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1. Introduction

Advancesin mathematicsand physics haveoften occurredtogether.The developmentof Newton’s
theory of mechanicsandthe simultaneousdevelopmentof the techniquesof calculusconstitutea classic
exampleof this phenomenon.However, as mathematicsand physics havebecomeincreasinglyspeci-
alized over the last severaldecades,a formidable languagebarrierhasgrown up betweenthe two. It is
thus remarkablethat severalrecentdevelopmentsin theoreticalphysicshavemadeuseof the ideasand
results of modern mathematicsand, in fact, have elicited the direct participation of a numberof
mathematicians.The time thereforeseemsripe to attemptto breakdown the languagebarriersbetween
physics andcertainbranchesof mathematicsand to re-establishinterdisciplinarycommunication(see.
for example,Robinson[1977];Mayer [1977]).

Thepurposeof thisarticleis to outlinevariousmathematicalideas,methods,andresults,primarily from
differentialgeometryandtopology,andto show wheretheycan be appliedto Yang—Mills gaugetheories
andEinstein’s theory of gravitation.

We haveseveralgoals in mind. The first is to conveyto physiciststhe basesfor many mathematical
conceptsby usingintuitive argumentswhile avoidingthe detailedformality of most textbooks.Although
avariety of mathematicaltheoremswill be stated,we will generallygive simpleexamplesmotivatingthe
resultsinsteadof presentingabstractproofs.

Another goal is to list a wide variety of mathematicalterminologyand results in a format which
allows easyreference.The readerthenhasthe option of supplementingthe descriptionsgiven hereby
consultingstandardmathematicalreferencesandarticlessuchas thoselisted in the bibliography.

Finally, we intend this article to servethe dual purposeof acquaintingmathematicianswith some
basicphysicalconceptswhich havemathematicalramifications;physicalproblemshaveoften stimulated
new directionsin mathematicalthought.
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1.1. Gauge theories

By way of introduction to the main text, let us give a brief survey of how mathematiciansand
physicistsnoticedandbeganto work on certainproblemsof mutual interest.Onecrucial stepwas taken
by Yang and Mills [1954]when they introduced the concept of a non-abeliangauge theory as a
generalizationof Maxwell’s theory of electromagnetism.The Yang—Mills theory involves a self-
interaction among gauge fields, which gives it a certain similarity to Einstein’s theory of gravity
(Utiyama [1956]).At about the sametime, the mathematicaltheory of fiber bundleshad reachedthe
advancedstagedescribed in Steenrod’s book (Steenrod[1953])but was generallyunknown to the
physicscommunity.The fact that Yang—Mills theoriesandthe affine geometryof principal fiber bundles
are one and the same thing was eventually recognizedby various authorsas early as 1963 (Lubkin
[19631~Hermann[1970]~Trautman[1970]),but few of the implications were explored.The potential
utility of the differential geometricmethodsof fiber bundlesin gaugetheorieswas pointedout to the
bulk of the physics community by the paperof Wu and Yang [1975].For example,Wu and Yang
showedhow the long-standingproblem of the Dirac string for magneticmonopoles(Dirac [1931])could
be resolved by using overlapping coordinate patcheswith gauge potentials differing by a gauge
transformation;for mathematicians,the necessityof usingcoordinatepatchesis a trivial consequenceof
the fact that non-trivial fiber bundlescannotbe describedby a single gaugepotential definedover the
whole coordinatespace.

Almost simultaneouslywith the Wu—Yang paper,Belavin, Polyakov, Schwarzand Tyupkin [19751
discovereda remarkablefinite-action solution of the EuclideanSU(2) Yang—Mills gaugetheory, now
generallyknown asthe “instanton” or, sometimes,the “pseudoparticle”.The instantonhasself-dualor
anti-dual field strengthandcarriesa non-vanishingtopological quantumnumber;from the mathemati-
cal point of view, this number is the integral of the second Chern class, which is an integer
characterizingthe topology of an SU(2)principal fiber bundle.‘t Hooft [1976a,1977] recognizedthatthe
instantonprovided a mechanismfor breakingthe chiral U(1) symmetry and solving the long-standing
problem of the ninth axial current, together with a possible mechanismfor the violation of CP
symmetryandfermion number.

Another important consequenceof the instanton is that it revealed the existenceof a periodic
structureof the Yang—Mills vacua(Jackiw and Rebbi [1976b1;Callan, DashenandGross [19761).The
instantonaction gives the lowestorderapproximationto the quantummechanicaltunnelingamplitude
betweenthesestates.The true ground state of the theory becomesthe coherentmixture of all such
vacuumstates.

Following the BPST instanton, which had topological index ±1for self-dual or anti-dual field
strength,Witten [19771,Corrigan andFairlie [1977],Wilczek [19771,‘t Hooft [1976b]andJackiw,Nohl
andRebbi [1977]foundwaysof constructing“multiple instanton”solutionscharacterizedby (anti)-self-
dualfield strengthandarbitraryintegertopologicalindex±k.At this point, the questionwas whetheror
not the parameterspaceof the k-instantonsolution was exhaustedby the (5k + 4) parametersof the
Jackiw—Nohl—Rebbisolution (for k = 1 and k = 2, the numberof parametersreducesto 5 and 13,
respectively).The answer was provided both by mathematiciansand physicists. Schwarz[19771and
Atiyah, Hitchin and Singer [1977]used the Atiyah—Singer index theorem [19681to show that the
parameterspacewas (8k — 3)-dimensional.The sameresult was found by Jackiwand Rebbi [19771and
Brown, Carlitz and Lee [1977]usingphysicists’ methods.It was also notedthat the Dirac equationin
the presenceof the k-(anti)-instantonfield would have k zero frequency modesof chirality ±1.
Physicists’argumentsleading to this result were found by Coleman[1976],who integratedthe local
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equationfor the Adler—Bell—Jackiw anomaly (Adler [19691;Bell and Jackiw [1969]).The numberof
parametersfor self-dual Yang—Mills solutions for generalLie groupswas worked out by Bernard.
Christ, Guth and Weinberg[19771andby Atiyah, Hitchin andSinger [19781.It becameapparentthat
the sameclass of problemswas being attackedsimultaneouslyby mathematiciansand physicists and
that a new basisexistedfor mutualdiscourse.

The attention of the mathematicianswas now drawn to the problem of constructingYang—Mills
solutionswith index k which exhaustedthe availablefree parametersfor a given gaugegroup.The first
concretestepsin thisdirection were takenby Ward [19771andby Atiyah andWard [19771who adapted
Penrose’stwistor formalism to Yang—Mills theory to show how the problemcould be solved.Atiyah.
Hitchin, Drinfeld andManin [1978]then useda somewhatdifferent approachto give a constructionof
the mostgeneralsolutionswith self-dual field strength.The remarkablefact about this constructionis
that powerful tools of algebraic geometrymade it possible to reduce the non-linear Yang—Mills
differential equationsto linear algebraic equations. The final link in the chain was provided by
Bourguignon,LawsonandSimons[1979],whoshowedthat, for compactifiedEuclideanspace-time,all
stablefinite action solutionsof the EuclideanYang—Mills equationshaveself-dual field strength.Thus
all stablefinite action solutionsof the EuclideanYang—Mills equationsare, in principle, known.

Finally, we notean interestingparalleldevelopmentconcerningthe choiceof gaugein a Yang—Mills
theory. Gribov [1977,1978] andMandelstam[19771noticed that the traditionalCoulombgaugechoice
doesnot determinea uniquegaugepotential; thereexist an infinite numberof gauge-equivalentfields
all obeyingthe Coulombgaugecondition.The gauge-choiceambiguitycan be avoidedif the underlying
space-timeis a flat space(see.e.g., Coleman[1977]).However. Singer[1978a]showedthat the Gribov
ambiguity was incurable if he assumeda compactified Euclideanspace-timemanifold. Singer’s cal-
culation introducedpowerful methodsfor examiningthe functionalspaceof the path-integralusingthe
differential geometryof infinite-dimensionalfiber bundles; the exploitation of such techniquesmay
eventuallylead to a moresatisfactoryunderstandingof the pathintegralapproachto the quantizationof
gaugetheories.

1.2. Gravitation

The methodsof differentialgeometryhavealwaysbeenessentialin Einstein’stheory of gravity (see,
e.g.,Trautman[1964];Misner,ThorneandWheeler[19731).However,the discoveryof the Yang—Mills
instantonandits relevanceto the pathintegral quantizationprocedureled to the hope that similarnew
approachesmight be used in quantumgravity. The groundwork for the path integral approachto
quantumgravity was laid by De Witt [1967a,b,c].Prescriptionsweresubsequentlydevelopedfor giving
an appropriateboundarycorrectionto the action (Gibbonsand Hawking [19771)and for avoiding the
problem of negativegravitationalaction (Gibbons,Hawking and Perry[1978]).

