRN-like structure have higher
Tersoff energies, and substantially lower densities
of six-membered andmore three-membered rings,
R3. The average coordination numbers, NC, were
about the same for each model, ~3.6 for the
crystal-seeded models and ~3.7 for the random-
seededmodels, assuming amaximumbond length
of 2.7 Å. NC rises to ~3.8 when estimated from
the area under the first peak of G(r). A crude
measure of latent crystalline coordination is ob-
tained by examining the coordination sequences
for each Si atom in the models. Cubic (and hex-
agonal) silicon has a coordination sequence that
begins 1-4-12, out to the second shell. The pa-
rameterN2 reports the number of Si atoms in the
model that have this sequence. An atom with this
sequence is not necessarily part of a topologically
crystalline environment, but if it does not have
this sequence, then it is clearly not in a topolog-
ically crystalline environment. A more reliable
indicator of extensive crystalline topology, 10 Å
and wider, is the atomic vertex symbol, which
delineates a local cluster (33, 34). This gives the
size and number of rings at each of the six in-
tervertex angles of a tetrahedrally coordinated sil-
icon atom. Both cubic and hexagonal Si have
vertex symbols 62·62·62·62·62·62,meaning that there
are two distinct six-membered ring paths through

each silicon atom and any two of its bonded
neighbors. In crystalline cubic Si, there are 29
atoms involved in the local cluster that spans the
vertex symbol, forming a unit that is ∼9 Å in
diameter (Fig. 2). The twomodels that were started
as crystals both contain a substantial number of
paracrystalline Si local clusters. In the table,Np is
the number of atoms that have the topologically
cubic vertex symbol. Curiously, the model that
was not constrained by the variance (“MCXTD”)
has approximately three times asmuch topological
crystallinity as the variance-constrained model
(“MC X TDV”).

All fourmodels are equally “diffraction amor-
phous.”Both the “MCXTDV” (Fig. 3B) and the
“MC R TDV” (Fig. 3D) models reproduce both
the experimentalG(r) andV(k) plots and converge
to topologically similar structures. Because elec-
tron selected-area diffraction patterns are averaged
over large areas, they show rotational homoge-
neity, whereas microdiffraction patterns show
considerable spatial inhomogeneity. The inhomo-
geneous structures shown in Fig. 3, B and D,
therefore appear to represent the real material bet-
ter. The structure is not 100% ordered; only about
10 to 15% of the atoms must be associated with
the topological ordering to reproduce the variance
data. The remaining material is not topologically
crystalline. Annealing reduces the amplitude of
the variance peaks in this sample by about half,
which reduces the extent of the paracrystalline
ordering, but does not eliminate it (26).

Fig. 2. The 29-atom local cluster for crystalline
cubic silicon. The central atom (red) has four bonds
and six possible intervertex angles. There are two
six-membered rings spanning each intervertex
angle (yellow and green paths), giving it a vertex
symbol 62·62·62·62·62·62. This 9 Å diameter
unit provides a convenient minimal topological
description for a paracrystalline cluster. In real ma-
terials, strain may deform it from this idealization
without altering the bonded topology. Local clusters
for the CRN will contain some five-membered rings.

A

C D

B

Fig. 3. (A to D) The four 1728-atom models, after structural relaxation, viewed as periodic networks.
The atoms connected by gray bonds represent topologically cubic-Si regions. All four models give
essentially identical G(r) plots (Fig. 1A).
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An important difference between x-ray studies
and FEM studies is the sample thickness. For
FEM studies, the film should be less than about
300 Å, whereas in x-ray studies films can be
substantially thicker, ∼10 mm. As is true for all
electron microscopy studies, structural artifacts
at the film surfaces may affect results. Careful
studies of a-Si samples in both plan view and
cross-section view do not show any difference
between surfaces and bulk. The thickness de-
pendence of the variance signal from a-Si has
been studied carefully, and it does not behave
as a constant surface artifact (21, 35). The FEM
variance curves for a-Si have been consistent-
ly reproduced by several groups for a variety
of a-Si samples prepared by different methods
(19, 21, 31, 35).

Amorphous silica, and some types of evapo-
rated amorphous carbon, do show essentially flat
variance curves that are consistent with a CRN
(36, 37). Recent evidence shows that ordered
regions can persist in pressure- and temperature-
amorphized silica glasses (38). Although the
combination of the FEM variance data with the
RDF data substantially narrows the available
solution-space, the precise structural configura-
tion of the inhomogeneity is still not established,
although it appears most likely to be of para-
crystalline type. More detailed models will
require enhancements of the ECSR method as
well as improved methods for modeling the scat-
tering decoherence (related to inelastic scattering
events), which affects the variance more strongly
than the mean diffraction. Valuable additional
information would be provided by application of
variable-resolution FEM and correlograph anal-
ysis, where angular correlations in scattering are
studied as a function of the probe size (21, 22, 35).

Because every a-Si sample studied by FEM to
date, by several groups, shows distinctive variance
peaks of the type associated with paracrystallinity,

we conclude that they are all inhomogeneous at
the 10 to 20 Å length scale, consistent with the
paracrystallite model of Hosemann and Baggchi
(17). Notwithstanding the RDF data, these
samples do not agree with the ideal CRN model,
which we conclude is a structural idealization
that is not realized in practical a-Si thin films. Our
conclusions regarding pervasive, heterogeneous,
medium-range order in a-Si have implications for
a wide variety of amorphous materials in general
that have been studied by diffraction alone.
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Satellite Estimates of
Precipitation-Induced Dissipation
in the Atmosphere
Olivier Pauluis1,∗ and Juliana Dias2

A substantial amount of frictional dissipation in the atmosphere occurs in the microphysical shear
zones surrounding falling precipitation. The dissipation rate is computed here from recently available
satellite retrieval from the Tropical Rainfall Measurement Missions and is found to average 1.8 watts
per square meter between 30°S and 30°N. The geographical distribution of the precipitation-induced
dissipation is closely tied to that of precipitation but also reveals a stronger dissipation rate for
continental convection than for maritime convection. Because the precipitation-induced dissipation
is of the same magnitude as the turbulent dissipation of the kinetic energy in the atmosphere,
changes in the hydrological cycle could potentially have a direct impact on the amount of kinetic
energy generated and dissipated by the atmospheric circulation.

Around each individual water droplet and
ice crystal in the atmosphere, there is a
microphysical flow that acts to slow down

its fall. As a result, precipitation falls through
the air at a terminal velocity determined by the
balance between the gravitational acceleration

and the aerodynamical drag exerted by the sur-
rounding air. The effect of the drag is dramatic:
The typical terminal velocity for a raindrop is
about a fewmeters per second, which is two orders
of magnitude smaller than the free-fall velocity it
would attain in the absence of any drag force.

This drag also acts as damping mechanism
that dissipates kinetic energy within the shear
zones surrounding each individual hydrometeor
(1). From amacroscopic perspective, a drag force
F that acts on two different bodies moving at
relative velocity vr is associated with a net loss of
mechanical energy equal to F · vr. For falling
precipitation, the relative velocity is equal to the
terminal velocity of the hydrometeors, vT, where-
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