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ABSTRACT

We have developed an �nite-di�erence time-domain program that can analyze photonic devices with gain and/or
dispersion. As an example, a two-dimensional photonic-crystal laser is simulated. The simulation can show the
relaxation oscillation behavior at extremely high current injection.
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1. INTRODUCTION

Recently, application of the �nite-di�erence time-domain (FDTD) analysis1 to various engineering problems is
becoming practical owing to remarkable development of high-speed computers. The need for such a program
in the analysis of photonic-crystal devices is especially recognized in that the capability of other conventional
techniques such as the beam-propagation analysis and various types of frequency-domain analysis is seriously
limited for the purpose.

Among many photonic-crystal devices, photonic-crystal lasers2 attracted a considerable attention because
the capability of such devices is not yet fully investigated since they have not been made close to perfection.
Unlike conventional semiconductor lasers including vertical-cavity lasers, distributed-feedback (DFB) lasers,
and distributed-Bragg-re
ection (DBR) lasers, analysis of photonic-crystal lasers is relatively diÆcult because
of their inherent fully-three-dimensional characteristics and their quite complicated modal and polarization
characteristics. A considerable amount of research3, 4 is being carried on two-dimensional photonic-crystal
lasers formed on a slab-waveguide of half-wavelength width. Design of the structure is made mostly with the
operating principle of DBR in mind.

In this paper, we report on the development of a FDTD simulator which can analyze such photonic-crystal
lasers. The gain medium is modeled by a region of an inverted carrier-density with the generalized Lorentz-
dispersion characteristics. The regions for dispersive media and the perfectly-matched layers (PML's) are
fully integrated in the code for full parallelization and eÆcient memory handling. For such a purpose, layers
of anisotropically dispersive electric/magnetic media5 are introduced in all computation boundaries, while the
recursive-convolution method6 with the piecewise-constant approximation7 has been used for simulation of both
the dispersive media and the PML layers. We have found that this combination allows the most eÆcient coding
and memory usage amenable to parallelization.

The discretized standard rate equation for the evolution of the electron density is solved together at each
FDTD time-stepping. This should enable accurate analysis of the relaxation oscillation of emitted optical power
of the laser. Both a fully three-dimensional version as well as the two-dimensional version of the simulator are
developed simultaneously with almost all components of the code shared between the two versions. However, it
must be mentioned that, due to limitation of the available computer resources, the results shown in this paper
have been mostly obtained with the two-dimensional version from the time-scaled-down simulation by adjusting
the carrier lifetime.
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2. THE FINITE-DIFFERENCE TIME-DOMAIN METHOD WITH DISPERSION

We simulate the four Maxwell equations

r � "̂(r; !)E = 0; (1)

r � �̂(r; !)H = 0; (2)

r�E = i! �̂(r; !)H; (3)

r�H = �i! "̂(r; !)E; (4)

with the generalized electric permittivity tensor "̂(r; !) and the magnetic permeability tensor �̂(r; !) with a
certain type of frequency dependence. The two material tensors are \generalized" in the sense that
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where J(r; !) refers to the current density due to motion of free carriers.

In the PML, according to the algorithm of perfectly-matched anisotropic layers,5 the electric permittivity
and the magnetic permeability are expressed as

"̂(r; !) = "(1)�(r; !); �̂(r; !) �

(
�0�(r; !); in the PML,

�0; in the inner dispersive region,
(6)

where the tensor factor of a diagonal matrix �(r; !) is shared in the PML between the electric permittivity
and the magnetic permeability. The lth diagonal element can be expressed as
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where Ml is the order of the rational function in the region containing the position denoted by r.

In the inner region of dispersion, the three diagonal elements are basically the same, which represents an
isotropic material of dispersion with gain or loss. All the poles, other than the ones on the imaginary axis of
the complex-! plane, should exist in pairs, so that the simplest implementation of the gain medium is modeled
as the electric susceptibility function of
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where N is the reduced number of terms from Ml owing to the pole pairs for every Lorentzian function in the
summation. The poles and residues are represented to the resonance frequencies !q and the damping constants

q by

s(q) = �
q + i!q; (9)

� (q) =
"(0)� "(1)

"0

fq !q
i 2
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where fq is the oscillator strength which is related to the carrier density in the active region of the semiconductor
medium. Unlike the true physical permittivity function of ! with "̂ll(1) = "0, we choose the value of "̂ll(1)
properly at a suÆciently high frequency, so that the variation of "̂(!) is adequately represented in the range of
frequencies under consideration.

