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GRAIN GROWTH IN METALSY
P. FELTHAMY

The sizes aod shapes of grains in annealed metals, chareaterised respuctively hy the grain diameta s
and the intertacial angles, are shown to be lognormally distributed in planar sections ns well a8 in space.
The similarity of the size and shape distributions facilitates the treatment of grain growth as s univariant
statistical problem in which the mean rate of growth of the grains is cbtained as the resultant of the
surface tension-controlled rata of growth of tho individnal grains in the distribution, The mosi probuble
initial and istantancous grain diameters D,* and D*, which have approximately the same respsetive
valuas whether referred to planar or spatial distributions, are then found to bo related to the time of
isothermal growth ¢ by the equation (D*)2 — (Dg*}* = (AVao(hit exp {—HkT}, where £ is a numerical
constant of order unity, V thé volume per atom, o tho lattice spacing, & the specific grain-boundary
energy, h Plank’s constant, and H the activation onergy for grain-boundary self-diffusion. Agreement
with experimentnl results iz good. ) ) '

CROISSAI;OE CRANULAIRE DANS LES METAUX

L’guteur montre que les formes et tailles deog grains de métaux recuits, carrctérisées respectivement
par les angles & Tinterface etles diamdtres des grains, sont distribuéea de fagon simplement logarithmigue
sussi bien dans des sections planes que dans Vespace. Cotte gimilitude de la distribution des formes st
des tailles facilite le traitement de la croissance comme un probléme statistique univariant ot ls vitesse .

~moyenne de croissance est In résultante de la vitesse de croissance individuelle, contrdlée par mesure de
la tension superficisllé des grairs dans la distribution. ;

Les diamétros des grains les plus-probables {D,*) et instantané (D), qui ont d'ailleurs approxi-
rativement les mémes valeurs respectives pour les distributions planes ou spatieles, sont liés au temps

_de_ croissance  isotherme ¢ par l'équation (D*)* — (D)2 =:{]_Vao']h)‘ oexp (—HfkT), ol A est la

constanta, numérique d'unité d’ordre, ¥V I¢ volume atomique, ¢ la constante du réseaun, o 'énergie
spécifique de la frontiére, h In constante de Planck et H Pénergie d’activation pour U'sato-diffusion de hu.

froxitidre granulaire.

L’accord entre cotte formule ot les résultats expérimentaux est bon.

EORNWACHSTUM IN METALLEN

B wird gezoigt, dass Grésse und Form der Korner.in ausgeglithten Metallen, charakserisiert durch die
Korndurchmesser und die Korngrenzivinkel, sowoehl in ebehen Schniften als auch beztiglich ihrer rdum-
lichen Verteilung cine Normalvertoilung mit logarithmischem Argument aufwoisen. Die Ahnlichkeit -
der Grissen- und Form-Verteilung erleichtert die Behandlung des Kornwachstums als stetistisches
Problem mit nur einer Variablen, bei dem man die mitelere Wachstumsgeschwindigkeit der Kérner als
Resultiorende aus der dureh die Oberflichenspannung bestimmten ‘Wachstumsgeschwindigkeit der
einzelnen Kérner innerhalb der Verteilung erhilt. Man finder dann, dass die wahrscheinlichsten Werte
fiir die Korndurchmessar D,* wnd D* (D,* Anfangswert, D* laufender Wert), die nahernngsweise
unabhangig davon sem diirften, ob man sie suf cine ebene oder auf eine raumliche Vertoilung bezicht,
it der Zeit ¢ durch die Gloichimg {D*)2 — (D%} = (AVagfh) exp {—H[kT} verkniipft sind; dabei
Ledeuten A eine numerische Konstante von der Grossenordnung Eins, T das Volumen pro Atom, a die
Gitterkonstante, ¢ die spezifische Korngrenzenergie, b die Plancksche Konstante und A die Aktivierungs-
energie der Korngrenzen-Selbstdiffusion. Die Ubereinstimmung mit experimentelien Ergebnissen ist gut. '

_ . 1. INTRODUCTION
The driving forces leading t¢ grain-boundary migra-

tion in crystalline materials are-determined not only-

by the physical constants cHaracteristic of the sub-
stances in bulk, but also by the shapes and dimensions
of the individual grains. Parameters characterizing
the dimensions.and shapes of the distribution of grains
of an aggregate must therefore appear as variables in
the time-laws of grain growth. .

