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Integral Point-Matching Method for Two-Dimensional 
Laplace Field Problems with Periodic Boundaries 

An integral point-matching technique is applied to two-dimensional Laplacian fields between periodic boundaries. This 
formulation leads to an algorithm that reduces the size of the matrix, economizing on computer workspace and inversion 
time. Several example problems solved on an APL terminal system are included. 

Introduction 
Extensive literature exists on various techniques for field 
computations which are associated with the equations of 
Laplace and Poisson. For example, in a recent group of 
papers devoted to LSI packaging analyses, a survey was 
included on computational techniques as applied to the 
field problems in integrated circuits [1]. In addition to 
wide coverage in the bibliography of this paper, some top-
ics included in the same issue are finite element methods 
[2] and matrices resulting from symmetric field problems 
[3]. Elsewhere [4], reviews and comparisons are made 
among various algorithms used in direct methods. In the 
finite difference methods, the partial diflFerential equations 
are solved on subsectioned networks of regular and irreg-
ular regions [5, 6]. Similarly, in finite element methods 
the field must be discretely lumped in grids and nodal 
points so that the conservation laws can be applied at 
each nodal point [2]. All of the grid information is a part of 
the data to be handled in the numerical computations. 

In another approach, integral equations, instead of par-
tial differential equations, may be used to develop numer-
ical techniques [7, 8]. The integrands of these equations 
consist of known kernels and generally unknown source 
charges; determination of the source charges is the essen-
tial part of the numerical solutions. 

In the absence of distributed sources (or charges) in a 
field with known boundary conditions (the Laplace prob-
lem), the only source charges to be determined are bound-

ary charges. Therefore, in an integral method, only sec-
tioned parts are the boundaries, regardless of the field 
size. This means far less data need be handled in compu-
tation compared to either the finite difference method or 
finite element method. This makes the integral methods 
attractive for small computer systems including inter-
active terminals which offer smaller storage capacities but 
almost instant turnaround output. 

In practical situations, many field problems involve 
lengthy boundaries that are periodic, such as magnetic 
fields between toothed poles of stepping motors [9] and 
electric fields between conductors regularly spaced in in-
tegrated circuit boards. If, in a straightforward manner, 
enough periods are to be taken in the analysis so that end 
points do not affect central periods, a large number of ele-
ments would be required, resulting in a large matrix. 

A better approach is to incorporate the periodic nature 
of the solution into the formulation and reduce the result-
ing matrix corresponding to one period of the boundary. 
This not only facilitates use of an interactive terminal but 
also gives more accurate results, making the technique 
also suitable for medium-size computers. Basically, there 
are two approaches to take. In the first, only one period is 
taken in the integral formulation. Since the ends of this 
period must be included in the closed path of the line in-
tegral, this results in added boundaries to be sectioned, 
and therefore added conditions (which are periodicity 
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conditions). In the second approach, general formulations 
are carried out to many periods. And then, periodic con-
ditions are imposed on the surface charges. This avoids 
introducing ictitious boundaries and results In a reduced 
matrix size corresponding to the number of elements in 
one period without end lines. 

In this paper, the previously mentioned more general 
formulations [10] are modified for such special appli-
cations to achieve reductions in data and in required stor-
age capacity. Several examples are presented to indicate 
the usefulness of the formulation. 

4C. 

Figure 1 Periodic boundaries. 

Formulation 
There are several known approaches for numerical solu-
tions of integral equations [7, 8]. For Laplace problems, 
the methods essentially determine the surface charges 
from the boundary conditions [10]. In one method, the 
surface charge in each sectioned boundary element is as-
sumed constant over the element. This allows for each 
integration to be carried out on the kernels only over the 
small element. Then, these unknown surface charges, 
each representing an average value over the respective 
element, are determined through matrix inversion. The 
detailed general formulation is provided in Appendix A. 
In this section, an extension to periodic boundaries is dis-
cussed. 

Figure 1 shows a field between periodic boundaries. 
The two opposing boundaries may not be similar and may 
not have a vertical line about which the field and bounda-
ries are symmetric. But we assume that there is a com-
mon periodicity, P, so that the solution also has the com-
mon period, P. The ends of boundaries may meet to form 
a field between two loops, as in motors, or ends may ex-
tend to infinity, in which case the ends are regarded as 
joined at infinity. 