The problemwas thento determinewhich classicalEuclideanEinsteinsolutionsmight be important
in the gravitationalpath integral and which, if any, might play a physical role similar to that of the
Yang—Mills instanton.The Euler—Poincarécharacteristicx and the signaturer were identified by
Belavin and Burlankov [1976]and by Eguchi and Freund [1976]as gravitational analogs of the
Yang—Mills topological index k. Eguchi and Freundwent on to suggestthe Fubini—Study metric on~
two-dimensionalcomplexprojective spaceas a possible gravitational instanton,but the absenceof
well-definedspinors on this manifold lessensits appeal.Hawking [1977]thenproposeda Euclidean
Taub—NUT metric with self-dual curvatureas a gravitationalinstanton,and furthermorepresenteda
new multiple-center solution reminiscent of the k> 1 Yang—Mills solutions. However, Hawking’s
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metrics had a distortedasymptotic behavior at infinity and, in fact, resembledmagnetic monopoles
morethan instantons.It was also notedby Eguchi,Gilkey and Hanson[19781,by RömerandSchroer
[19771and by Pope [19781that special care was requiredto computethe topological invariants for
manifolds with boundary,such as those Hawking considered;here,the Atiyah—Patodi—Singerindex
theorem[1973,1975a,b,1976] with boundarycorrectionswas appliedto the studyof physicalquestions
arisingin quantumgravity.

Startingfrom the idea that sincethe Yang—Mills instantonpotentialis asymptoticallya puregauge,a
gravitationalinstantonshouldhavean asymptoticallyflat metric, Eguchi andHanson[1978]derived a
new Euclidean Einstein metric with self-dual curvaturewhich seemsto be the closestgravitational
analogof the Yang—Mills instanton.Although thismetric is asymptoticallyflat, the manifold’sboundary
at infinity is not the three-sphereof ordinaryEuclideanspace,but is a three-spherewith oppositepoints
identified (Belinskii et al. [1978]).Essentiallythis samemetric was foundindependentlyby Calabi [1979]
as the solution to an abstract mathematicalproblem. Gibbons and Hawking [1978]subsequently
realized that this metric was the first of a class of metrics found by making a simple modification to
Hawking’s original multicentermetric (Hawking [1977]).The metrics in this new classareall asymp-
totically locally Euclidean:theyareasymptoticallyflat, but the boundariesare three-sphereswith points
identified under the action of some discrete group. The manifolds described by thesemetrics are
distinguishedby the signatureT, which takeson all integervaluesandplays the role of the Yang—Mills
index k. An explicit constructionby Hawking and Pope [1978b]and an index theory calculationby
HansonandRömer[1978]showthat the metricswith signature‘r give a spin 3/2 anomaly2r, but do not
contributeat all to the spin 1/2 axial anomalyas did theYang—Mills index k. This distinctionappearsto
haveits origins in the existenceof supersymmetry.Hitchin [1979]hasnow discussedfurthergeneraliza-
tions of thesemetricsand pointedout the existenceof complexalgebraicmanifolds whoseasymptotic
boundariesare three-spheresidentified underthe action of all possiblegroups. He has also suggested
that thesemanifolds may admit metricswith self-dual curvatures.Thesemanifolds appearto exhaust
the class of asymptotically locally Euclidean Einstein solutions with self-dual curvature, and thus
provide a complete classificationof this type of gravitational instanton. In principle, the Penrose
construction can be used to find the self-dual metrics on each of these manifolds, so that the
gravitationalproblemis nearingthe samedegreeof completenessthat exists for theYang—Mills theory.

1.3. Outline

In the main body of this article, we will attemptto provide a physicist with the mathematicalideas
underlying the sequenceof discoveriesjust described.In addition,we wish to providea mathematician
with a feelingfor someof the physical,problemsto which mathematicalmethodsmight apply. In section
2, we introducethe basicconceptsof manifoldsanddifferential forms, andthendiscussthe elementsof
de Rham cohomology.In section 3, we considerRiemanniangeometryand explain the relationship
betweenclassicaltensoranalysisandmoderndifferential geometricnotation.Section4 is devotedto an
expositionof the geometryof fiber bundles.We introducethe conceptsof connectionsandcurvatures
on fiber bundlesin section5 andgive somephysicalexamples.In section6, we developthe theory of
characteristicclasses,which are the topological invariantsused to classify fiber bundles.The Atiyah—
Singer index theoremfor manifolds without boundaryis discussedin section7. The generalizationof
the index theorem to manifolds with boundaryis presentedin section 8. Section 9 containsa brief
discussionof Yang—Mills instantonsanda list of mathematicalresultsrelevantto Yang—Mills theories,
while section 10 treatsgravitationalinstantonsand gives a list of mathematicalresultsassociatedwith
gravitation.
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A numberof basic mathematicalformulas are collectedin the appendices,while the bibliography
containssuggestionsfor further reading.

Due to limitations of time and space,we havenot been able to provide detailed treatmentsof a
numberof interestingmathematicalandphysical topics;brief discussionsof somesuchtopicsaregiven
in sections9 and 10. We also notethat manyof the “mathematical”resultswe presenthavealsobeen
discoveredby physicistsusing different methodsof calculation; we havemade no attempt to treat in
detail thesealternativederivations,but refer the reader insteadto the bibliography for appropriate
review articleselaboratingon the conventionalphysical approaches.

2. Manifolds and differential forms

Manifolds are generalizationsof the familiar ideasof lines, planes and their higher dimensional
analogs.In this section,we introducethe basicconceptsof manifolds,differential forms andde Rham
cohomology(see,for instance,Flanders[1963]).Various examplesare given to show how these tools
can be usedin physicalproblems.

2.1. Definition of a manifold

A real (complex)n-dimensionalmanifold M is a spacewhich looks like a EuclideanspaceR”(C”)
around eachpoint. More precisely, a manifold is definedby introducing a set of neighborhoodsU1
coveringM, whereeach U, is a subspaceof R” (C”). Thus,a manifold is constructedby pastingtogether
manypiecesof R”(C”).

In fig. 2.1,we show someexamplesof manifolds in one dimension:fig. 2.la is a line segmentof R
1,

the simplestpossible manifold. Figure 2.lb showsthe circle St this is a non-trivial manifold which
requiresat least two neighborhoodsfor its construction.Figure 2.2 showssomespaceswhich are not
manifolds: no neighborhoodof a multiple junction looks like R”.

Examples2.1
Let usdiscusssomeof the typical n-dimensionalmanifoldswhich we will encounter.
1. R” itself andC” itself are the most trivial examples.Theseare noncompactmanifolds.
2. The n-sphereS” definedby the equation

n+1

~ x~= c2, c = constant. (2.1)

The “zero-sphere”S°is just the two points x = ±c.S’ is a circle or ring and S2 is a spherelike a
balloon.

(a)

(b) Q 0 ~
Fig. 2.1. One-dimensional manifolds: (a) is a line segment of R’. Fig. 2.2. One-dimensional spaces which are not manifolds. The con-
(b) shows the construction of S’ using two neighborhoods. dition that the space looks locally like R’ is violated at the junctions.
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3. Projectivespaces.Complexprojectivespace,P~(C), is the set of lines in C” ~‘ passingthroughthe
origin. If z = (z z~)� 0. then z determinesa complexline through the origin. Two points z, z’
determinethe sameline if z = cz’ for somec�0. We introducethe equivalencerelationz z’ if there
is a non-zeroconstantsuchthat z = cz’; P~(C)is Cn*l —{0} modulothis identification.

We defineneighborhoodsUk in P~(C)as the set of lines for which Zk � 0 (this conditionis unchanged
by replacingz by a scalarmultiple). The ratio z1/z5 = cz,/cz5is well-definedon Uk. Let

~(k) = Zj/Zk on Uk

and ~ = (~~) ~/~)whereweomit ~ = 1. This gives a mapfrom Uk to C” anddefinescomplex
coordinateson Uk. We see that

ph) ZIZk y(k)(y(k)\-t
b ‘.5,) 1

Zk Z1

is well-definedon U1 fl Uk. The (n + 1) z,’s are “homogeneouscoordinates”on P~(C).Later we will
show that the z, ‘s can be regardedas sectionsto a line bundleover I’~(C). The n )~5definedin each
Uk are local “inhomogeneouscoordinates”.

Real projectivespace,P~(R),is the set of lines in R”~
1passingthrough the origin. It may also be

regardedas the sphereS” in R”~twherewe identify antipodalpoints.(Two unit vectorsx, x’ determine
the sameline in R”’4’ if x= ±x’.)
Remark:P

1(C) = S
2 andP

3(R) = SO(3).
4. Group manifoldsare definedby the spaceof free parametersin the defining representationof a

group. Severalgroup manifoldsareeasily identifiable with simple topological manifolds:

(a) Z2 is thegroupof additionmodulo2, with elements(0, 1); Z2 mayalsobe thoughtof as the group
generatedby multiplicationby (—1), andthushas elements±1.This latter representationshows
its equivalenceto the zero-sphere,

Z2 =

(b) U(1) is the groupof multiplicationby unimodularcomplexnumbers,with elementse’°.Since 9,

0 � 0 <2ir parametrizesa circle, we seethat
U(1)=S’.

