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- A simple “atomistic” model based on the strain interaction between local state variables is found to capture
: the essentials of strain related structural phase transitions in non-martensitic materials. The computer—

: ulated thermmodynamic properties of the order parameter and the related microstructures, e.g. twin

boundaries, show the same characteristic features as the experimental observations which are briefly
reviewed.
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“INTRODUCTION

The purpose of the present work is a theoretical and computational explanation of the
" metastable textures (microstmactures) often formed during structural transformations
(or phase transitions). Such transformations do not occur only in martensitic metals
-~ but aiso in a wide variety of non-metallic materials. The case of martensitic transitions
has been widely discussed. Here we refer the interested reader to Christian (1965,
1990), Bilby and Christian (1956), Tanner and Wuttig (1990), Khatchaturyan (1983},
Clapp (1990}, Suznki and Wuttig {1972} and Silverstein and Clapp (1988) for the
discussion of martensitic microstructures. In this paper, we shall focus largely on
oelastics. Both groups of materials have in common that the symmetry change due
to the transformation leads, in most cases, to a significant strain. This strain is called
the ‘spontaneous strain’ when expressed as the excess quantity of the low-symmetry
phase with respect to the high-symmetry phase (Aizu, 1970; Wadhahan, 1982; Salje,
1991, 1993). Materials with significant spontaneous strain are called ‘co-elastic’ or, if
the strain orientation can be changed by external stress, ‘ferroelastic’ as discussed by
lie (1993). A
‘Although both martensitic alloys and non-metallic co-elastic materials generate
spontaneous strain, there are significant differences between their actual transforma-
| behaviour. In this paper we focus on the transformation texture and we shall argue
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that the strain fields in non-martensites lead to twin boundaries, tweed formation, etc.,
without interface dislocations (Barsch and Krumhansl, 1984; 1988; Krumhans] and Ya-
mada, 1990; Gooding, 1990). Interface dislocations play a minor role in non-metallic
ferroelastics because, firstly, the magnitude of the spontaneous strain (< 4%) 4 small
compared with most martensites (Salje, 1993) and, secondly, the structural distortions
cam, in general, be compensated by small atomic displacements in large unit cells.
These atomic displacements are possible without breaking atomic bonds and the gen-
eration of large Burger vectors. Typical examples for the types of material we have in
mind are given in Section 2. ’ '

The analysis of the transition behaviour and the texture is traditionally based on
Landau-Ginzburg theory. This approach is particularly appropriate in cases in which
the phase transition is generated by the softening of acoustic phonon branches (e.g. in
proper, pure ferroelastics) so that the physical meaning of the order parameter of the
phase transition is directly connected with the spontaneous strain (Salje, 1993). How-
ever, in most non-metallic materials, such as in many oxide ceramics (Lanten, Chain
and Hener, 1986; Negita, 1989; Putnis, Salje, Redfern, Fyfe and Stroble, 1987; Salje,
Palosz and Wruck, 1987; Lynden-Bell, Ferrario, McDonald and Salje, 1990, Kriven,
1990, Knorr, Loidl and Kyems, 1986), high-T, superconductors (Krekels, Van Tende-
loo, Broddin, Amelinckx, Tanner, Mekbod, Vanlanthem and Deltour, 1991; Schmabhl,
Putnis, Salje, Freeman, Graeme-Barber, Jones, Singh, Blunt, Edwards, Loram and
Mirza, 1989: Salje and Parlinski, 1991; Parlinski, Salje and Heine, 1993; Parlinski,
Heine and Salje, 1993), relaxors (Cross, 1987; Salje and Bismayer, 1989), acoustooptic
materials, etc., the elastic softening is not the physical origin of the phase transition.
Instead one finds that ordering processes such as local cation exchanges, orientational
ordering of molecules, vacancy ordering, etc., produce local atomic stresses which then
lead to the collectiveness of the phase transition.

It is the purpose of this review to show how such ordering processes lead to phase
transitions and to discuss how the microstructures are related to the transition process.