A straightforward computational technique to solve pe-
riodic boundmes requires that we take several periods 
for computation. Then we use the solution of the central 
periodic section, which is least influenced by the end 
points. For simple geometries this technique may be sat-
isfactory. However, for many practical geometries, the 
technique requires a large number of data points. As a 
result, it requires much computation time, even with a 
large computer system. Also, the accuracy of the data be-
comes questionable due to round-off errors and the ef-
fects of the end-point sources, which are usually large. 

We avoid the above problems by making use of the pe-
riodicity of the boundary sources and boundary condi-
tions. Returning to Fig. 1, let us designate the periodic 
sections by P„, P,^, P^^ • • •, with P^ being the central one. 

Positive subscripts indicate those sections to the right of 
the central section; negative subscripts indicate those to 
the left. In each period, the boundaries are divided into N 
sections AC,, ACj, • • •, AC,̂ ,, of which some (AC ,̂ • • % 
ACj) are on one side and the others (AĈ _|_j, • • •, AC )̂ on 
the opposite boundary. Note that it is not necessary to 
have an equal number of sections on both boundaries. 

We note that the boundary conditions are periodic with 
common period, P, so that the solution is also periodic. 
This means that values of a,, 0,., and y^ of Eqs. (A12) and 
(A 13) of Appendix A in period P^ repeat the patterns in all 
other periods. More significantly, the boundary sources 
o•^ in P^ also repeat the pattern in other periods. There-
fore, 

(a:l) (:r2) 
0-, = 0-, (rr^a:^ =o-^- = . . . / = 1 , 2 , •••iV, (1) 

where the superscripts designate the periodic sections. 

It can be easily shown that the N independent equa-
tions for <r are, from (A14) and (A16), 

A' 

V 
-m=0 ,± l ,±2 . ' • • 

o-j = ri 

where, from (A21), 

<f;f = /{f.; 2,, 2.^,}, 

/ J * = i{z^, z. + mP, Zj^, + mP) 

/ , j = 1,2, • • s iV , 

m -= 0, ± 1 , ±2, • • , ±M, • • -. 

/ = 1,2, •, N, (2) 

(3) 

Thus, the matrix is reduced from the size of many peri-
ods to that corresponding to one period. Note that once 
the matrix elements t^ corresponding to the central sec-
tion Pj, have been computed, subsequent matrix elements 
if?" follow immediately with translation of ẑ  and ẑ ,̂ by 
mP. In particular, if boundaries are periodic in the x 
coordinate, only x^ and x^ ,̂ are translated by mP, which 
are real components of z's. 623 
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Input data 

Compute source charge? 

Obtain potentials at 
desired points 

Obtain fields at 
desired points 

Obtain admittance matrix 

Figure 2 Program flow diagram. 
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Figure 3 Parallel plate capacitor. 
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Although in Eq. (2) the inner summation is shown to 
extend to infinity, in practice a finite sum is sutlficient. The 
terms with nonzero integers of the sum index, m. repre-
sent effects of chaiges placed outside the central period. 
Thus, the higher the integer, the lower the value of the 
terms, and the summation may be terminated at a reason-
able number. A practical way of determining this terminal 
integer, of course, is to check the incremental change 
with a stepped summation. It is noted that the size of the 
summation does not aifect the matrix size and has no ef-
fect on the inversion time. 

It is also noted that these effects of charges outside the 
central period can be eliminated by introducing boundary 
lines on both ends of the central period. The equivalent 
charge distributions are obtained by imposing on these 

boundaries the periodic (or matching) potentials and de-
rivatives. The charge equation corresponding to Eq. (2) 
takes the form 

V 1 iiF^ = >-. 

'+2X 

'+2Jf 

1 = 1 , 2 , • • •,N, (4) 

A'+2X 

W+2Jf ' i= N + i,N + 2,- • -/N + IK, (5) 

( \ , = # " • 

^ ; = * /2, ) 

^« = 
a * 
a/^^'^^^iif^^-), 

where K is the number of sections in each of the end lines 
and in Eq. (5) indices j and j ^ K designate the corre-
sponding elements facing each other having common po-
tential and derivative due to the periodicity. Note that 
this yields a matrix size larger than that of Eq. (2) by IK. 