(c) SU(2). A generalSU(2)matrix canbe written as

I a bl

UL~ a],

wherea = Xt + ix2, b = x3 + ix4, bar denotescomplexconjugationand

detu=IaI
2+PbI2=~x~=1.
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Hence we can identify the parameterspaceof SU(2)with the manifold of the three-sphereS3

SU(2)= S3.

(d) SO(3). It is well-known that SU(2) is the double-coveringof S0(3), so that SO(3)can be written
as the manifold

S0(3)= SU(2)1Z
2= P1(R)

whereP3(R) is three-dimensionalreal projectivespace.

Boundaryof a manifold.The boundaryof a line segmentis the two end points; the boundaryof a
discis a circle. Thuswe may, in general,determineanothermanifold of dimension(n — 1) by taking the
boundaryof an n-manifold.We denotethe boundaryof a manifoldM as 3M.
Note: The boundaryof a boundaryis alwaysempty, th9M =

Coordinate systems.One of the important themes in manifold theory is the idea of coordinate
transformationsrelatingadjacentneighborhoods.Supposewe haveacovering{U,} of a manifoldM and
somecoordinatesystem4, in eachneighborhoodU1. ~, is amappingfrom U, to R”. Thenwe needto
know how to relatetwo coordinatesystemsç

1, and çb in the overlappingregion U, fl U,,, the shaded
areain fig. 2.3. The answer is the following: we take t~T’ to be the mapping back from R”, so the
transformationfrom the coordinatesystem 4’, to the coordinatesystem 4’,, is given by the transition
function

4311 = 4~43”

This map is required to be C~(have continuouspartial derivatives of all orders).If the 4~,are real
analytic, thenM is saidto bea real analyticmanifold. If ~he4’,,, are holomorphic(i.e., complexvalued
functionswith complexpowerseries),thenM is saidto be a complexmanifold.

Examples2.1 (Continued)
5. Two sphere.On S2 we maychoosejust two neighborhoods,U

1 and U2, which cover the northern
andsouthernhemisphere,respectively,andone transitionfunction 4’ t2, where

~ x —y
43t2~x,y)—~s~x2+y2~x2+y2

in the intersectionU1 fl U2 of the neighborhoods.In termsof complexcoordinates,z = x + iy,

= 1/z.

~IUl

Fig. 2.3. Overlapping neighborhoods of a manifold M and their coordinate systems. ~ is a map from LI, to an open subspace of R’.



222 Eguchi, Gilkey and Hanson. Gravitation, gauge theories and differential geometry

Since this transitionfunction is not only smoothbut holomorphic,52 has the structure of a complex
manifold (namely P1(C)).

6. Projectivespace.P~(C)is alsoa complexmanifold becauseits transitionfunctionsareholomorphic

z~)=(~-z0,..~

on U, fl U,, (wherewe recall z,~ 0, z1~ 0).
7. Lie groups in general. If A is a matrix, then exp(A) = I + A ~ . + A”/n! +~ convergesto an

invertible matrix. Let G beoneof the groups:GL(k, C), GL(k,R), U(k), SU(k), 0(k), SO(k)andlet ~
be the Lie-algebraof G. p is a linear set of matrices and exp:p—~ G is a diffeomorphismfrom a
neighborhoodof theorigin in p to the identity I in G.This definesa coordinatesystemnearI E G; we
can define a coordinatesystem nearanyg0 E G by mappingp into g0 expp. The transition functions
are thus given by left multiplication in the group. G is a real analyticmanifold.

2.2. Tangentspaceand cotangentspace

One of the most importantconceptsused to study the propertiesof a manifold M is the tangent
spaceT0(M) at a point p EM. To developthe ideaof the tangentspace,let us first considera curve
y =f(x) in a planeas shownin fig. 2.4. Considera pointx =p +v very close top; thenwe mayexpand
f(x) in a Taylor series,yielding

f(x=p+v)=f(p)+vdf(x)/dxI~.0+”~. (2.2)

The slopeof the curve,df/dx atx = p, is representedin fig. 2.4. If we hadan n-dimensionalsurfacewith
coordinatesx’, therewould be n differentdirections,so the secondterm in (2.2) would become

v’ 3f(x)/3x’~

(Here we introducethe conventionof implied summationon repeatedindices.)We can thus begin to

see that, regardlessof the particulardetails of the manifold considered,the directionalderivative

v’3/3x’~,~ (2.3)

hasan intrinsic meaning.{3/3x’} at x = p defInesa basisfor the tangentspaceof M at p. A collection of
thesedirectionalderivativesat eachpoint in M with smoothlyvarying coefficientsv’(x) is called a vector
field.

y:f(x) df~

~rjdx
Fig. 2.4. Tangent to a curve y =f(x).
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The tangentspace T0(M) is thus definedas the vector spacespannedby the tangentsat p to all
curvespassingthroughp in the manifold (see fig. 2.5). No matter how curvedthe manifold maybe,
1,(M) is always an n-dimensionalvectorspaceat eachpointp.

The tangentspaceoccursnaturally in classicalmechanics.We considera LagrangianL(q’(t), 4’(t))
andrecall that t-derivativescan be definedusing the implicit function rule

d/dt = 3/at+ q’ 3/3q’ (2.4)

Comparisonwith eq. (2.3) showsthat the secondterm in the above equationhas the structureof a
vectorfield. Velocity space in Lagrangianclassicalmechanicscorrespondsexactly to the tangentspace
of the configurationspace:if M has coordinates{q’}, then I~(M)has coordinates{4’}. Equation(2.4)
showsthat the operators{3/aq’} form a basisfor T.5(M).

ThecotangentspaceT~(M)of a manifold atp EM is definedas the dualvector spaceto the tangent
spaceT0(M). A dual vectorspace is defined as follows: given an n-dimensionalvector spaceV with
basisE,, i = 1,. . . , n, the basis e’ of the dualspaceV” is determinedby the inner product

(E,,e’) =

When we take the basis vectorsE, = 3/3x’ for T0(M), we write the basis vectors for T~(M)as the
differential line elements

= dx’.

Thusthe inner productis given by

(3/3x’, dxi) =

Now considerthe vector field

V=v’ö/öx’

andthe covectorfield

U = u, dx’.

Undergeneralcoordinatetransformationsx—*x’(x), V and U are invariant,but since

0x” . 3 3x
1 3dx” ~--—-dx’ —~-=-—-i’.----~3x’ 3x 3x 3x’

Fig. 2.5. Curves through a point p of M. The tangents to these curves span the tangent space T~(M).
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the componentsv’ andu• changeaccordingto

= v’ 3x”/ôx’

u = u1 ôx’/öx”.

(The invarianceof V and U in fact is the origin of the transformationlaw for contravariantand
covariantvectors,respectively.)Thus the inner product

(V, U) = v’u, =

is invariant undergeneralcoordinatetransformations.
The idea of the cotangentspacealso occurs in classical mechanics.Whereastangent spacecor-

respondsto velocity space,cotangentspacecorrespondsto momentumspace.Herethe basisvectorsare
given by the differential line elementsdq, so the cotangentvector fields are expressedas

p, dq’

wherewe identify

p, = aL(q’, 4’)/34’.

Usingthe basiselementsof 1,(M) andT~(M),wemay now extendthe conceptof a field to include
tensorfields overM with I covariantandk contravariantindices,which we write

W~i)~~ j®~ . . . ®—~--® dx
1’ ®~ . . ®dx’.

The tensorproductsymbol ® implies no symmetrizationor antisymmetrizationof indices— eachbasis
elementis takento act independentlyof the others.

2.3. Differential forms

A special class of tensorfields, the totally antisymmetriccovarianttensorfields are usefulfor many
practicalcalculations.

We begin by defining Cartan’swedgeproduct, also known as the exterior product, as the antisym-
metric tensorproductof cotangentspacebasiselements

dx Ady =~(dx®dy—dy®dx)

= —dy n dx.

Note that, by definition,

dx A dx = 0.
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The differential line elementsdx and dy are called differential 1-forms or 1-forms; thus the wedge
productis a rule for constructing2-formsout of pairsof 1-forms.It is easyto showthat the 2-form made
in this way hasthe propertieswe expectof a differential area eletnent.Supposewe changevariablesto
x’(x, y), y’(x, y); then we find

dx’A dy’ = ( _.~ui)dx A dy

\0x 9y 3y ox

=Jacobian(x’,y’;x,y)dx Ady.

Cartan’swedgeproductthus is designedto producethe requiredsignedJacobianevery time we change
variables. Let A”(x) be the set of anti-symmetricp-tensorsat a point x. This is a vector spaceof
dimensionn!/p!(n —p)!. The A”(x) patchtogetherto define a bundleover M as we shall discusslater.
C~(A”)is the spaceof smoothp-forms,representedby anti-symmetrictensorsf,1... (x) havingp indices
contractedwith the wedgeproductsof p differentials.The elementsof C’~(A”)may then be written
explicitly as follows:

C~(A
1)= {f(x)} dimension=

C~(AI) = {f,(x)dx’} dim = n
C~(A2)={f

1(x)dx’Adx’} dim=n(n—1)/2!
C~(A

3)={ffk(x)dx’A dx’ A dx”} dim = n(n — 1)(n —2)13!