In order to keep the discussion as transparent as possible, we first illustrate a simple
model which contains the essential features of the phase transition. Figure 1 explains
with a schematic example our model of an ordering process that couples linearly to
microscopic strain. We represent the local ordering process by two microscopic states
(o = %1 in Fig. 1) with local stresses of opposite sign. This model is clearly the most
simple one which one can easily generalize to include cases where there more than two
possible ordering states, each straining the surrounding crystal structure. In ZiO,, for

" example, the O, pairs can be oriented parallel to the z, y or z axis (Negita, 1989). The

main feature is that the ordering in one cell displaces the surrounding atoms, which -

in turn push against their further neighbours and so on. This knock-on straining of
adjacent cells leads to an ordering field for the ordering process taking place inside
them. The strain thus mediates a long-ranged coupling J;; between the order/disorder
processes taking place in the various parts of the crystal. These couplings are very
complex in general, but always have the important property that they are long-ranged
due to the elastic interactions. They, of course, lead to a structural phase transition
below some appropriate transition temperature T, (Folk, Iro and Schwabl, 1979:
Cowley, 1976). '
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f‘lgum 1 Schematic drawing of the ordered structural states in (a). The two possible arrangements of

black and white “atoms” are shown as ordered (state +) and anti-ordered (state-~). These structural

: - . « - .
ates can be decomposed formally into a latrice distortion (b) and a configurational “iso-spin contn'bwzltloalz
The mode] Hamiltonian is H=uT Au—2c7 Ku where u is the displacement and o the configuration

dering variable.
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The formal description of this model is given in Section 3. Using the model, we
have investigated various phenomena associated with the structural phase transitions
due to strain interactions, namely ferro- and antiferroelastic ordering patierns, the
kinetics of ordering of such phase transitions and the metastable textures that arise
during the structural phase transition. In Section 3 we shall briefly review the differ-
ent types of local strain coupling and the resulting ferro- and antiferroelastic ordering
patterns. Section 4 will deal with kinetics. We show that the ordering in strain-coupled
systems is more or less uniform in space: each cell ‘feels’ every other cell due to the
long-range elastic interactions. This is very different from traditional ‘nucleation and
growth’ kinetics exhibited e.g. by models with nearest-neighbour coupling (which are
much more common in theoretical studies but probably much less relevant in non-
metal compounds). In some cases, however, metastable textures can form with distinct
domain patterns. In order to understand these, we first discuss in Section 5 the prop-
erties of domain boundaries in strain-coupled systems. In Section 6 we give examples
of the metastable textures observed in computer simulations with-our model and their
interpretation in the light of Section 5. This includes the formation of tweed patterns
in some cases. Our conclusions are summarized in Section 7. A few preliminary re-
sults have already been discussed by Marais, Heine, Nex and Salje (1991), Parlinski
et al. (1992) and Salje (1992a,b). A more detailed theoretical analysis of the form of
the long-range coupling will be published elsewhere (Marais, Bratkovsky, Heine and
Salje, 1993; Bratkovsky, Salje, Marais and Heine, 1993; Bratkovsky, Salje and Heine,
1993). Some of the essential features of tweed pattern formation have been discussed
before by Bratkovsky, Salje, Marais and Heine (1993) and we refer the reader to this

. -paper for further details.

2 CHARACTERISTIC EXPERIMENTAL OBSERVATIONS

We first review a few experimental observations which serve to illustrate the physical

processes which are investigated in the next sections. The archetype of a ferroelastic

phase traosition is observed in Pby(POy); (R3m — C2/c with T, = 180.1° C) (Salje,
1993; Bismayer and Salje, 1981: Salje, Devarajan, Bismayer and Guimaraes, 1983,
Bismayer, Salje and Joffrin, 1982; Salje and Wruck, 1983, Salje, Graeme-Barber,
Carpenter and Bismayer, 1993). The spontaneous strain has the components e;g;
and ey3, and the linear spontaneous strain is e, = (e2; + €%3)'/2. The temperature
evolutiun of e, is plotted in Fig. 2a. The phase transition is almost continuous with
a small first-order step at the transition point. When this crystal is held for some
minutes at 2°C below the transition point, fine twinning is observed under the opticai
microscope which can be annealed at lower temperatures (Fig. 2b). The annealing
process is essentially related to the formation of needle twins and their retraction
(Fig. 2c). Such twin structures are observed in virtually all ferroelastic materials. (For
coupled ferroelastic-ferroelectric domains significant medifications occur, which are
not discussed here.) ‘ o o

As the strain formation is the most obvious feature of the phase transition, one
might expect that the transition is actually driven by purely elastic instabilities.
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Figure 2(c)

Figure 2(a,b,c) The temperature evolution of the spontaneous strain in lead phosphaté (a). The crystal
twins spontaneously (b) when cooled throngh the transition point. Annealing under uniaxial stress at lower
temperatures (c) leads to the formation of needle twins and their retraction (length scale: 1 mm for diameter
of photograph).