Up to now the appropriate statistical treatment has
not hesn given, presumably because of the cornpara-
tive dearth of suitable experimental materinl, and the

T Received April 17, 1956.
1 The University, Leeds, Yorks, Engiand.

rather complex nature of the problem. Several
aspects of grain growth have, however, received
considerable attention. In particular, Burke estab-
lished - that the driving force of grain growth in
annealed metals was essentially the smface energy
(surface tension) of the grain -boundaries, which
impelied the boundaries to migrate towards their
respective contres of curvature. Smith®2% con-
gidered grain shapes and other relevant metallurgioal
applications of topology, and Beck!®) reviewed some
of the more recent experimental work on grain growth.
Much eatlier an attompt was made by Tammant and
Crone'® to sccount for the shape of the grain-size
distribution curves in ‘cast and ammealed aluminium
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and cadmimm: the work is unfortunately invalidated
by a number of errors.

The problem of grain growth as a whole was
approached recently by Cole, Feltham, and Gillam.{?
They found for isothermal growth the relation
(D*)2 — {Dy*)E = Kot exp (—H[kT), where D* and
Dg* are the most probable instantaneous and initial
grain diameters respectively, ¢ the time; H the activa-
tion energy for grain-boundary self-diffusion, and E,
a constant proportional to the volume per atom, the

Jattice spacing, and the specific surface energy at .

grain boundaries. The magnitude of K4 to be expected-
for annealed metals should, aceording to their theory,
be of the order of 0-1 em?/sec. The above relation gave

a very satisfactory description of their experimental -

_results, but in deriving it they by-passed the statistical
treatment by making.the crucial assumption that the
mean growth-rate of the grain aréa was an invariant

- fraction of the growth-rate of a grain of diameter equal -

to the most probable diameter, the boundaries of
-whioch were coneave parts of spherical surfaces with
radii of curvatnre equal to JD*.
. The principal object of the present work is to
_develop a more rigorous theory of isothermal grain
giowth in metals by using the grain diameters and
grain-boundary carvatures as statistical variables, and
by making allowance for the restrictive conditions
imposed by surface-tension and space-filing require-
menta. ’ ) . :

2. THE OBSERVED DISTRIBUTION OF GRAIN
SIZES AND SHAPES IN ANNEALED
"POLYCRYSTALLINE METALS

The experimental determination of the true spatial
grain sizes, although it has been undertaken in a few
cases (Roll,*® Scheil and Wurst,!® see also Smith®)
“is generally very laboricus. In general, therefore,

measurements are made on planar sections which are
prepared by outting the specimen in which grain
growth has taken place.f It is therefore desirable to
study first of all the size and shape distributions in
such planar sections, and then to. attempt to relate
these to the corresponding true spatinl distributions.
- “In relation to distributions as seen in random planar
sectioms, Beck® has shown, on the basis of plani-
métric measurements of grain areas in the central
zones of strips of aluminium of high purity containing
5001000 geains, that at three consecutive periods of

isothermal growth at 500°C the grain size-distributions.

were skew, but that all three curves could be super-

1 As will be seen later, the growth of grains in the surface
is not representative of the growth within the specimen;
& new section must therefore be made for observation at
lator stages of isothermal growth if the same specimen is used.
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Fic. 1. The relative frequency of grains in planar random °

sections of annealed aluminium of high purity as functions of
the number of sides per planar grain (circles) and the' grain
diameters (triangles), using data from Beek.'! The points
denoted by squares represent true spatisl distribution of
grain diameters; the full line is the theoretical lognormal
curve. .
imposed by making proportional changes in the
grain-size scale. The latter observation is-of particular
interest, because it implies that the functicnal form
of the normalized . grain-size distribution should
remain invariant if the grain-size scale is put on a
logarithmic base. ] _ )
In fact, if Beck’s smoothed composite curve is
plotted in this manner, it is found to be very nearly
lognormal. In Fig. 1 the lognormal distribution is
drawn as a full line; the triangles represent points
from Beck’s curve. He also found that the relative
frequency of occurrence of grains with a given number
of sides (or- corners) in a planar section remained
invariant during isothermal growth. Again, if this
distribution is plotted on a lagm_:itl;unic base, it is found
to approximate closely to the.lognormal curye. The
points denoted by circles in Tjg' Dare aken from the

smoothed curve drawn by BeckthIOugh ‘the super-

imposed distributions.