Once boundary charges, o-'s, are determined, (A7) 
through (A 10) are used to compute field quantities, where 
the summation integer extends to all charges inside and 
outside the central periods. Again, in these computations, 
the summation would be truncated at the reasonable dis-
tances as the following examples will show. 

Examples 
In order to demonstrate significant features, the method 
developed in the previous two sections was programmed 
using APL [11]. The program flow is shown in Fig. 2. 
First the computer terminal requests input data: bound-
ary points and boundary conditions. The input data are 
used to solve for sources, o-'s (A23). With the knowledge 
of source values, we are then able to determine potential 
and field quantities at any specified point using Eqs. (A7)-
(AlO), 

• Example J: a parallel plate capacitor 
Figure 3 shows a section of an infinitely large parallel 
plate capacitor. This example was chosen because its so-
lutions are well known, enabling us to gain insight into the 
simplicity of data input and the rate of convergence. 

We consider the plate to consist of infinite numbers of 
periodic sections of the unit element shown in Fig. 3. We 
want to find out how many such elements are required to 
obtain reasonably accurate results. For the example, the 
unit element was divided into ten equal segments (five on 
the top plate and the other five on the lower plate). There-
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3 and 7 

J I I 

Figure 4 (a) Potential distribution along x = 0.5 of parallel plate capacitor (Fig. 3) with various numbers of elements in unit length 
(period), (b) Electric fields d4>/iix along x = 0.5 of parallel plate capacitor, (c) Electric field d4>/dy along x = 0.5 of parallel plate capacitor. 
(d) Capacitance of parallel plate capacitor as a function of element numbers in unit length (period). 

fore, only 12 coordinate points, 10 boundary values and a 
little other input information, are entered into the com-
puter. The top plate is set at a potential of 0.5 unit and the 
lower plate at —0.5 unit. 

In Figs. 4(a), (b), and (c) we show values for potential 
and electric fields iAx = 0.5 as a function of the number of 
periods, N^, used in the computation. This line is chosen 
because this is the worst-case situation. In Fig. 4(a) the 625 
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Figure 5 Cylindrical conductors above ground plane. 
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Figure 6 Eflect of ground-conductor separation (Z,). 

deviation of potential is significant with the central period 
only [N^ = 1 or M = 0), which is the condition for a finite 

626 plate. However, with increasing N the potential value 

quickly converges to the true one (<̂  = y - 0.5). Figures 
4(b) and 4(c) show the x and y components of the electric 
field. As can be seen, the convergence is not as rapid as in 
the case for the potential. This is expected since the elec-
tric field is a potential gradient. For N^ greater than 7, 
both components approach the true values (£j.= 0 and 

For the potential as well as the electric fields, the accu-
racy is poorer near sources. This is so because the source 
at each segment is assumed to be constant instead of a 
continuously varying value. Therefore, we expect that 
field values will be more sensitive to approximations near 
the boundaries. Figure 4(d) shows the capacitance of the 
unit element as a function of N^. The capacitance con-
verges rapidly to the true one (C = 1). With N^ equal to 
only 3 elements, the capacitance deviates from 1 by less 
than 0.007. 

• Example 2: resistance calculation 
Figure 5 shows a series of cylindrical conductors above a 
ground plane. Both the conductors and the ground are 
placed in a resistive medium. We want to compute the 
resistance between one of the conductors and the ground 
when a unit potential is appUed to all of the conductors. 
We also want to find out the effect of the conductor-
ground separation on the resistance. 

A straightforward conventional approach requires that 
at least three conductor boundaries and a section of the 
ground above the three conductors be used in the compu-
tation. Then the resistance of the center conductor (de-
fined here as the inverse of the net current flow from the 
conductor) must be computed. Obviously, this approach 
requires a large number of boundary points resulting in a 
large matrix for inversion. Also, the accuracy of the re-
sulting solution is open to question. 

Using the technique presented in this paper, however, 
the number of boundary points required is significantly 
reduced since we need to specify the boundary points of 
only one period. Therefore, our technique enables prob-
lems of this complexity to be solved with a smaller com-
puter workspace. Also, the data input becomes simpler, 
making it more attractive to users. 