This, however, is not the case in Pb3(PO,); nor, indeed, in most other ferroelastic
materials. The transition is, in fact, generated by the off-centering of Pb from a triad
axis and it is the off-centering which then couples with the strain. Roughly speaking,
this means that the strain plays a dominant role for the formation of the microstructure
but does not, by itself, generate the phase transition.

An example of a phase transition-driven by cation ordering (i.e. an order/disorder
transition) which also shows microstructures dominated by the spontaneous strain
is K-feldspar (Ribbe, 1983; Kroll and Ribbe, 1987; McConnel, 1971; McLaren and
Fitzgerald, 1987; Harris; Salje, Giittler and Carpénter, 1989). The structure of the
ordered and disordered form of K- feldspar is'shown in Fig. 3a, thie typical micro

structures of an ordered sample being shown in Fig. 3b. We observe again patches

of highly twinned material. Apparent intersections of such twins do, in fact, not occur,
but represent twins which are present in slabs superimposed along the direction of
observation. The fine structure of the twins is very similar to those in Fig. 2 besides
the fact that the matrix of this natural mineral is heavily warped. .

In contyast to linear twin walls, antiphase boundaries of antiferroelastic materials
are curved. A typical example is a mixed crystal of ilmenite-hematite (Fig: 4a) where
the Fe-Ti ordering follows an anti- ferroelastic pattern (Nord and Lawson, 1989).
The equivalent dark-field transmission electron micrographs are shown in Fig. 4b

for various annealing temperatures. The spontaneous strain of this transition is small’

(0.2% at room temperature) although its influence is still visible by the oblong shape
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Figure 3(a)

3(a,b). Crystal structure disordered (top) and ordered (bottom) alkali feldspar. Note the disap-
of the vertical mirror plane during the ordering process. The typical microstructure in ordered K-
microcline) (b) shows the two dominant domain orientations perpendicular to each other. (Length
eter of the figure is 1 mm, courtesy A. Putnis, Cambridge.) .
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Figure 4(a,b) Microstructures in ilmenite-hematite (FeTiO3-Fe;03). A domain boundary between.an A-
B and an B-A ordered part of the crystal is schematically shown in (a)- The spontaneous strain is small. The
walls are round with little preferential orientation, as found in annealed material (b) (lm70 annealed at
800°C, for times between 1 hour and 100 hours, courtesy of G. L. Nord, Reston). L
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" Figure 5 Microstructure of leucite, KAISi»Og, combining planar ferroelastic boundaries and rounded
. medrohedral twin walls.

of the domains. The spontaneous strain is larger in the IT — P1I phase tramnsition in

anorthite (Van Tendeloc, Ghose and Amelincky, 1989; Redfern, Graeme-Barber and

Salje, 1988) where the domains are strongly elongated along the main strain direction.

Both effects, namely linear boundaries with large strain and curved boundaries with

ttle or no strain, can occur simultaneonsly in the same material. Leucite (Fig. 5)

‘two phase transitions at 938K and 918K (Ia3d — I41/acd — I4;/a). The

ransition generates ferroelastic twins whereas the second transition leads to

ediohedral twinning (Palmer, Putnis and Salje, 1988; Palmer and Salje, 1990). The

crostructure in the J4; /a phase contains both the linear iwin boundaries and the
otind merohedral twins.

Finally, we give examples of the formulation of tweed patterns. In Fig. 6 the mi-
structure of a kinetically AlSi disordered Na-feldspar structure (Structure as in
- 2a) is shown (Wruck, Salje and Graeme- Barber, 1991). This crystal was annealed
80°C for 8 hours. The starting matesials were uniform without any visible mi-
ructure. After annealing for longer than 20 hours under the same conditions.
¢ microstructure disappears and the sample becomes uniform again. No significant
arsening of the microstructure was observed.

lar tweed patterns occur 2iso for ordering (rather than disordering) of the
. InFig. 7, a sequence of microstructures of increasingly Al Si ordered cordierite
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Figure 6 Tweed-type microstructure in Na-feldspar which appears for kinetically Al, Si disordered sa

of A. Putnis, Cambridge).