The essential identity of the form of the size and

shape distributions apparent from Fig. 1 suggests that

a statistical one.one relation might exist between
them, i.e. the smaller grains would, in general, be those

with few sides, and the'larger grains those with many

sides. As the actusl micrographs used by Beck were
inaccessible, and as it was in any ease desirable to
confirm the generality of the lognormality of the
distributions in other metals, similar size and shape
determinations were carried out on a micrograph of a
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FELTHAM:

planar  section * cut through a lump of annealed

Chempur tin. A circular zone lying in the centre of the
sample {oylinder of 3 em diameter and 1-3 cm height)
containing approximately 1000 grains was utilized.
The distribation of ghapes, shown in Fig. 2, is again
lognormal. The approximate distribution of the sizes
of grains with [rom three to seven sides iz shown in
Fig. 3. 'The scatter of the points can be seen to be

' considerable; an impragticably high count would have

to be made to obtain significantly improved accuracy

for values of n below 4 or above 6. For the case . = 7,

mea.sured points are not shown, as this would have
rendered the diagram rather confusing. However, the
miost probable diameters of graing with » > 7 were

" taken to correspond to the centres of the observed

respective grain-dinmeter. ranges, the latter being

plotted on a logarithmic base. The results are shown

AL H270 -

g ‘ // .\\-_ °

7 =
. g o \

// .rk".'\- 30 -

.'2 3 44‘—6 Lﬂ"'ﬁ

Fia. 2. The distribution of plenar grains in & ' random
seotion of an annealed sample of Chempur tin as a function
of the number of sides per grain, Tha ful! l.lne corresponds to
Y Iognormal dmtnbutmn

in Fig. 4 As was to he ex‘pected the scatter of the
“points for » > 7 is rather greater than for lower values

of n. The anticipated linear relation betweer.grain
size and grain shape is, however, conﬁrmed over the

entire rangé of i values observed in annealed métals’
(ie. from 3 to about 15).- By means of this relation it
is possible to mmphfy the statistical treatment of
grain growth, as developed in subsequent para.graphs .
‘to a univariate problem with its attenda.nt boundary

conditions.

The spatial dzstmbutwn of gmm diameters mzd inder--

Sactal angles

A theoretical treatment of the relation between the
distributions of grain sizes in Jplanar random sections
and the corresponding true spatial distributions has

been given- by Scheil’® and Scheil and Wurst.!9
Theu' method was used, together with mbles suitable -
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Fig. 3. The approximate distribution of grain diameters
a3 & function of the number of sides per grain, for grains
with three to aevan gides, obtained from a region containing
about 1000 greine in a planar random section of an annealed
sample of Chempur tin. (@.n=3; [ n=4; An—-ﬁ
O n = 6. Points for n == 7 sre not shown.) ]

for computatmn prepa.red on the ba,sm of this theory
by Johnson,I for the determination of the spatial
-grain-size ' distribution in the sample of aluminium
used by Beck.t The result, denoted by squiares in Fig.
1, shows that the spatial grain-size distribution is
lognormal, fitting the theoretical curve (full line)
rather better than the planar distribution {denoted by

triangles). - In the particular case of the lognormal
distribution the planar grain-size distribution thus
- . : n
N . -
0 4 - 8 12 o
g - -
. . :
5 ZE
o9 o S
c®
E’g c'/ ) g
o /(’ 1
3 .
g8 .
go 7 4
L= .
;A
= o
Q

W V5 Vo 13
- F1g. 4. The relation between the most probable diameters

(F:g 3) and the number of sides (or angle between sides).
"Bection as in Flgs 2 and 3, .