= {f,,. .,,, dx” A~ A dx” ‘} dim = n
C(A”) = {f~, ,, dx” A~” A dx”} dim = 1. (2.5)

Severalimportantpropertiesemerge:First,we seethat A” and.4~”havethe samedimensionas vector
spaces. In particular, C~(A”)is representableby a single function times the n-volume element.
Furthermore,we deducethat A” = 0 for p > n, since some differential would appeartwice and be
annihilated.

Now it is clear that the wedgeproductmaybe used to make(p + q)-formsout of a given p-form and
a given q-form. But since onegetszero for p + q > n, the resultingforms always belongto the original
set of spaces,which we write

The spaceA * of all possible antisymmetriccovariant tensorsthereforereproducesitself under the
wedgeproductoperation:A* is a gradedalgebracalled Cartan’sexterior algebra of differential forms.
Remark:Let a

0 be an elementof A”, f3,, an elementof ,44, Then

a,, A f

3q = ( 1 )“’f3q A a,,.

Henceodd forms anticommuteandthe wedgeproductof identical 1-formswill alwaysvanish.

Exterior derivative: Another useful tool for manipulating differential forms is the exterior derivative
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operation,which takesp-formsinto (p + 1)-formsaccordingto the rule

~ C~(A1); d(f(x)) =

~ C’°(A2); d(f,(x)dx’)= dx’ A dx’

Cn~(A2)_~~_*C~(A3); d(fjk(x) dx1 t dxk) = dx’ A dx’ A dxk

etc.

Herewe havetakenthe conventionthat the new differential line elementis alwaysinsertedbefore any
previouslyexistingwedgeproducts.Note alsothat, to beprecise,only the totally antisymmetricpartsof
the partialderivativescontribute.

An importantpropertyof the exteriorderivativeis that it gives zero when appliedtwice:

ddw~=0.

This identity follows from the equality of mixed partial derivatives, as we can see from the following
simpleexample:

C~(Ab)_~~~_*C~(At)~ G°’(A2)

df = 3/ dx’

ddf = 3, 3/dx’ A dx’ = ~(3,3/— 3,, 3,f)dx’ A dx’ = 0.

In vectornotation,ddw~= 0 is equivalentto the familiar statementsthat

curl gradf = 0

divcurlf=0, etc.

We note alsothe rule for differentiatingthe wedgeproductof a p-form a
0 anda q-form f

3q:

d(a
0 A f3~)= da0A f3,, + (1t a~A df3q.

Note: The exteriorderivativeanticommuteswith 1-forms.

Examples2.3

1. Possiblep-forms a,, in two-dimensionalspaceare

a,)=f(x, y)

a1=u(x,y)dx+v(x,y)dy

a2=43(x,y)dxndy.
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The exteriorderivativeof a line elementgives the two-dimensionalcurl timesthe area:

d(u(x, y)dx + v(x,y)dy)=(3~v— 3~u)dxA dy.

2. The three-spacep-formsa~are

ao =f(x)

a1 = v1 dx’ + v2 dx
2+ v-, dx3

a
2 = w1 dx

2 n dx3+ w
2dx

3 A dx’ + w-, dxt A dx2

a
3 = 43(x)dx’ A dx

2A dx3.

We seethat

a
1 A a2 =(v,w,+ v2w2+v3w3)dx’n dx

2 A dx3

da, = (E,,k 8,vk)~S,Imdx’ A dxm

da
2= (3,w,+ 32w2+ 33w3)dx’ A dx

2 A dx3.

We thus recognizethe usualoperationsof three-dimensionalvectorcalculus.

2.4. Hodge star and the Laplacian

As we have seen from eq. (2.5) andthe examples,the numberof independentfunctionsin C~(A”)is
the sameas that in C”’(A”’~”): thereexistsa duality betweenthe two spaces.We arethus motivatedto
introducean operator,the Hodge * or duality transformation,which transformsp-forms into (n — p)-
forms; in a flat Euclideanspacethe operatoris definedby

1*(dx A dx 2 A A dx”)=(n —p)! ~ £. dx” A dx”- A~ n dx’.

HereC,Jk... is the totally antisymmetrictensorin n-dimensions.
Note: Later,whenwe introduceametric,we will haveto be carefulaboutraisingandloweringindicesand
multiplying by g”2. For now, thispoint is inessentialandwill be postponed.

Repeatingthe * operatoron a p-form w,, gives

* * w,, = (—iy’~””~~~.

We notethat for p =

dx” A dx’2 A A dx” = ~ dx’ n dx2 A A dx”. (2.6)

Innerproduct: Lettinga,, and f3,, be p-forms,we definethe inner productas the integral
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(a,,, /3,,) J a,, A * [3,,.

For generalp-formsa,,, /3,, with coefficient functionsfilk andg,,,,,. ., it is easyto show that

(ap,$p)=p!ff,,kg,,kdxlAdx2A...Adx~.

The inner producthasthe furtherpropertythat

(a,,, /3,,) = (/3,,, a,,)

becauseof the identity

a,, A * [3,,= /3,, A * a,,

whichfollows from (2.6).

Adjoint of exterior derivative: Examining the inner product (a,,, d$,,_,) and integratingby parts,we
find

(a,,,d/3,,_,)= (5a,, /3,,_~),

wherethe adjoint of d is

= (—i)”~”~’* d*.

Note that for n evenand all p,

8 =

while for n odd,

6=(—lf*d*.

(Remark:Additional factorsof (—1) occur for spaceswith negativesignature.)8 reducesthe degreeof a
differential form by oneunit, whereasd increasesthe degree:

d: ~

6: C~(A”)—~C~(A”’).

Like d, 6 actingon formsproducesconventionaltensorcalculusoperations— for example,with n = 3 and
p = 1, we find

dx).=—*(V. v)dx’ A dx2 A dx3 = —V v.
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We notethat, like d, 8 gives zero whenrepeated:

88w,, 0.

Laplacian: The Laplacianon a manifold can be constructedonced and8 are known (this would, in
general,requireknowledgeof a metric,but we will continueto usea flat metric for the time being).The
Laplacianis

i~=(d+ö)2=d8+8d. (2.7)

We sometimesaddasubscriptto d and8 to remindourselveswhat kind of form we areactingon. Thus
we may write the Laplacianon p-formsas

= d,_~6,,w,, + 6p+t ~

The Laplacianclearly takesp-formsbackinto p-forms,

~:C’°(A~)-*C°°(A”).

For example,on 1-forms,we find

~(v .dX)=—
3~k;IC •dx.

Thus ~ is called a positiveoperatorbecauseits Fouriertransformintroducesa factorof i
2 which cancels

the minussign. An elegantway of provingthe positivity of the Laplacianfollows from takingthe inner
productof the two p-forms w,, and ~ Using (2.7) we find that, provided thereare no boundary
terms,

(wy, ~w~)= (w,,, d6w,,)+(w,,, 8 dw~)

= (6w,,, 6w,,)+ (dw,,,dw,,),

which is necessarily�0. As a corollary,we seethat for sufficiently well-behavedforms, w,, is harmonic,
that is

=0,

if and only if w,, is closed,

dw~=0

and co-closed,

8wp 0.
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A p-form cv,, which can be written globally as the exterior derivative of some (p — 1)-form a,,_,

cv,, = da,,

is called anexactp-form. Similarly, a p-form cv,, which can be expressed globally as

cv,, =

is called a co-exactp-form.

Hodge’s theorem: Hodge [1952]hasshown that if M is a compactmanifold without boundary,any
p-form cv,, can be uniquely decomposed as a sum of exact, co-exact and harmonic forms,

cv,, = da,,1 + 6/3,,+~+

wherey,, is a harmonicp-form. For many applications, the essentialpropertiesof cv,, lie entirely in the
harmonicpiece y,,.

Stokes’theorem: If M is a p-dimensionalmanifold with a non-emptyboundary3M, then Stokes’
theoremsaysthat for any(p — 1)-form w,,1,

J dw,,_~ J
If 3M has severalparts, the right-handside is an oriented sum. For p = 1, where M is a line segment
from a to b, we find the fundamentaltheoremof calculus,

J df(x) =

Forp = 2, we find

J d(Adx)=
surface line

In 3 dimensions,wherewe maymakethe identification

d(A - dx) = ~(a,A1— 3,A,)dx’ A dx’ ~e,,kBkdx’ A dx’,

we recognizethe formula for the magneticflux going througha surface,

JB dS= A dx.
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For p = 3, we examinethe 2-form

= ~e,mEk dx’ A dx’

obeying

dcv ~.‘VEdx’ Adx2AdxS.

ThenStokes’ theorembecomes

J.Ed3x= J dco= J cv=JE.dS
volume surface

andwe recognize Gauss’ law.