Figure 7 Microstructures in cordierite as observed in a kinetic experiment. The homogeneous crystals in @
are the hexagonal material without strain modulation. This phase transforms a first-order transition kinetic
ally into modulated crystals (b, ¢, d) which show the typical tweed pattern. Orthorhombic cordierite te, {,
. &h) is highly twinned with microstructures rather similar to that of the modulated state. The macroscol;ic'

strain builds up only in the orthorhombic phase. At 1400°C the transformation is a—b—sc—d . At lower -

temperatures (1280°C, 1190°C) the sequence is a—b—c—re—s f—g—h avoiding the coarse nucléation in d
(Scale bar = 0.2um, courtesy of A. Putnis, Cambridge).

¢ I S mples.
No microstructure on this length scale occurs for the fully ordered or the fully disordered material {Courtesy
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s shown (Putnis et al., 1987; Salje, 1987). The material with no long-range order (and.

hience no strain) is uniform. With increasing order, first tweed structures appear which

then transform into twinned material.

So far we have illustrated some of the relevant features of strain-related phase
nsitions in which ordering processes are relevant. We now quantify the model and

late the observation to our theoretical findings, which can explain the occurrence of

these different textures.

~ OUR MODEL AND ITS PHASE TRANSITIONS

A simple microscopic model describing the effects of linear strain interactions in

* structural phase transitions is now introduced. It consists of a simple cubic structure
--of atoms coupled via harmonic springs to one another. This structure represents in
_simplified form all the atoms of the system. Inside each unit cell we imagine an
* ordering process such as that in Fig. 1. It is not specified in further detail, but is

.assumed to have only two states specified by ordering various o; in cell i taking on the
values =-1. This ordering variable couples bilinearly to the eight atoms surrounding it,
i.e. there is some deformation patiern on the structure as shown in Fig. 1.
.Schematically, the energy of our system can be written as

H=uTAu - 20T Ku o 1)

where u denotes a column vector containihg the atomic displacements ;, A is the
dvnamical matrix of coupling among the atoms and ¢ a column vector of the ordering
variables. K couples the ordering to the atomic displacements, i.e. it represents the

' forces on the atoms as in Fig. 1 b. By making the transformation

a=u-A"K o )
.equation 1 becomes
H=a"At—-o" Jo (3)
‘with :
J=KA KT 4)

" The interpretation of these equations is as follows. For any given state of order or

disorder designated by the o, the atoms at zero temperature will be in equilibrium

. at positions displaced from the perfect lattice sites by an amount equal to the second
term in Eq. 2. Thus % is the displacement field from such equilibrium positions. The

transformed Hamiltonian in eq. 3 is then the sum of two separate parts, one written

-in terms of a set of displaced oscillators denoted by % and coupled by the harmonic
‘dynamical matrix, and the other as the ordering variables coupled to one another by

the strain-mediated interaction matrix J;;. Note that there is no coupling between the
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two parts of the Hamiltonian or the two sets of variables. We can therefore ignore
the lattice dynamics involving the v’s and focus purely on the ordering variables o.
The main point is that in eq. 3 the strain has introduced an effective coupling J;;
between the ¢’s. Equation 4 should be treated as symbolic and the precise,nature of
the J;; depends sensitively on the boundary conditions imposed on our model system
(Gridnev, Shevelov and Bondarernko, 1985). We shall be interested only in systems
with free boundaries.

The behaviour of J;; with free boundary conditions is discussed in detail by Marais
etal. (1993) and we shall just recapitulate the major results. The possible J;;’s resulting
from the coupling between the ordering and the atomic displacements in our model
can be divided into two classes. The six local deformations with the same symmetry as
the six macroscopic strains e, etc., or any linear combinations of them, form Class 1.
They give a positive total coupling

Jror =Y Ji | (5)

i#j

where we have a single sum over all latrice positions except 7. Class 1 couplings
result in ferroelastic phase transitions. All other couplings fall into Class 2. The latter
give Jror < 0 and structural phase transitions with the order parameter having a
wavevector at the Brillouin zone boundary (Powell and Gerlach, 1989; Fleury, Scott
and Worlock, 1968; Salje, 1992b, 1990, 1993) Both types of strain coupling make
Ji; long-ranged. In both cases, the Ji; have a short-ranged part that tends to vary
somewhat erratically and even oscillates in sign. At intermediate distances they fall off
as 'ri_‘f and 7”55 respectively, multiplied by. the appropriate angular dependent parts.
In Class 1 strain couplings, there is also a constant term independent of distance (i.e.
of infinite range), in magnitude inversely proportional to the size of ous system so that
its total contribution Jror is finite.