1 The regressmn analysis employed was based upon a nine.
“step  histogram “fitted - to the curve of planar grain-size
d:stributlon .




represents also the spatial distribution of  grain
diameters closely. The similarity extends not only to
the funittional form of the distribution curves, but to
the actual values of the grain sizes in the two distri-
butions. This is also confirmed in the recent analysis
of the relation between planar and spatinl grain
dimensions given by Spektor.1? He gives as the ratio
of the most probable grain dla.meters in planar section
and in space

(D*)sor'lﬂp*)spa(:e = (1l + ), (n

where 6 is the dispersion of the spatial distribution. In
2 mimtber of cases quoted by him (e.g. armeo iron) the
ratio is within 109 of unity. We thus have a near-
identity of the size distributions of grains in planar
random sections and in space. If we regard the straight
lines joining adjacent corners of grains in a planar
section to form regular polygons, then the polygon
angle # and the complementary angle. n are related
to n, the number of corners (or sldes} of the grain, by

Uy =1fmr — 0 = 2.~ (2)

We then use 1/x {or #) as an index of the shape of
the grain in planar section. We can use the same
‘criterion in the case of spatial grains if 6, in that easo,
is taken to be equal to the dihedral angle characteristic
of the polyhedron. The use ofel [ is preferable to the
use of n/2n, as the latter is inapplicable to spatial
grains. - We can now summarize the expérimental
evidence so far considered in the postulates:

(a) The nermalized distributions of the diameters

- and shapes of grains in planar random sections}

_of annpealed pure metals, as well as the
normalized distribution of the : true” gra.m
diameters, are of the same form.

(h) The distribuitions are lognormal.

As far as the distribution of shapes is concerned,
$mith® has shown that the most probable angle
between ad1acent sides of grains in' planar random
sections is equal to the most probable dihedral angle
between intersecting grain faces (dihedral angles) in

determines the grain-boundary curvature in the same
way as the polygon angle that of a grain in planar
gection (vide para. 3.2), this observation is particularly
useful, as it seems to indicute

{c) That the relations between diameters and shapes

* It is important to differentiate between & planar random
section, obtained by sectioning a three-dimensional aggregate.
wnd a troe planar disiribution (i-e. two-dimensional}, such ac
mny be [ound in coarse-grained thin sheet. The litler type is
not, in general, lognormal‘m our present considerations do
not apply o it.

space. Now, as the magriitude of the dihedral angle -

and (in so far as the houndary curvatures_ are
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assumed to be related to the shapes between)
diametérs and grain-boundary curvatures are
of the same form (vide Fig. 4) whether they refer
to planar random sections or to the corre-
sponding spatial distributions.

Although (e¢) cannot be regarded as rigorously
established, the foregoing results render it highly
plausible. Tt will therefore be taken as the third,
principal, working hypothesis in developing the theory
of grain growth.

3. THEORY

3.1. The rate-determining mechanism

We consider the growth of the diameter D, of the
ith grain of the aggregate. This will take place in steps

of one interatomie. spacing as atoms transfer to it from -
adjacent regions in the boundary, changing their -

allegiance from the neighbouring grains to grain i.
The frequency of oceurrence of translations of sufficient
ma.gmtude to effect a translation’, of an atom ia

vexp( —QﬂcT}, where » = kTR, and Q the activa- .

tion energy for a jump from the adjacent grain to the
end of the diameter of the tth grain, Si milarly, the
frequency of a return jump, i.e. return of the atom, is

¥ exp (—é:{i:.’?') so that, allowing for the possibility
of jumps to both ends of D, the rate of addn;mn of
atoms to D, is 2v{exp (mQ[kT) —eXxp (—ijT)] “How-
ever, only displacements of the atom with amplitude
vectors dirécted towards the grain D; can- be cffective.

These will comprise only about one- tlm'd of the tota.l

so that we ha.ve, finally, ‘

dD-,Idt

where @ is the jump dlqtance, ie. it is equal to the
lattice spacing.

We obtain the activation energies from the followmg

cqnsiderations. If the diameter terminates in boun-
daries which have the shape of spherical surfaces with
their radii of cuivature outside the grain, then if an
element of this surface dA4 advances o distance dp,
normal to itself, the acgompanying change in area is
(2/p.)dA4 dp,, and the volume swept out is d4 dp,,
where.p, is the radius of survature of the surface. The
surface energy per atom of volume V, _nvolved in this
advanee, is then ‘

W = 2VGIP,',
where g is the specific surface energy. Iftheoundaries

are not spherical caps, but Lxements of circular
cylinders, the encrgy i

W, = Ve/p,.

e T

3a(kT/h)[oxp (—Q[kT) — exp QT 3)
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FELTHAM:

¥Fic. 5. Triangular idealized grain with curved sides meeting

" o an angle of 120°, (The sides of the hexagon are ta.ngents 8%

tha vertices of the triangle. )

An examination of metal crjrsta,ls separated from an
aggregato'® shows that a good approx:matxon to the
specific energy per volume of atom should be given by
the mean of W, and W, ie. :

W=3§Volp; - {4)

axid this will be used in the present work. In any case,

as will be seen, the exact value of the numerical

" eonstant in equation (4) is of little consequence.