Examples2.4
1. Two-dimensions(n = 2):

Basisof fl*: (1,dx, dy, dx A dy)
Hodge*: *(1, dx, dy, dx is dy) = (dx is dy, dy, —dx, 1)
6 operation:

6f(x, y) = 0

6(u dx + v dy) = —(3~u+ 3~v)

643 dx A dy = —3~43dy + 34 dx

Laplacian:actingon, for instance,0-forms,

= —(3~f+3~f).

2. EuclideanMaxwell’sequation (ji = 1, 2, 3,4; i = 1, 2, 3)

Gaugepotential: A = A,~(x)dxM
Gaugetransform: A’ = A + dA (x)
Fieldstrength: F dA = dA’
(gaugeinvariant = ~ — 0,A,,,)dx” A dx”
duetoddA =0) ~ A dx”

E and B: F = E, dx’ A dx~+~B,s,,kdx’ A dx”

* F = ~ dx’ A dx” + B, dx’ A dx4

duality: F*-,~*F,E*-,B
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Eulereqn.= inhomogeneouseqns: 6F = j

ôF=—VEdx4+(3~,E+VxB)•dx

j—j,. dx” =j’dx+j
4dx

4

Bianchi identity= homogeneouseqns: dF= ddA = 0

dF”VBdx’ Adx2Adx3+~(3
4B+VXE),s,,~dx’ Adx” Adx

4=0.

Note: If j = 0, thendF = 8F = 0, so F is harmonic,t~F= 0.
3. Dirac magneticmonopole(Dirac [1931]).In order to describea magneticcharge,we introducetwo

coordinatepatchesU±covering the z > —s and the z <+e regions of R3 — {0}, with overlapregion
U+ fl U effectivelyequalto the x—y planeat z = 0 minus the origin. The gaugepotentialswhich are
well-defined in theserespectiveregionsaretakenas

11 1
A,. = ~——--~— (x dy — y dx) = ~(±1— cos0) dq5

where r2 = x2 + y2 + z2. A±and A have the Dirac string singularityat 0 = iT and0 = 0, respectively.
Note that A+ andA arerelatedby a gaugetransformation:

A+ = A_ + d tan’(y/x)=A_+ d43.

In the overlapregion 0 = ‘ir/2, r > 0, both potentialsare regular.The field is given by F = dA,. in U,., so

1
F=~—~(xdyAdz+ydzAdx+zdx Ady)

or

B=x/2r3.

Remark:Dirac strings.In the modernapproachto themagneticmonopole,A,. aredefinedonly in their
respectivecoordinatepatchesU,.. In Dirac’s formulationof the monopole,coordinatepatcheswerenot
usedand A.,. were usedover all of R3. This led to the appearanceof fictitious “string singularities”on
the ±zaxis.

2.5. Introduction to homologyand cohomology

We conclude this section with a brief treatment of the concepts of homology and de Rham
cohomology, which form a crucial link between the topological aspects of manifolds and their
differentiablestructure.

Homology: Homology is usedto distinguishtopologically inequivalentmanifolds.For atreatmentmore
mathematicallyprecisethanthe one givenhere,seeGreenberg[1967]or Spanier[1966].
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Let M bea smoothconnectedmanifold. A p-chaina~is a formal sum of theform a,, = ~, c,N, where
the N, aresmoothp-dimensionalorientedsubmanifoldsof M. If the coefficientsc are real (complex),
then a,, is a real (complex) chain; if the coefficients c, are integers, a,, is an integral chain; if the
coefficientsc, EZ2 = {0,1}, thena,, is aZ2 chain.Thereareothercoefficientswhichcouldbe considered,
but thesearethe only oneswe shall be interestedin.

Let 3 denote the operationof taking the orientedboundary. We define 3a,, = ~, c, ON, to be a
(p — 1)-chain. Let Z,, = {a,,: 3a~= ø} be the set of cycles(i.e., p-chainswith no boundaries)and let
B,, = {3a,,+1} be the set of boundaries(i.e., thosechains which can be written as a,, = 3a,,+, for some
a,,+,). Sincethe boundaryof a boundaryis alwaysempty, 33a,, = 0, B,, is a subsetof Z,,.

We definethe simplicial homologyof M by

H,, = Z,,/B,,.

H,, is the set of equivalenceclassesof cycles z,,E Z,, which differ only by boundaries;that is z~ z,,
provided that z~= z,,+ 3a,,+,.Wecan think of representative cycles in H,, asmanifoldspatchedtogetherto
“surround”a hole; we ignore cycleswhich can be “filled in”.

We may choosedifferentcoefficientgroupsto define H,,(M;R), H,,(M; C), H,,(M; Z), or H,,(M;Z2).
There are simple relations H,,(M;R)=H,,(M;Z)®R and H,,(M;C)=H,,(M;R)®C =

H,,(M;Z)®C. In other words, modulo finite groups (i.e., torsion), H,,(M; R), H,,(M;Z), and
H,,(M; C) areessentiallythe same.

The integral homologyis fundamental.We can regardany integralcycle as real by embeddingZ in
R. We can reduceany integral cycle mod 2 to get a Z2 cycle.The universalcoefficienttheoremgives a
formula for the homologywith R, C, or Z2 coefficientsin terms of theintegral homology.In particular,
real homology is obtainedfrom integral homologyby replacingall the “Z” factorsby “R” and by
throwing away anytorsionsubgroups.

It is clear that H,,(M; G)= 0 for p > dim(M). If M is connected,Ho(M; G) = G. If M is orientable,
then H~(M;G)= G. If G is a field, then we have Poincaréduality, H,,(M; G)=H~,,(M;G), for
orientableM (G = R, C, Z2 but not Z).

Examples
1. Torus.We illustrate the computation of homology for the torus T

2. In fig. 2.6, the curvesa andb
belongto the samehomology classbecausetheybounda two-dimensionalstrip a (shown as a shaded
area),

= a — b.

Fig. 2.6. Homology classesof thetorus, a andb, which boundtheshaded area,arehomologous,a and c arenot.
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Curves a andc however do not belongto the samehomology class.The homologygroupsof the torus,
M = T2, are

H,,(M;R)=R

H
1(M;R)=R~jR

H2(M;R)=ER.

The generators of H, are given by the two curves a and c.
2. Torsion and homologyof P1(R)= SO(3).
The conceptof torsion and the effect of different coefficient groupscan be illustrated by examining

M = P3(R)= SO(3). Let p mapS’ to P,(R)by antipodalidentificationof the pointsof S’.
Let ~2 be the equatorof S

3. let S be the equatorof S2.andlet D” be the upperhemisphereof S”.
Thenp(D”) is a k-chainon P,,(R)and

Op(D3) = 0 (this is a cycle andgeneratesH
3 with any coefficients)

Op(D
2) = 2p(D’) (this is a cycle in Z

2 but not in R or Z)

Op(D’) = 0 (this is a cycle. OverR we havep(D’) = 8~p(D2)so this is a boundary. It is

not a boundaryoverZ or Z2 andgeneratesH for thesegroups).

In Z2 homologyp(D”) gives the generators of H5(P3(R); Z2). The homology groupsof P3(R) can be

shownto be the following:

H,,(M; Z) = Z H,,(M; R) = R H,,(M; i~)= Z2

H,(M;Z)=Z2 H1(M,tl~)=0 H,(M;Z~)=Z.~

H2(M;Z)=() H.~(M;R)=0 H2(M;Z~)”Z.~

H3(M;Z)=7Z H3(M;R)=’R H,(M;Z2)=Z2.

Thesegroupsare differentbecauseof the existenceof torsion.

deRhamcohomology
If G is afield (G R, C, Z2), the homologygroup H,,(M; G) is a vectorspaceover G. We definethe

cohomologygroupH
0(M; G) to be the dualvectorspaceto H,,(M, G). (The definition of H~(M;Z)is

slightly more complicatedand we shall omit it.) The remarkablefact is that H0(M; R) or H”’(M; C)
maybe understoodusingdifferential forms. We define the de Rhamcohomology groups H~R(M; R) as
follows: recall that a p-form cv,, is closedif dcv,, = 0 andexactif cv,,= da,, ,. Let

Z~,R= (cv,,: dcv,, = 0} (the closed forms)

B~,R= (cv,,: cv,, = da,, ,} (the exactforms)

H~,R(M;R) = Z0/B0 (closedmoduloexactforms).
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The de Rham cohomologyis the set of equivalenceclassesof closed forms which differ only by exact
forms; that is

cv,,—”cv,~

if cv,, =w~+da,,,forsomea,,.~,.
Remark: The space H” is special becausethere are no (—1)-forms, and thus no 0-forms can be
expressedas exteriorderivatives.Sincethe exteriorderivativeof a constantis zero,

H” = {spaceof constantfunctions}

and

dim(H°)= numberof connectedpiecesof the manifold.

Poincarélemma:The de Rhamcohomologyof EuclideanspaceR~is trivial,

dimH~(R~)=0 p>O

(dim J’I°(R~)= I),
since anyclosedform can be expressedasthe exteriorderivativeof a lower form in R~.For example,in

R3, anyclosed 1-form can be expressedas the gradientof a scalarfunction,

VxA =0-A =V~’.