Figure 6 shows the effect of ground-conductor separa-
tion (£) on the resistance. For L greater than 1, the resis-
tance is very much a linear function of L, Its value is sig-
nificantly different from that of a single conductor above a 
ground plane, the solution for which is well known. If we 
had used the latter value to approximate the periodic 
problem discussed in the example, there would have been 
a serious error. 
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A feature of our technique is that once the source 
charge is obtained, field parameters are easily obtained by 
simple computation. Figure 7 shows the current density 
distribution around the conductor with L equal to 3. This 
is obtained using Eq. (AlO). 

For this example, we have divided the ground plane 
and conductor into 26 and 40 equal segments, respec-
tively, resulting in a matrix size of 66 by 66. Eleven peri-
ods are used for the computation, and the CPU time to 
obtain the source charges was 58 seconds with the IBM 
System/370 VM/168 system. 

Discussion 
As the previous examples have demonstrated, the APL 
algorithm in conjunction with the computational method 
presented in this paper provides a convenient means to 
solve many practical periodic boundary problems of arbi-
trary geometry. The algorithm is interactive, and the 
amount of input data is small since only boundary points 
and boundary conditions need be specified. It can handle 
multiple boundaries which are either closed or open. 
Since the boundaries of only one period have to be en-
tered, the size of matrix to be solved is significantly re-
duced. 

Although the examples presented happen to be sym-
metric as well as periodic, symmetry is not prerequisite 
for the present formulation. Figures 8 and 9 show a modi-
fied conductor and a step-motor configuration showing 
asymmetries. If, as an alternative to this method, only 
one period is used in the formulation, additional side 
boundaries must be introduced with periodic conditions. 
As shown in Eqs. (4) and (5), this increases the matrix 
size and introduces errors nesir the ends. Our present for-
mulation circumvents such difficulties. 

The amount of workspace required to invert a matrix of 
size N is about 25 N^. Therefore, the reduction of the 
boundary points by a factor of 3 implies an order of mag-
nitude reduction in matrix size. Therefore, the CPU time 
is considerably less, and the workspace size requirement 
is less severe. We have found that many practical prob-
lems could be solved using less than 100 boundary seg-
ments with satisfactory results. Unfortunately, in order to 
invert a matrix of this size, the active workspace still has 
to be at least 250K bytes. This limits the technique to only 
those who have access to large computers. However, 
with the accelerating computer technology, more people 
will be able to aflford or to access a large system in the 
future. 

The graph in Fig. 10 shows some indication of the CPU 
time required to obtain source charges for a given number 
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Figure 8 Cylindrical conductors above uneven ground plane. 
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Figure 10 Computation time on an APL system for inversion of 
N X N size matrix. 

are in the area of stepping motors and print heads used in 
nonimpact printers. 

For the future, we note the proliferation of small port-
able computer systems having limited workspace but pro-
viding plenty of CPU time. In order to adapt the al-
gorithm to such systems, we need to incorporate a mathe-
matical technique such as the matrix partitioning method. 
This reduces the workspace requirement at the expense 
of computation time. However, this is not a problem with 
a standalone system dedicated to one problem at a time. 
Another area of future work is to extend the algorithm to 
handle multiple dielectric boundaries and Poisson's equa-
tion. 

Appendix A: Mathematical formulation 
Although the mathematical formulation is fully given else-
where [12], a review is presented here for completeness 
and convenience in extending the method to the present 
application. 

The partial differential equation and typical boundary 
conditions that define the Laplace fields are 

KJ% = 0 

and 

dn 

along the boundary. 

(Al) 

(A2) 

Figure Al Coordinates for two-dimensional Laplace problems. 

Typically, ^(x, y, z) represents the field potential and 
y<^(ji, y, z) the gradient vector with B4>/^n indicating the 
gradient normal to a boundary surface. The boundary 
condition (A2) includes the Dirichlet condition (a = 1, 
fi = 0), Neumann condition (a = 0, j8 = 1), and imped-
ance condition (a = 1, y = 0). 