Thus, if H is the activation energy for grain-boun-
dary self-dlﬁ"umon, the actwatlon energies in equa.tl(m
{3) will be -

Q =H—W, and Q H+W
and as W <& & kT, this gives with equation (3) for the
lme&r growth rate of the grain

dD jdt = (2Vac[p)exp (=H[ET) )

on’ subsﬁtuting for W from equation (4)." Now, o will
be taken as constant, because in randomly oriented -

aggregates of grains, such as are annealed or recrystal-
lized polycrystals, there is only a small probability
that two grains shonld meet at angles which would
give a boundary of low energy.® Under isothermal
conditions the growth-rate is - theretfore determined
essentially by the magnitude and sign of the local
grain-boundary curvature P

3.2. The relation between Jmm shape cmd gmm-r

boundary curvature

If, a5 was assumed, the specific surface energy o is
independeut of the mutuzl orientation of adjacent
grains and the metal is well annealed, the boundaries-

* will tend to meet: at the equilibrium angle of 120°, hoth
in spatial and true two-dimensional distributions. -

This geoineiric roguirement necessitates the intco-

GRAIN GROWTH Livy

duction of curvature into the grain bourdoriea. Thos,

~ for example, in a true two-dimensicnai distribution

polygons (idéalized grains) with polygou angles less
than 120° will devclop ennvex sides, as shown for the
triangular groin in Fig. 5, while graine with polygon
angles greater than 120° (i.e. number of sides greater

.than six) will tend to have concave houndaries.

Both magnitude and sign of the curvature of the
idealized grain will therefore depend upon its - sha.pe”
(equation 2).

We shall first consider the relation between shape
and grain-boundsary curvature in the csse of. truly
planar grains, or, what is equivalent, in the case of a
three-dimensional aggregate of columnar grains with
their long axes perpendicular to the plane of section.
‘We shall regard the resnlt as a first spproximation to
the - corresponding :elation in .the case of rendom
planar sections, and subsequently modify it somewhat
by semi-empirical means.

. Now, curve 1 in Fig. 8 is drawn through thb points
(n =23,4,...), repmsentm.g the ratio :

.f(“f“*) = rfp;= Dif2p;, B {6}

where # is the number of sides of the regular polygon
to which the grain is related, and #* (=<6) the most

_probable number of sides to be expected in a truy
planar distribution. (The adoption of a special symbo!

for-this numerical constant is intended to help in the
dmcusmon at a later stage.) '

* 'With the convention that the radius of curva.ture i
posﬂslve in the case of convex bo.mdnrles, e.g. in the

_case of the three:cornered grain in Fig. 5, it is easils

shown by mmple geometry that

finfa*) = sin [ (1~ ~—)] / fu [“*)]- a,

- Cqfw
V!VEVB

4 15 V6.
_ ' T 14
B4 e
i
a 04 /,_,." ,
S 00 27
. ,’ N
-yl - 'k
0-4l- 7
-0-8k '
i I -
3 B 2 13
n

13, 6, Ths fuﬁctionsf{n/n*) {equations 7 and'3) (curve ! ) end

o[( e} )

' {equation 1t and 18) {curve 2). - -
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The grain diameter in equation (6} is taken to be the
diameter of the circumseribing circle. As can be seen,
flnfn*)is negative for n less than 6 and positive for all
greater n. As we can write

ffn*) = fr*{n) (8)
(with #* = 60° in the present case (equation 2}, we
‘have as our {irst approximation, from equation (5}
and {6) . ‘
== (4Vao/hD)f(n*n) exp (—HET) (9)

dD,jdt
or dD2fdt = Kf(n*/r) (10)
where ' 7 .
K = K, exp (—H[kT) = (8Vaa/k) exp (—H[kT} (11)

is a constant at any given temperature.