Thereforeany closed form can be expressedas an exactform in any local R” coordinatepatchof the
manifold. Non-trivial de Rhamcohomologythereforeoccursonly whenthelocal coordinateneighborhoods
are patchedtogetherin a globally non-trivial way.

deRham‘s theorem: The inner product of a cycle c,, E Z,, and a closedform cv,, E Z~Ris definedas

ir(c,,, w,,) = J cv,,

where rr(c, cv) ER is called a period. We note that by Stokes’ theorem, when c,, E Z,, and cv,, EZ~,R,

then

Jw,,+da,,_tzzzJw,,+Ja,,_t~Jw,,~
Cp (‘/, aC, C,,

and

J w,,Jw,,+ J dw,,1w,,.
Cp Op+l Cp
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This pairing is thus independentof the choice of the representativesof the equivalenceclassesand
definesa map

iT: H,,(M; R)®H~,R(M;R)-*R.

de Rham hasproven the following fundamentaltheoremswhen M is a compactmanifold without
boundary:

Let {c,}, i = 1,. . ., dim H,,(M; R), be a set of independentp-cyclesforminga basisfor H,,(M; R).

First theorem:Given anyset of periodsv,, i = 1,. . . , dim H,,, thereexistsa closedp-form cv for which

~~zsir(c1,w)=Jw, i=1,...,dimH,,.

Secondtheorem: If all the periodsfor a p-form a vanish,

0=ir(c~~a)=Ja~ i=1,...,dimH,,

then a is exact.
In otherwords,if {w1} is a basisfor H~DR(M;R), thenthe period matrix

IT,, = Ir(c,, w1)

is invertible.ThusH~,R(M;R) is dual to H,,(M; R) with respectto the inner productIT. Thereforede
Rham cohomologyH~,Randsimplicial cohomologyH~are naturally isomorphic,

and henceforth will be identified.

We define

b,, =dimH,,(M;R)=dimH~(M;R)

as the pth Bettinumberof M. The alternatingsum of the Betti numbers is the Euler characteristic

~(M) = ~ (—1)”b,,.

The de Rham theorem relates the topological Euler characteristic calculated from H,, to the analytic
Eulercharacteristiccalculatedfrom de Rhamcohomology.The Gauss—Bonnettheoremgives a formula
for ~(M) in termsof curvature aswe shall seelater.

We saythat a cohomologyclass is integral if 1T(c,~) EZ for any integralcycle c. There is alwaysa
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naturalembeddingof H~(M;Z) in H~(M; Z) ® R H~(M;R). However,H~(M;Z) is not isomorphic
to the set of integral de Rhamclassessincetorsion elementsarelost during the embedding;H~(M;Z)
in generalhastorsion elementswhile H”(M; R) (and H”(M; C)) do not.

Pullbackmappings.1ff: M —*N andif cv,, is ap-formon N, thenwe canpull backcv,, to definef*cv,, asa
p-form on M. For example, if x” EM, y’ EN, f’(x”)=y’ and cv =g,(y)dy’, then we find f*w =

g,(f(x))3~f(x)dx”. Since d(f* cv,,) = f* dcv,,, f* pulls back closed forms to closedforms andexactforms
to exactforms. This definesa mapf*: H”(N; R)-*H”(M; R). Thedualmapf~:H,,(M; R)—*H,,(N; R)
goestheotherway. f~is definedon thechainlevel by usingthe mapf to “push forward” chainson M to
chainsonN. It iseasyto checkthatf~mapscyclesto cyclesandboundariestoboundaries.f*isazeromapif
p > dim M or dim N. We also notethat

ir(c,f*w) = ir(f~c,cv).

Ringstructure:The wedgeproductof two closedforms is againclosed;the wedgeproductof an exact
anda closedform is exact.Wedgeproductpreservesthecohomologyequivalencerelationandinducesa
map from H”(M; R)®H~(M;R)—~H”~(M;R). This defines a ring structure on H*(M; R) =

~H~(M;R). Since

is cv)f*0 Af*cv,

pulling back preservesthe ring structure.H*(M;Z) and H*(M;Z2) have ring structures similar to
H*(M; R).

Poincaréduality: If M is a compactorientablemanifold withoutboundary,thenH” (M; R) = R because
anycv~EH” (M; R) maybe written up to a total differential as

cv~= constx (volumeelementin M).

Poincaréduality statesthatH~(M;R) is dual to H””(M; R) with respectto the inner product

(cv,,, w~_,,)= J cv,, n

ConsequentlyH~and H”~ areisomorphicasvectorspacesand

dim H”(M; R) = dimH”~(M; R).

Hence the Betti numbers are related by

b,, = b~_,,.

Poincaré duality is valid with 2 coefficientsregardlessof whether or not M is orientable.



238 Eguchi. Gilkey and Hanson, Gravitation, gauge theories and differential geometry

Productformulas: If M = M1 X M2, then

H”(M;R)= ~ H~(M,;R)®H~(M2R),
,~+q = k

so H*(M; R)= H*(Mi; R)®H*(Ms; R). Furthermore,this is a ring isomorphism.This is the Kunneth
formula. This formula is not valid with Z or Z2 coefficients.Since the Betti numbersare relatedby

b~(M) ~ bp(Mi)bq(M2),
,,-4-q=k

we find that the Eulercharacteristicsobey the relation

= M, xM,) =

Harmonicforms and de Rhamcohomology
If M is a compactmanifold without boundary,we can expresseachde Rhamcohomologyclassas a

harmonicform using the Hodge decompositiontheorem,

cv = da + 6~3+ ‘y,

where y is harmonic. If dcv = 0 then d6/3 = 0 50 6/3 = 0 and cv = da + y. This shows that every
cohomology class containsa harmonicrepresentative.If cv is harmonic, then ôda = 0, so da = 0 and
cv = y. This establishesan isomorphism between H°(M;R) and the set of harmonic p-forms
Harm”(M; R). This is alwaysfinite-dimensional,so H”(M; R) is finite. (If M hasa boundary,we must
use suitableboundaryconditionsto obtainthis isomorphism.)

If M = M1 xM2, 0, is harmonic on M, and 02 is harmonic on M2, then 0, n 02 is harmonicon
M, xM2. This defines the isomorphism

Harm”(M = M, x M2 R)= ~ Harm°(M1R)ØHarrn~(M2R),
,, 4-q k

which is equivalent to the Kunnethformula definedabove.
Note: In general the wedge product of two harmonic forms will not beharmonicso the ring structureis
not given in termsof harmonicforms.
Note: If M is oriented,the Hodge operatormapsA°—‘A”~ with * * = (—1)”~”°~.The * operator
commutes with the Laplacian and induces an isomorphism

* : Harm”(M; R)’= Harm”~(M;R).

Therefore

dim H~(M;R) = dim H”°(M; R).

This is anotherway of looking at Poincaréduality.

Equivariantcohomology:An isometryof M is a map~f M to itself whichpreservesa given Riemannian
metric on M. Let M bea manifold on which a finite groupG actsby isometrieswithout fixed pointsand
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let N = M/G. If cv,, is harmonicon M andg E G, thenthe pullback g * cv,, on M is harmonic.If

g*cv,, =w,,, forallgEG,

then cv,, is called G-invariant. The harmonic p-forms on N = M/G can be identified with the
G-invariantharmonicp-formson M.

Examples2.5
I. de Rhamcohomologyof R~.All closedforms are exacton R” exceptfor the scalarfunctionswhich

belongto H”. 1ff is a function and df = 0, then all the partial derivativesof f vanishsof is constant.
dim H°(R”;R) = 1, dim H” (R”; R) = 0 for k� 0.

2. de Rhamcohomologyof 5”. Only H” andH” are non zero for S” andboth havedimension1. H”
consistsof the constantfunctionsand H” consistsof the constantmultiples of the volume element.
Theseare the harmonicforms.

3. de Rhamcohomologyof the torus, T2 = S’ x 5’. Let 0, and 02, 0� 0, <2ir, be coordinateson each
of the two circlesmaking up the torus.The differential forms dO, are thenclosed but not exact,since the
0, are defined only modulo 2iT and are therefore not global coordinates.Thus do, anddO

2 form a basis
for H’(T

2 R) and dim H’(T2 R) = 2. By the Kunneth formula, H2(T2 = S’ x S’; R) =

H’(S’; R)®H’(S’; R) andso H2(T2R) is generatedby d0~A do
2 where dim H

2(T2R)= 1. Obviously
dim H°(T2R) = I also.

It is instructiveto work out the Hodgedecompositiontheoremexplicitly for T2 by expandingC~(A~)
in Fourierseriesusingthe coordinates0,. We find

cv,, = a~,em0 em~

cv, = ~ ~ e”’°’ em*2 do,+ ~ b~c”’°’elm*52 do
2

cv2 = cu,,, e”’°’ elm~~do, is dO2.