The model developed so far is clearly an oversimplification of the true experimental

ituation, although we believe it captures the essential physical features correctly.

Modifications are necessary when several strain components interact, or when the
strain field is #self not a linear response to the ordering mechanism (Salje, 1993;
 Plavida and Salejeva, 1988; Dove and Powell, 1989).

We also have to exclude certain situations of the following type (Folk et al., 1979;
Cowley, 1976; Mayer and Cowley, 1988). Consider a material with tetragonal or higher
symmetry, and an ordering process which can have, say, the symmetry of an z or y
displacement. If there is a high degree of anisotropy, the system will order locally
approximately in the &z or %y senses which can be treated as four discrete compae-
nents. However, with weak anisotropy the ordering can be any linear combination
of the z and y types in a way that swings around siowly and continuously in direc-
tion. The latter situation would be described by a two-dimensional order parame-
ter and cannot be treated by our simple model, although the relevant generalization
appears to be straightforward.

Our strain-coupled model, without any other couplings (e.g. no direct nearest-
neighbour couplings between the ordering variables), gives phase transitions as
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- Figure§ Temperature evolution of the order parameter in a computer simulated model with volume strain
coupling (thick line) and in mean field theory (thin line).

“expected, as has been verified by computer simulations. We simulated the mode} asa
hree-dimensional 16 x 16 x 16 lattice. We used a mixture of Monte Carlo technigues
o find the behaviour of the ordering varizgbles and Molecular Dynamic Simulations
o calculate the new equilibrium positions of the atoras after each Mon_te Carl.ovstep
has chaniged the values (and accompanying atom forces) of some ordering variables.
The temperatute dependence of the order parameter, defined as

1
Q=FZ¢R (6)

or ferroelastic phase transitions, also foliows the behaviour of mean-field theory very
well,-as seer in Fig. 8. This is tc be expected in the light of the 'J‘-j ’s long range.
Finally, also note that our present modei can be nsed io model impun.ty and _exsolungn
obiems if we add the extra constraint that the number of local ordering vanabk':s with
! itive sign stay constant {Cook and de Fontain, 1969, Khatchaturyan, 1966; VS./agner,
88; Mayer-Botzel and Wagner, 1988).
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Figure 9(a,b) Profiles of the number of 3 x 3 x 3 subblocks with a certain value of Q; in our computer
. model after quenching from far above T, to around O.9T,. Different profiles correspond to different times
after the quench in units of Monte Carlo step per ordering variable. (a) Direct nearest neighbour coupling
between the ordering variables o; (b) Strain coupling of the type e.,+e, . +ey, only.
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4 KINETICS OF ORDERING

The kinetics or ordering in our strain interaction model differs from that predicted
by ‘nucleation and growth’ theories and observed in nearest neighbour Ising models
(e.g. Gunton, Gawlinski, Chakrabati and Kaski, 1988; Ogzail and Lorenz, 1988). The
long-range elastic interactions couple all the local ordering variables to one another,
resulting in a ‘uniform’ ordering of the system. We shall demonstrate this fact by
computer simulations. In Fig. 9 the distribution of a coarse-grained order parameter
@ is shown as the system orders. The coarse-grained Q); is the average of o; over the
block of 3 x 3 x 3 cells centred on cell i. Initially Q; is distributed around zero with
a statistical width of 1/+/27 as expected from the 3 x 3 x 3 coarse graining. Fig. 9a
shows the behaviour of conventional Ising system with nearest-neighbour coupling.
At t = 50 the system has evolved a broad distribution showing substantial clusters
forming with Q; near to the equilibrium values :

Q; = iQ;q ~ 0.8 7

with the boundaries between these regions accounting for the distribution in berween
the two values Q4. Only after a very much longer time do the clusters with negative
Q: (in this particular simulation) grow at the expense of the positive ones to give the
final ordered state, not yet fully reached at ¢ = 600.