It is apparent from equation (10) that, in a distri-

bution of grains, the grain size D, and the “aha.pe
function” f(xn*/#) are the two vamables to be considered
further and that, in view of the functional form of

Jim*y), grains with fewer than six sides will tend to .
diminish in size, while those for which # > 6 will tend’
to grow. The overall increase in the mean grain g Bize .

on isothermal annealing is then the resultant of the
simultaneous operation of both processes taken over

all grains,
3 3. Limiting oondmm

In the preceding. paragraph. we ha.ve dealt with the- —

individusal grain. We shall now consider the growth
process apparent from planar random sections. As the
function f(n*/n) relates angles (polygon or dihedral)

to grain-houndary eurvature as conditioned by surface

tension requirements, we would expect it to apply with
reasonable accuracy also to grains in a distribution.
However, we expect slight deviations for the follomng
reasons, among others:

{a) Grainz will not have idealized ‘geometrical
shapes, such as are shown for planar six- and
three-sided grains in Fig. 5. In fact, it would not
in general be possible to fill space with idealized
grains without some voids . between - them.
Consequently only the average curvature of, say
gn n-sided planar grain can be expected to be
given by p, if the mean grain diameter is D,

“"Bquation (6) will therefore not hold exactly.

(b} Although we can reasona.bly expect p* to be
close to 60%; it may not be exactly equal to that
value. . -

{c} The requirement that, for example, t.he total
area of a planar section under observation must
remain invariant during grain growth, as the
grains grow at the expense of one another, also
imposes limiting conditions on f{5*{n).
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Now, in relation to (l) we observe that the most
probalble number of sides per polygon in planar seetions
is 5-2 (Fig. 1) {and approximately 4-8 in Fig. 2). That
the most probable numbor of sides per poelygon in
planar sections of annealed metals lies closer to 5 than
to 6—in fact, that it is generally equal to ahout 5:2—
has already been observed by Smnith.® As yet, no
complete explanation of this fact is available, and, as
a first step towards obtaining an improvement on
f(n*/n), we put n* = 69°, (corresponding to n = 5-2;
equation 2), which gives for the most probable polygon
(or dihedrnl) angle 0* = 111°,i.e. 7 5 o/ below the ideal
value,

The continuity requ'u-ement (¢) can be stated in a
mathematically mote convenient form, i.¢. the rate of
change of the total area must remain zero. Now, if

"N(D,) d(in D,) is the number of planar grains in the

gize range ‘d(in D), and D2 is taken as the grain ‘ares,
ag a first appmxmmtlon we must have (using the.
mt-egml rather than the su.mma.t.lon) '

: f N(D,)dD, ) d(in D,):O; (12)

the mtegra.tmn extending over all grams in the area
unider observation. . - ,
Smoe by postulate (g} (para; 2. 2) wa can wnte .

N(D,) d(n D,) = 4 N(D)d(n B) "

(ormttmg subscnpts t) where 4 i3 a consta.nt and D
refers to the spa.tml gmm sxze, and since also {(para. 2. 2) ‘

7 D’/dt dD*fdt ¥ D, ._D
the subscmpt ¢ in equation (12) can be omitted; the

- latter then applies to the spatial gram-sma distribution.

To evaluate equation (12) we must now expresa
dDzjdt in suitable form. _
Now, from Fig. 4 we have .
n/n* = n“/ﬂ =a+ (1 — ac)(D{D*}

where o = const. _—-no/n , and 7n, the value of » ~
corresponding to D =4.. We can therefore define a

13).

" $l*n) = wDID*) 4
and write equation (10) (onuttmg subscript} in the
form

At — Kt/ =

Ky(D|D¥)y  (15)

where y( Df D¥) is tb be determined from the conditions

that $(n*/%) should approximate closely to f(zn*/n)
over the range of 7 encountered in practice, and that
equation (12) be obeyed on substituting y(D/.D*) for
dD2/dt (cquation 153). Also, of course, we take
0% = 111°, i.e. o* = 69°. ' N
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Now, on substituting for the lognormal distribution

N{Dhoc exp {—-0%In (D} D*)]7},

{where D* is the most probable spatlal grain diameter),
equation (12) becomes -

b == gonst.