Now we compute the Laplacians

~cvo= Sdcv,,= ~ (n
2 + m2)a~,,e”’°’ elm*2

z~cv,= (do + Od)cv, = ~ (n2+ m2)(b~’,~do, + b~do
2)e”’°’elm*2

i~cv2= dOcv2 = ~ (n
2+ m2)cnme”’°’ eim~do, ,~do

2

and introduce the Green’s functions G,, of the form

cv,, = a,,,,, e”’°’emm*2/(ns+ m
2), etc.

(n.m � (0,0)

Then we may write each elementof C°’(A~)as the sum of a closed,a co-closed,and a harmonic form as
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follows:

wo = ~G,,cv0+ a,,,, = 0 + O(dG,,cvo) + a,5,

cv, = ~G,cv,+ b~]dO, +b~dO2

=d(OG,cv,)+8(dG,cv,)+b~?d0,+b~d02

= ~G2cv2+ c,5,dO, A do2

d(OG2cv~)+ 0+ c,5,dO, is do2.

We verify explicitly the dimensionsof eachcohomologyclassfrom the harmonicrepresentativesin the
decompositionof cv,,.

4. de Rhamcohomologyof P,,(C). There is an elementxE H
2(P,,(C); R) such that x” generates

H2”(Pn(C); R)= R for k = 0 n. H’(P,,(C); R) = 0 if] is odd or if j> 2n. x will be the first Chern
class of a line bundleas discussedlater. It has integral periodsas does x’< for k = 0 n. x”” 0
since this would be a 2n +2 form. There is a natural inclusion of C” into C”~’ which inducesan
inclusionof P,,,(C) into P,,(C)which we denoteby i. Then i*: H”(P~(C);R)—sH”(P,,_,(C);R) is an
isomorphismfor k<2n. Consequently,x is universal;we can view x as belongingto H2(P,,(C);R) for
anyn. (x is the normalizedKähler form of P~(C);seeexample3.4.3.)

5. de Rhamcohomologyof U(n). Let g be an n X n unitary matrix g E U(n). g’ dg is a complex
matrix of 1-forms. Let cv,. = Tr(g” dg)” for k = 1,2,. .. , 2n — 1. Thencv,, is a complexk-form which is
closed; cvk = 0 if k is even. The {cv,, cv

3,. . . , cv2,,,} generateH*(U(n); C). By adding appropriate
factorsof v’~ito makeeverythingreal,we could get correspondinggeneratorsfor H*(U(n); R). (If we
addappropriatescalingfactors,thesebecomeintegralclasseswhich generateH*(U(n); Z ).) If we then
take the mod 2 reduction,we get classeswhich generateH*(U(n); Z2). g’ dg is the Cartanform
which will be discussedlater. For example,if n = 2, then:

H°(U(2); C) C, H’(U(2); C) C (generatorcv,)

H
2(U(2); C) 0, H3(U(2): C) C (generatorcv

3)

H
4(U(2); C) C (generatorcv, t~cv3), H”(U(2); C) = 0 for k >4.

Of course,U(2) = U(1)xSU(2)= 5’ xS~topologically (althoughnot as agroup). Up to a scalingfactor
cv, is dO on 5’ andcv

3 is the volume elementon 53~H*(Sl xS~C)= H*(Sl; C)®H*(5
3’C) is just an

illustration of the Kunnethformula.
6. de Rham cohomologyof SU(n). SU(n) is a subgroupof U(n); let i: SU(n)—* U(n) be the

inclusion map. The i*cvk EHk(SU(n); R) are generators for k = 3,. . . , 2n —1. (H’ = 0 since
Tr(g’ dg)= 0 for SU(n).)Topologically, U(n)= 5’ x SU(n) and H*(U(n)) = H*(Sl)®H*(SU(n)).

7. Thede RhamcohomologyofP~(R) is a good exampleinvolving torsion.
(a) With real coefficients,we arguethat

Hk1P(R\,R\_H(P/R~~.R’~_~ifk=Oork=n,nodd

~. n~ )‘ I — k’. ~ ), ~~lo otherwise.

If ki~0, n, then there are no harmonic forms on the universal cover S” and henceH”(P~(R);R) = 0, for
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k~0, n. Since P~(R)is connected,H°(P~(R);R) = R. Finally, if n is odd, the antipodalmapf(x) = —x
on S” preservesthe volume elementandhenceP~(R)is orientableandH”(P,,(R);R) = R. If n is even,
the antipodal map reverses the sign of the volume form so thereis no equivariantharmonicn-form and
H”(P~(R);R) = 0. P,,(R.) is not orientableif n is even.

(b) With Z2 coefficients there is anelementx EH’ (P,, (R); Z2) so that x” generatesH” (P~(R); Z2)
Z2 for k = 0,.. . , n. If i: P~..,(R)—sP~(R)is the natural inclusion,then i*x = x so i*: H”(P~(ER);Z2)—’s
H”(P,,_,(R); 12) is an isomorphismfor k = 0,. . . , n — 1. (x is a Stiefel—Whitneyclass.)

(c) With integercoefficients,

H”(P,,(R);Z)=Z,0,Z2,0,Z2,...;

H”(Pn(R);Z)’~ ifn =odd~Z2 if n = even

H~(P~(R);Z)=Z,Z2,0,Z2,0,...;

Hn~pn(R);Z)1Z if n =odd

~0 if n = even.

The shift in the relative positionsof the Z2 terms in H” and Hk is a consequence of the universal
coefficienttheorem(see,e.g., Spanier[1966]).

3. Riemannianmanifolds

We now considermanifoldsendowedwith a metric. We apply the tools of the previoussectionand
presentclassicalRiemanniangeometryin amodernnotationwhichis convenientforpracticalcalculations.
A still more abstractapproachto Riemannianmanifoldswill be given whenwe treat connectionson
fiber bundles.

3.1. Cartanstructureequations

Supposewe are given a 4-manifold M anda metric g~p(x)on M in local coordinatesx”. Thenthe

distanceds betweentwo infinitesimally nearbypointsx” andx” + dx” is givenby

ds
2=g~~(x)dx”dx~

wherethe g~,..arethe componentsof asymmetriccovariantsecond-ranktensor.

We now decomposethe metric into vierbeins(solder forms)or tetradse”,~(x)as follows:

ga,. = flabe~e,.
~ab = ~

Here ilab is a flat, usually Cartesian, metric such as the following:

Euclidean space:

1~ab”&b, a,b=1,2,3,4;
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Minkowski space:

‘~1ah’ , a,b=0,1,2,3.

e”~is, in somesense,the squareroot of the metric.
Throughout this section, Greekindices jz, ii,... will be raisedandloweredwith ga,, or its inverseg””

andLatin indices a, b,... will be raisedandlowered by ~ah and ~ab We define the inverse of e”,, by

Ea” =

which obeys

Ea”e”,~ =

~qabEa~Eh~~= g”” etc.

Thus e”~and Ea” areusedto interconvertLatin andGreekindices whennecessary.
We thereforesee that e”~ is the matrix which transformsthe coordinatebasis dx” of T~(M)to

an orthonormalbasisof T~(M),

e’~= e°,,~dx”.

(Note that while the coordinatebasis dx” is always an exactdifferential, ea is not necessarilyanexact
1-form.)Similarly, En” is a transformationfrom the basis ~3/ax”of T~(M)to the orthonormalbasisof
T~(M),

Ea = Ea” 3/3X”.

(Note that E~and Eb do not necessarilycommute,while a/ax” and a/ax” do commute.)
We now introduce the affine spin connectionone-formW°b anddefine

de” + cv”,, A e” T° ~T”bCe”is eC. (3.1)

This is called the torsion 2-form of the manifold. The curvature2-form is definedas

R”,, = dcv”,, + cv”~A cv~= ~R~,,ctieCA e”. (3.2)

Equations(3.1) and(3.2) are called Cartan’sstructureequations.

Consistencyconditions:Taking the exteriorderivativeof (3.1) we find

dT” + cv”,, ,~T” = R”,, is e”. (3.3)
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Differentiating (3.2), we find the Bianchi identities:

dR”,, +cva,, ARC,, ~R”~ ncvC,, 0. (3.4)

We define the covariantderivativeof a differential form V°,,of degreep as

DV”,,=dV”,,+cv”,. ~ ~ is cv”,,. (3.5)

The consistency condition (3.4) thenreads

DR”,,=O.

Gaugetransformations:Consideran orthogonalrotationof the orthonormalframe

ea —~e”’ = ~pa,,eb

where

tha thb —

?lab’*’ c’~ d — fled’

Notethat

(d~)”,,(~’)”~=

Thenwe find

= de”’ + cv”’,, is e”

where

T’°= ~a,,Tb

and the new connectionis

cv,, = ~J,acvC(t~,_l)d + J~~(d’~’)”,,.

The transformationlaw for the curvature2-form is given by

R’°,,= dcv”’,, + W~ , W”’~ =

A similar exercise shows that under a change of frame, the “covariant derivative” (3.5) in fact
transformscovariantly,

(DV)”’,, =
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3.2. Relationto classicaltensorcalculus

The Cartan differential form approachis, of course,equivalent to the conventionaltensor for-
mulation of Riemanniangeometry. Here we summarizethe relationships amongvarious quantities
appearingin the two approaches.Figure 3.1 is a caricatureof classicaltensorcalculus.