This contrasts sharply with the behaviour of the strain-coupled system shown in
Fig. 9b. Throughout the ordering process the system remains essentially uniform with
the distribution retaining the form of a narrow peak. As the ordering evolves, this

- peak moves relatively uniformly to its value at Q., (negative in this case). There are

no signs of the ‘nucieation and growth’ processes observed in Fig. 9a.

Having shown that the sample orders uniformly, one can develop a theory of -
ordering kinetics (and disordering kinetics on shock heating) which leads to relatively
simple rate laws describing the order parameter growth. The theory is discussed
in detail by, e.g., Ginzburg and Landau (1950), Salje (1988), Dattagupta, Heine,
Marais and Salje (1991), Marais and Salje (1991) and Salje and Marais (1992) and
experimental resuits in various mineral systems confirm the theoretical approach.

Although the uniform ordering as just described is observed in our computer
simulation for some systems, in other cases (i.e. for other patterns of forces K), we
may observe a metastable or transient microstructure depending on the system and
the rate of cooling. The formation of these microstructures is discussed in detail in
Section 6. However, these microstructures are generally quite coarse and one may
think of the ordermg process as belng uniform inside cach separate domain.

5 THEORY OF DOMAIN BOUNDARIES IN OUR MODEL

In most systems metastable domains of different ordering (and strain) are formed if
the systemis cooled through the critical temperature. We now discuss the nature of the
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Figure 10 (a) Domain wall of zero-energy (type 1) for e, strain coupling. Local distortions are nesded to
form a domain wall for e, —e,,, coupling (b).- '
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domain walls separating the domains in our model. Consider first the Class 1 'systems-
(order parameter coupling to a macroscopic-strain). A general criterion when crystai

: geometry allows two domains with different macroscopic strains e(l) and e,@-) to have
a coherent domain wall between them was described by Sapriel (1975):

1
(e -

where z gives the coordinates of a point in the domain wall. Eq. 8 describes a conic
surface in general and a flat domain wall is possible only if the comnic surface described
“byeq. 8 deoenerates into a pair of planes. This is true if and only if e( - e(“ is both
* traceless and has

ePmiz; =0, ®)

detfe}) — (2’[ =0. ] (9) .
The resulting two planes in that case give the possible orientations of the domain walls
and they are always perpendicular to each other with respect to the coordinate system
of the high-symmetry phase. The spentaneous shear strain in the low-symmetry phase
- leads to angles between walls of 7 — 2w where w is a measure of the spmtanﬂous strain
(Salje, 1993). :
. AClass 1 coupling of symmetry e — e, Satisfies the criterion and hence results in
compatible domain walls, as does a system with e, coupling. However, not all Class 1
couplings satisfy the compatibility criterion and the tetragonal shear ,2612: — Ezr — Eyy
is such an example.
The domain walls in our medel can be further subdivided into two types. A type
1 wall has zero domain wall energy, because each cell has the correct macroscopic
strain right up to the boundary, as shown in Fig. 10a for the (1, 0, 0) wall for a cou-
pling of ez, symmetry. As there is no domain wall energy, the driving force for domain
coarsening disappears and we observe a very fine domain pattern. The fact that the
type 1 walls have identically zero energy is an oversimplification due to our model,
and a more complicated crystal structure or any direct interaction between the order-
" ing variables or atom-atom interactions of longer range than next nearest-neighbour
will lift this degeneracy. Nevertheless, materials with e, strain (e.g. betaine arsenate
discussed by Maede 1988 and Weber, Topfeld and Liabo, 1975) may tend to form
relatively fine demain structures. Other wails do have a finite wzll energy because
there is necessarily a layer of distorted cells along the boundary as shown in Fig, 10b
for the (1, 1, 0) bounda“s in our medel with ey, — eyy coupling. They will bz called
type 2walls.
The antiferroelastic Class 2 systems can always form domain walls. 1'1 this case the
~-local distortions do not resuit in 2 macrosco},zc strain and domain walls are always
allowed. Furthermore, the walls can be in any direction and can be curved aswell. A
t_,’plCa] example in a Class 2 system of a aomam wall generated in a two-dimessional
version of our model is shown in Fig. 11. Class 2 domain walls always cost some energy,
since Jocal mstomons ot the unit c=115 are unavoidable. .
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Figure 11(c)