Alternative to (Al), the field can be expressed in an 
integral form with equivalent boundary sources (or 
charges). Thus the potential at position vector r is given 
by 

828 

of boundary elements. This requires a number of matrix 
operations including matrix inversion. For example, it 
took 65 seconds for the APL system on the IBM 370/168 
to obtain source charges for a problem whose boundary 
was divided into 70 segments. Because of this reasonable 
CPU time, many practical problems can be handled 
within a day or two, and we have been able to assist prac-
ticing engineers with a quick diagnosis of a problem, 
pointing out a key design parameter in optimization work. 
Some of the design problems that we have encountered 

< (̂r) = I G(r, r')(r{r')ds, (A3) 

where o- is the source (or charge) density along the bound-
ary defined by position vector r ' and G is the kernel or 
Green's function with the surface integral extending over 
the whole boundary. In particular, for two-dimensional 
problems (Fig. Al) , 

<l>{x, y) = cr(x , >• ) In ^'^' 

V (x - x'f + (y- y'f 
(A4) 
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where K is an arbitrary constant; the primed coordinate 
system c = c(x , y) traces the boundary for the Hne in-
tegral. The condition imposed in the a priori unknown 
boundary source cr(x', y) is that (A4) must satisfy a 
boundary condition such as (A2). 

In general, an exact solution for a-{x', y ) is not always 
possible. However, if the line integral is replaced by a 
Riemann sum, an approximate solution can be obtained in 
a straightforward manner. To this end, boundary C is first 
sectioned into ACj, AC^, • • •, AC and, assuming o- is con-
stant over the small subsections (Fig. A2), 

<^U> y) = X o"i 
1=1 

In 
K 

dc 

V U - x')^ + (y - yj 

i= i 

where (s^ is the value at the midpoint of AC. 

Evaluation of line integral 

(A5) 

^ix, y) = In 
K 

dc 

-'•' V (X - A' + (y - yf 

is achieved through complex variables z(x, y) and func-
tion Vy(z) defined by 

1 (^'" A: 

W.{z) = - I In -, di 

= — [(z - ẑ .̂ j) In (z - Zĵ ,) - (z - z.) In (z - z) 

+ (z.^, - z.)(l + In K)\ (A6) 

where u^ is the unit vector parallel to AC, which extends 
from Zj to z.^j on the complex z-plane. With the function 
WjCz) defined as above, it can be shown that [13] 

,v .v 
< (̂x, y) = X o-,^,(x, y) = I <r, Re [W.(z)], (A7) 

i=l !=1 

where Re [ ] stands for the real part of a complex func-
tion. Similarly, 

— = y (T, — = > cr, Re 
•dx t ' dx t ' 

— = > cr. — = > o", Im 

sy t ' dy t ' 
d4> ^ d^^ ^; 
c)n an 

dW.{z) 

dz 

dW.iz)' 

3z 

r aw.c 
' az 

' 

01 

(A8) 

(A9) 

(AlO) 

Here u. is normal to « as shown in Fig. A2. Im [ ] signi-
fies the imaginary part, and 

dW.(z) 1 z - z.^, 
^ = - In ^ 

az tt. z — z, 
(All) 

Figure A2 Sectioned boundsiry on complex plane. 

The boundary condition (A2), when rewritten for the 
sectioned boundaries, is 

ad. 
axj,. -t- /3 — ' = -y / = 1, 2, • • •, A ,̂ (A12) 

dn 

where <̂ j = <l>(z), and z. is the midpoint of AC; or z. = 
]/2(Zj + Zj^j). Thus, the source a.'s are determined ap-
proximately by substituting (A5) or (A7) and (AlO) into 
(A 12), giving 

y o-.̂ p.cz.) + /3i = r,, (A13) 

or 

X 

1 
a^. 

o-̂  = y. / = 1, 2, • • •, N; 
(A 14) 

or, in matrix form, 

[f]a = y or 

CT = M - ' y , 

where 

ail'. 
<'.. = a.->I'.(z.) + B. ' (z.), 

^.(z.) = Re [W.(z)l 

—^^-^ = Im « , — ^ 
dn Sz 

(A 15) 

(A16) 

(A17) 

(• = 1,2, • • •, Af. (A18) 
629 
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The terms & and y are column matrices (o-,, o-̂ , • • •, o-̂ ) 
and (y,, y^j" ' % Tjy)' respectively. The complex functions 
W.and, #W^/5z are given by (A6) and (All) and it is note-
worthy that 

W.(z.) = W{i- z., 2^^,}, (A19) 

(A20) 

(A21) 

Once or̂ 's have been determined, the potential 4> and 
gradients d(t>/dx and (?</i/5.v are obtained from (A7), (A8), 
and (A9). 

The above formulation has been incorporated into a set 
of compact APL programs which cover a broad range of 
two-dimensional problems with arbitrary boundaries [10], 
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