f exp {—(In (D/D*F}p(D/D*) d(ln D) = 0, (16)
| oo { ] _

the integration extending from Dpyp to Dpyax. As
w(P/D*) i required to approximate to f(n*f#), it
must be a monotone slowly increasing function over
the range of D found in pgactice. The integral
(equation 18) will therefore converge rapidly on:both
sides of D*, i.e. for larger and smaller values of D, so
that it is permissible towrite Dy == 00 and Dy, =0.
Solutions of the’ resulting homogeneous Fredholm
equatjon are given by

w(D/D‘)=Z,0ﬁﬂn (DIDMyPmi2, o (17)
= - .

where the (,’s are arbitrary constants. A particular
solution which is monotone for all finite values of the
variable, . which is & good approximation to f(n*/n)

-over the range of dihédral (or polygon) angles found

in practice in annealed metals, and which haa its zero
at the point corresponding to 0 = 111°, is given by
PLDO[D*) = I (DID*) = In {{tn*/n) — ol/(L — )},
(18)
where the last equation is obt.amed from equation (13).
The curve obtained with #* — 69° and the appro-

priate value of « obtained from F]g 4is. shown as a

full line in Fig. 6.
‘We can therefore now write equatlon (15) in the form
dD2dt = K In (D,/D*). : {19)

This equation cannot be integrated without a know-
ledge of the time-dependence of D¥*; obviously D*

must increase in the process of grain growth, i.e. with -
time. In deriving equation (19), our knowledge of the .

functional form of the distribution curve of grain
diameters has been utilized (equation 16). In order to
determine the time.dependence of D*, it now becomes
necessary to utilize -also the time-invariance of the

_ shape of the distribution curve.t

3.4. The mean growth-rate

A diagrammatic representation of the growth -

process is shown in Fig. 7. The arrows indicate the

tItis s of interest ta observe that the logiermal disteibution
funection should be obtainable as & solution of equation 16 if
it were regarded as the unknown function, and y(D[D*) as

given by equation (18) were substituted into equation’ (16} -
. a#& kernel on account of it close approximation to the ‘surface

tension function” f{n* /). This indicates how surface tension
controls the grain-size distribution.

4
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Fia. 7. Disgramatic representation of grain growth for the
normalized lognonna.] {time-invariant) g'ra.m -size distribution,

respective growth-trajectories of_.mdnndua.l graing in
their transitions from the lognormal distribution at
time £ to the distribution at time ¢ + Af. Grains which
have diameters smaller dhan D, at time ¢ will be
absorbed in the interval Af, and will not appear in
the distribution subsequently. -Grains with diameters
in the range D-D,* will diminish during isothermal
annealing, while those with diameters greater than D;*
will tend to grow The tra,]actors will not, in- general }
intergect. '

Tt in important to note thaﬂ; the. largest grains in 1 the
distribution - at time ¢ will also individually be the
largest. grains at time #-- Af, since the growth
trajectory. Dymax — Demsx TUAL, by necessity, be
essentially linear.’ Bince the dlstnbu’mon remaing
lognormal at gl times, the ratio :

. DuaxfD* =25 . .. (20)
(i.e. 13/5°2 in Fig. 1) is independent of the time, and we
can obtain the true, observable, growth-rate of the
largest grains ﬁ'om'&qua,tions (19} and (20):
which yxeld.s on mtegratlon

B D’omu ——Ktln25

or, on substituting for Dmax froin equations {20}, and
for K from equatlon (11), '

(D) — (Do* 2= () Vaa/k}t exp (—HﬂcT), {2
where 1 is a numerical constant of order unity.f
Equation (21), relating the observable variable D* to

the time of isothermal growth is therefore the
requ:red result. )

%+ The actual magnitude of D here obtained is 13, which
compa.res well with the value of 9-5 given by Cale, Gillam, and
Feltham.!? In cases where g is not known, it can be estimated
from the relation ¢ ~~ Gaf8, where @ is the sheat modulus
of the metal 1187
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1. COMPARISON WITH EXPERIMENT
AND DISCUSSION