Figure 11(a,b,c) . Computer simulation of an antiferroelastic domain wall with strain deformations as shown
' schematically in (a). The thick line represents a wall. The ordering values o=+1 are represented in (b} as
black circles and o=—1 as white circles. Walls occur where the alternation black-white is interrupted. The
actual walls can be made more visible if the ordering variables are multiplied by a phase factor exp fir(z+4y)]
o that ordering appears as black and anti-ordering as white circles.(c) The same domain boundaries appear
now between black and white regions. ’ .

Domain walls with structure like that in Fig. 10b are very common in minerals. A
brief discussion of their properties is thus in order. In Fig. 12 we show the typical time
evolution of such a wall in our computer simulation with ez; — ey, strain coupling.
Initially all ordering-variables above a (1, 1,0) plane through the middie of the sample
were set positive and all those below negative. The atomic arrangement was then
allowed to relax, the ordering variables changed using the Monte Carlo techniques
mentioned earlier, and the whole process iterated. We measured the average value
of the ordering variable over planes perpendicular to the (1, 1, 0) direction with Q(r)’
the average over a plane a distance r from the central plane originally dividing our
system in two. Because of the smallness of our sample we could only study walls
at temperatures below about 0.75T,. Above that temperature, the wall was usually
destroyed by fluctuations. As can be seen in the figure, the walls are quite narrow
far.below T.. More than 5-6 unit cells-from the centre of the wall there is very
le-spatial variation of Q(r). The walls are also virtually motionless. Even after
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METASTABLE TEXTURES

Lorder to investigate the formation of different domain textures, we ran a whole se-
es of different computer simulations of our mode! system, whose results can be un-
derstood in terms of Section 5. In cases where the strain coupling does not obey com-
ibility criteria, only single domains were observed, as expected. In systems forming

pe 2 walls (with ferroelastic ey, — e, coupling for exampie) one of two things was
served as the system was ceojed. Usuzlly only a single domain formed in our small
% 16 x 16 sample. However, scmetimes 2 dorain wall formed in the system of the
discussed in Section 5: it was then very stable. With e,, strain coupling, on the
her-hand, a very finely siriped donlain structure 1-2 unit celis wide formed, as in
.'13a, perpendicuiar to eithér the x— or y-axis. The fineness cof the structure is due”
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Figure 13(a)

Figure 13(b)

_Figure 13(a,b) The typical domain structure found for our model with e, coupling if (2) cooled slowly
and (b) quenched rapidly. ‘ ’
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Figure 14(a,b,c,d,e,f;g) A series of ordering variable distributions for quenches of 64 x 64 two dimensional

system with e, —e,,, Strain coupling. A black circle indicates a positive value of the ordering variable, while -

a grey circle indicates a negative value of ;. If the high temperature random state (a) is quenched 1o below
T = 0.5T,, we observe (b a fine tweed structure developing with walls preferentially in the [1, 1] or [1, 1]
directions. The tweed then coarsens as time progresses and the [1, 1] walls start to dominate (c)~(€), until

only walls in the [1, 1] direction are left (f). The thin wall not spanning the whole system disappears, leaving .

{g) a stable striped system.

to zero energy cost of a domain wall in our model. If quenched rapidly a fine tweed .

structure dcveloped with walls in both directions starting to form and the system
‘getting caught’ in a local minimum of the energy, looking as in Fig. 13b. When a weak
direct nearest-neighbour interaction between the ordering variables o; was added in
the simulation, the stripes were found to broaden with increasing direct coupling. The

same effect is expected with long-ranged direct atom-atom couplings (i.e. with longer . -

than next-nearest-neighbour springs connected atoms). In fact, in this case the type
1 walls resemble type 2 walls apart from the fact that the observed microstructures
are finer.