Proc. SPIE Vol. 4655 321

Downloaded from SPIE Digital Library on 24 Dec 2009 to 159.226.100.225. Terms of Use:  http://spiedl.org/terms



The dispersive material is implemented by implementing the inverse Fourier transform of the permittivity
tensor function of ! in Eq. (4) by
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where �(t) is the Heaviside step function. We now apply the piecewise-constant recursive convolution technique
which was �rst introduced in a paper by Schuster, et al..7 Formulas suitable for numerical implementation are
rewritten as
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where �t is the width of the time step in the FDTD simulation. The above relation along with
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where exprl z � [exp z � 1] =z, provides the needed algorithm which is amenable to a systematic treatment of
the dispersive material in FDTD simulations.

3. MODEL FOR THE GAIN MEDIUM AND THE POPULATION INVERSION

The gain-dispersion characteristics of the active semiconductor medium are modeled by the Lorentzian formula
of Eq. (8) with a single pair of poles. For the simulation of the gain medium, we performed an \experimental"
�t between location of the poles and the carrier density of in the active region to obtain its relation to the
numbers for 
1 and !1.

Beside the ampli�cation of the propagating light which is present in the medium, there exists spontaneous
emission which actually provides the seed for the amplifying light in the medium. Such emission of light is
modeled by a randomly oriented polarization current density with the magnitude properly determined in each
cell of the FDTD model. These two sources of light generation can be implemented in the FDTD simulator,
once each module is properly prepared.

Similar to the dynamic simulator of a semiconductor laser based on the analysis of resonance modes, we need
a rate equation which updates the number of carriers inside the active region. The equation can be obtained
by considering the classical theorem of Poynting in regard to the energy balance. According to the theorem,
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The polarization current @P l=@t in the last term of the left-hand side represents the interaction of the external
�eld and the dipoles in a semiconductor active medium. This term is balanced with the energy which is provided
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either by the injection current or by the pumping light. For the case of current injection, the rate equation can
be written as ZZZ
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where

Ne(t) �

ZZZ
V

ne(r; t) d
3r (20)

is the total number of carriers in the active layer, and Iqs(t) is the injection current.

4. TWO-DIMENSIONAL SIMULATION RESULTS

From these considerations, we have performed a two-dimensional calculation on a structure which has become
well-known from the publication of its structure in Science.8 In the simulation, we assumed the case of current
injection instead of optical pumping in their experiment. As mentioned previously, the choice of the two-
dimensional simulator and the method of pumping is largely driven by the need in the development stage of the
simulator which requires a tremendous amount of computer resources in terms of computing time and memory.
We �rst tried to �nd the condition for the relaxation oscillation while we are �nding the lasing optical mode.
As expected from the known property9 of the triangular lattice structure with a single defect made of a missing
hole at the center, the lasing mode has been found to be the doubly-degenerate dipole-shaped �eld as shown
in Fig. 1. The animation obtained from the simulator has shown that the axis of the dipole �eld is constantly
rotating. It con�rms that the mode is doubly-degenerate as the theory indicates.

The four plots of Fig. 2 show the familiar appearances at a certain level of current injection. The magnitude
of the injected current is unrealistically large. The choice has been made to show the relaxation oscillation which
has been regarded as the result of a typical semiconductor laser. At the practical level of either optical pumping
or current injection, we carefully suggest that the microcavity laser of this kind will not show the relaxation
oscillation behavior. At the time of writing this document, we have assumed a two-dimensional structure for
the purpose of developing the simulator. The correct account on this relaxation behavior appears to be possible
after a three-dimensional analysis in the near future.

5. SUMMARY

In summary, we developed the two-dimensional FDTD simulator which integrates the scheme of anisotropic
PML's and the piecewise-constant approximation for recursive-convolution integral. With this new functionality
of the simulator, we have been able to numerically create a situation for relaxation oscillation. The preliminary
result suggests that the lasers of this kind will not show the typical relaxation oscillation except the initial
overshoot of the light output at the initial turn-on time-delay. We hope that the full three-dimensional simulator
clari�es this issue at the time of presentation.
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Figure 1. Simulated �eld pro�le of the lasing mode built-up in a photonic-crystal microcavity. The three plots in the
right column show the snapshots of Ex, Ey, and Ez, while those of the left column show the snapshots of Hx, Hy, and Hz.
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(a) (b)

(c) (d)

Figure 2. The relaxation oscillation behavior obtained from a two-dimensional simulator with the simulated currents
of (a) 0.1 A, (b) 3 A, (c) 10 A, and (d) 30 A. The magnitudes of the injected current bear some inaccuracy from the
limitation of the two-dimensional simulator. Solid lines represent the energy density of the cavity and the dashed curves
represent the the carrier density in the active region of the semiconductor.
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