Some factors, apart from those already discussed,
which may affect the rate of grain growth in metals
were considered by Burke.!! The most important of
these are effects due to nonmetallic inclusions, Zener
(vide ref. 1) exarnined their growth-inhibiting funetion,
_ and showed that if the growth was surface-tension
controlled it would be arrested by inclusions at a stage
when ' S
szw(Pincl = Lff,

where p,, and py, are the mean radii of curvature of
the grain boundaries and inclusions respectively, and
f the volume fraction of the inclusion in the metal.
The relation provides a means for estimating the
magnitude of the effect; no attempt will here be made
0 incorporate it into equation (21). '
The growth-rate may also be influenced by residual

internal stresses due to cold work; the energy duve to -

cold work (per atom) may exceed W (equation 4) by
an ‘order of magnitude or more if the metal has been
hearvily cold-worked.®8 Y L
* An important effect is observed if the dimensions of
the specimen (e.g. thickness of the strip or radius of
the wire) are comparable to the mean grain ‘size.
Beck'® and Beck and co-workers*® first demonstrated
that to avoid the slowing-down of grain growth due to
" “shect-thickness effect,” the minimum dimensions. of
* the specimen ~hould preferably be larger than ten
times the mean grain size. The effect is probably due
to & number of causes, of which the principal ones are
to be sought in the fact that

{a) Owing to the flatness of the surface, the surface

" grains have much larger average radii of ‘curva-
ture than would correspond to grains of similar
respective sizes in the interior of the metal;

(b)
sizes will not be Jognormal: (vide footnote in
para. 2.2), and the dispersion of grain diameters
will be rather narrow,'® i.e. the grains will be of

" nearly uniform size with #* equal or very close

to 6. The value of f(n*/n) for most grains will’

thus be low.

This pronounced effect does not appear to have been
recognized by a number of workers, with the unfor-
tunate consequence of invalidating much of the work,
e.g. studies ofethe grain growth in rickel,1? armco
iron, 18 in silver, Jead, and tin,® ete. “Activation
encrgies” derived from such data are invariably of a
very high, improbable magnitude, sometimes close to
the activation energy of sublimation.

A further precaution which is hut rarely observed

In very thin samples, the distribution of grain -
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(but was taken into account, for example, by Wenseh
and Walker#7) is the elimination of nucleation such as
is likely to persist for considerable periods during
growth at comparatively low temporatures if the
specimens have not been fully annealed. Again a
diminution of the observed growth-rate may result on
account of the continued appearance of new, small
grains. In work on grain growth in aluminium of high
purity, Beck and co-workers® found that their

" result could be represented very well by the empirical

relation (D*)™ — (Dg*)™ = K(T}, in which m ap-
proached the value 2 at temperatures close to the
melting-point, but decreased with decreasing tempera-
ture. It is possible that but for the variable ineidence
of nucleation, equation (21) would have proved
auitable for the interpretation of their results.

Of the remaining work known to the author, only
that of Burke' on pure cartridge-brass snd that.of
Cole, Gillam, and Feltham!™ on austenite, lend
themselves to comparisons with the theoretical result
(equation 21). The latter-named workers found good
agreement with equation {21) over a wide range of
grain diameters; with very large grains, deviations .
due to the “sheet-thickness effect” were eventually
found. - Burke, who actually investigated this effect
in annealed cartridge-brass, found the empirical
relation e

dD*jdt.= K(T)(1/D*) — (1/D;*)]

appropriate for the representation of his results, where
D* is the most probable imiting dismeter attained
upon prolonged heating at the tempeérature T. Ity
magnitude is determined by the thickness of the strip

"used as specimen. If1/D,* is negligible, integration of

Burke’s equation leads to the same functional relation-
ship as given by equation (21). Burke obtained an
activation energy H =40 koal/gram atom, but
‘cansidered his msthod of obtaining it open to criticism.
If, however, H is taken to be 0-7 times the activation
snergy for volume self-diffusion,!” and the latber(?
as 43 keal/gram atom, one obtains H = 30 kealfgram
atom. With this value, Burke’s data require a value

“of K, of the right order of magnitade to comply with
© equation (21). , '

Dean and Hudson,®® using a.bigh-purity- 1% Sb
alloy of lead in the form of large cylindrical samples,
also found a linear relation between {D*)? and ¢, thus
confirming the functional form .of equation (21).

- Although their experiments were carried out af three
" different temperatures, neither K, nor H -can be

evaluated from their results, as the system was no
longer a homogeneous solid solution at -the lowest
temperature used (150°C).
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FELTHAM: GRAIN GROWTH s

The experimental work surveyed above, in =o far

a8 it lends itself to comparison with the theory, tends
to confirm the result given by equation (21). Further
data, obtained with the precautions outlmed would
nevertheless be wvaluable.

lal—l
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