Our three-dimensional computer model is too small to study the formation of-

microstructures in systems with finite wall energy, since it barely allows one domain
wall. We thus simulated a two-dimensional version of our model on a 64 x 64 array
with ez — ey, strain coupling. This model may be dlrectly relevant for the description
of the CuO planes in high-T, superconductors. We believe it also describes a three-
dimensional material with tetragonal symmetry where the ordering is uniform in the
z direction. Upon cooling from above to below T, the following behaviour (showrt
in Fig. 14) was observed. First, the disordered system quickly orders on a local scale
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" upon cooling. However, different domains with different strains form, separated by
domain walls in either the [1, 1] or [1, 1] directions. After a short while a type
of tweed pattern develops. Similar tweed patterns have been observed by Finlayson
"(1988), Wen, Khatchaturyan and Morris (1981) and Tautz, Heine, Dove and Chen
- (1991) using computer simulations of rectangular blocks in an isotropic medium, but
we believe that our simulation gives a more detailed and more realistic atomic picture.
- Note that although the criteria for domain walls allow both [1, 1] and [1, -1] walls,
crossing of two walls costs an extra amount of energy. For this reason one type of
domain wall (in this case the [1, —1] wall) starts to dominate, until we are left with
a striped system with walls in only one direction. The needle domain not spanning
the whole system is now also destroyed, because of the high energy cost at its tips.
“Once the system has reached the final striped state, it is extremely stable, as already
discussed in section 5.

Antiferroelastic walls form in any direction and are typically curved as in Fig, 11.
They are also much more mobile than Class 1 walls since much less energy is needed to’
- deform a wall locally. Temporary deformations are necessary if a wall wants to move.

. Ina relatively short time a Class 2 wall can thus move a large distance as well as change
. its shape. This has also been observed in our simulations. Secondary strain coupling
-can result in Class 2 walls becoming flatter, such as is shown in the case of Pby(POy)s.

7 CONCLUSION

“We have presented a simple model which captures almost all of the essential charac-
teristics of systems with strain coupling undergoing phase transitions. The essential
‘physics in a wide variety of materials is that the strain coupling always mediates a
-long-range interaction between the local ordering processes. This iong-range interac-
“tionleads to a uniform ordering of the system if it is disturbed from equilibrium, which
-makes the use of kinetic rate laws to describe the kinetics of strain-coupied systems
feasible (Salje and Marais, 1992).

. The main point of the work is that the kinetics can also lead to various types of tex-
‘tures like tweeds and stripes as shown by computer simulation. They are remarkably
similar to textures observed experimentally. These textures are directly related to the
‘elastic long-range coupling, and we have shown how their form, direction, scale, and
vhen they do and do not occur, can be understood in terms of the structure of the
omain walls.

*Finally we want to return to the point that our grossly simplified model does
ontain the essential physics of a wide range of structural phase transitions some
f which may at first sight look very different. Fig, 15, for example, shows 2 two
imensional representation of the perovskite structure. It can undergo a tetragonal
hase transition through a coherent rotation of the octzhedra (Fig. 15b), the local
rdering variable being the angle of rotation é; which corresponds to the o; of the
model. Now consider what would happen when one rotates a single octahedron only.
ince the octahedra are joined by shared oxygen atoms, the adjacent octahedra would
‘severely distorted. setting up strong internal forces within them. These forces are
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Figure 15 Schematic drawing of an elastic phase transition of the SrTiO3-type in a perovskite structure.
The local state variable is the rotation angle, the K-tensor is due to the hinges of the oxygen atoms.

the analogue of the forces shown in Fig. 1b and symbolized by K in Eq. 1. The
fcrces. wﬂ_l be transmitted to neighbouring octahedra as discussed in sections 1 and 2,
resuliing in the tetragonal structure of Fig. 10b which can be considered as an ordering

of the §; variables. Another example with a similar ‘rigid unit mode’ is the o /8 :

- phase transition in quartz in which the corner sharing Si0, tetrahedra rotate (Dove,
Giddy and Heine, 1993; Salje, Ridgwell, Guitler, Wruck, Dove and Dolino, 1992).
In this case one can make domain walls perpendicular to the a* axis which involves
only rotations and displacements of the tetrahedra without distortion. These walls are
T.h.erefore analogous to the Type 1 walls and form the ttianguiar domain pattern or
incommensurate phase over a small temperature interval at the o</ /3 phase boundary.
This example shows both the similarities to our model and the difference of detail in
s0 far as we have boundaries analogous to those of Type 1 in Section 5 but occurring

In quartz, which is antiferroelastic. The latter difference from our simple cubic model
arises from the difference in structure. :
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