Volumeand inner product:The invariant orientedvolume elementin n dimensionsis

dV=e’Ae2A’”Ae”=IgI”2dx’Adx2A.~Adx” (3.6)

whereg is the determinantof the metric tensor.

In curvedspace,the Hodge * operationwill involve the metric.If
0 any two indicesrepeated

= +1 evenpermutation
—1 odd permutation,

then

E = ~

,1,1,, 5

and we define the standard tensor densities

E
— 1/2

— g �l.LI ‘IL,,

E“‘ ‘‘““ = I _lI2~~L,...

The Hodge* is thendefinedas the operationwhich correctly producesthe curvedspaceinner product.
Theinner productfor 1-formsis definedusingthe Hodge* as

a is * /3 = g””a~f3~IgI”2dx’ is is dx”. (3.7)

Hodge * is thereforedefinedas

I 1/2

is ~ � ~ ~,, dx”~”is ‘is dx”’.

• 2 41

J
2 13 14 ~

Fig. 3.1. Classical tensor calculusintoxicatedby theplethoraof indices.
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Becauseof (3.6) we can rewrite this in the form

* (e’~’is . . . is e~)= 1 ~ai ap ~ a ~ is is
(n—p)!

where E~b...has its indices raisedand lowered by the flat metric i’lab. If we convertGreekto Latin
indicesusingthe vierbeins,e.g.,

a = a~dx” = ace”

werecoverthe inner product(3.7):

a is *13 = naba13(eIis e2 is is e”= g””a~f3~(lg~”2d”x).

Thevarioustensorsthat wehavedefinedwith flat indicesa, b,. . . are,of course,relatedto the tensor
objectswith curvedindicesby multiplicationwith e”~,E°~.The curvaturetwo-form is first decomposed
as

R”,, = ~ is ed = ~ dx” A dx”,

andthenthe Riemanntensoris written

Riemanntensor= R”,
3~~= ~

Similarly, the torsionis

Ta = ~T”,,~e”is e” = ~ dx” is dx”

T” —
~“ a ~

Levi—Civita connection:The covariantderivativein the tensorformalism is defined using the Levi—
Civita connectionf’~8, which physicistsgenerallyrefer to as the Christoffel symbol. The Levi—Civita
connectionis determinedby two conditions,the covariantconstancyof the metric andthe absenceof
torsion.In the tensornotation,theseconditionsare

metricity: g~p;a= ~ — raMgA~ — F~PgMA=0 (3.8)

no torsion: T”~~= ~(F~ — r~~)0. (3.9)

The Christoffel symbol is thenuniquelydeterminedin termsof themetric to be

= ~g””(9,,g~ + ~ —

In Cartan’smethod,the Levi—Civita spinconnectionis obtainedby restrictingtheaffine spin connection
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cv~,,in an analogousway. The conditions(3.8) and (3.9) arereplacedby

metricity: Wah = —cv,,~ (3.10)

notorsion: T” =de” +cva,, ~e” =0. (3.11)

cv”,,,~is thendeterminedin termsof the vierbeinsand inversevierbeinsandis relatedto F~by

W~ ~ =eaC(ôILE,,P+F~AE,,A)

— C, “ a — ~ .‘I ~m a rA a
— —~,, e CIL — —n,, ~u~e~~i ,~,,eA

From

0 = = eap;~gPA~,,~+ ~ +

we seethat(3.10)is indeedaconsequenceof covariantconstancyof themetric,(3.8). Similarly, if wewrite
eq. (3.11) as

0 = ~ — ô~e”~+ E°”e,,,,~ — E””e,,,, CeIL
.,,,.~aIrA b rA bt’h~,1~ A

1 ILCe A

we recognizethe torsion-freecondition(3.9).
The curvaturecan be extractedfrom Cartan’sequationsby computing

a a a C a c a r$ a
,9~cvb~— ,9~cv,,~+ cv ~cv b~— cv ~cv,,~= e ,,~

where

~ = ~ — a,i’~+ ~ — ~ (3.12)

Weyl tensor: A usefulobject in n-dimensionalgeometryis the Weyltensor,definedas

= ~ + (n — 1)(n —

2)(g~ILgs~ — g,,~g~~)—(n 2)(g~IL~,SC— ~ — ~$M~L + g~JP~&IL),

where~ = R~~~,,g”’
3and~ = ~~~g””arethe Ricci tensorand the scalarcurvature.The Weyl tensor

is tracelessin all pairsof indices.

Examples3.2
We will for simplicity look only at Levi—Civita connections(T” = 0, cv~,,= —cv,,~),so the vierbeins

determine cvab uniquely.
1. Coordinatetransformof flat Cartesiancoordinatesto polar coordinates.The Riemanniancurvature

remainszero,althoughthe connectionmaybe nontrivial.
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a. Twodimensions;R2. ds2 = dx2+dy2 e’ = dx, e2 = dy. If x = r cos0, y = r sin0, then

(e’=dr \1( x y\(dx
\e°=rdO)r~—y x)\~dy

Action of Hodge *: * (dx, dy) = (dy, —dx)

* (dr, r dO) = (r do, —dr).

Structureequations:

de”—w is e0 0—cv is rdO =0

de°+cv ise’ =drisdO+cv isdr=0.

Connectionandcurvature:

cv d0

R dcv 0.

b. Four dimensions;R4. ds2= dx2+ dy2 + dz2+ dt2. We definepolar coordinatesby

0 i

x +iy = r cos~exp~(~r+~)
z+it=rsii4exp~(t/i—co)

0�O<ir, 0�~’<2ir, 0�~i<4ir

/e°=dr \ /x y z t\/dx

( e’=ro~ —t —z y x \( dy

e2=ro,, j r~ z —t —x y fI~dz

\e~=ro~/ \—y x —t z/ \dt

o~,o~,,ando~obey the relationdcr~= 2o~,is o~,cyclic. The connectionsandcurvaturesaregiven by

= cv3, = a~,,, cv3,, = cv’
2 =

R°1= dcv°,+ cv°2is cv
2, + cv°

3is cv
3

1

~ etc.

Remark:o~,r5 ando’~are the left-invariant1-formson the manifold of the group SU(2)= S
3 andwill

appearalsoin our treatmentof the geometryof Lie groups.



248 Eguchi, Gilkey and Hanson, Gravitation, gauge theories and differential geometry

2. Two-sphere.The metric on 52 is easilyfoundby settingr = constantin the flat R3 metric:

ds2= r2 dO2+ r2 sin2 0 d~2= (e’)2+ (e2)2.

We choose

e’=rdO, e2=rsinOdp

so the structureequations

de’ = 0 = —cv’
2 is e

2

de2= r cos0 dO is dq’ = —cv2, is

give the connection

= —cos0 dq~’

andthe curvature

R I — I 2
2

212e ise

~ 1 1 2
dw2-~eise.

The Gaussiancurvatureis thusK = ~ = 2/r
2, showingthat ~2 hasconstantpositivecurvature.

3. 4-Spherewith polar coordinates.The de Sittermetric on S4 with radiusR is

ds2= (dr2+ r2(o-~2+ ~.2 + u2))/(1 + (r/2R)2)2

e” with a = 0, 1, 2, 3 is definedby

(1 + (r/2R)2)e” = {dr, rc,~,ru~,rcr~}.

Fromthe structureequations,wefind

I /i’)fl\2
2 ~cv

10(1—(r/2R))e/r=o, 1+(r/2R)
2

~�ijkWjk = (1 + (r/2R)2)e’Ir =

Rob = e’~,~e”.

The Weyl tensorvanishesidentically.
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3.3. Einstein’s equationsand self-dualmanifolds

DefiningtheRicci tensorandscalarcurvaturein 4 dimensionsas

= ga$RM
0~8 ~ = ~ (3.13)

we write Einstein’sequationswith cosmologicalterm A as

~““ —~g””~l= T”” —Ag””. (3.14)

If thematterenergy-momentumtensorT”” andA vanish,Einstein’sequationsimply thevanishingof
the Ricci tensor,whichwe write in the flat vierbein basisas

0= pAab = e”~E,,”~I”~= R°~bdn””. (3.15)

We note that in Einstein’stheory we always work with the torsion-freeLevi—Civita connection,so

theconsistencycondition(3.3) becomesthe cyclic identity:
R°bis e” = O~.�Re = 0. (3.16)

Now let us definethe dualof the Riemanntensoras

Rabcd = ~�abmnRmncd. (3.17)

Supposethe Riemanntensoris (anti)-self-dual,

~ = ±Rabcd.

Thenthecyclic identity implies Einstein’sempty spaceequations,

0 = EabcdRebcd = ±~�abcd�ebmnRmncd

= ±(~lôae— 2~1ae).

Remark: A similar argumentcanbe usedto showthatEinstein’sempty spaceequationsmaybe written

as

R°bis e~’= 0, (1L~=~�abcdR = ~R0b~deis ed).

The equivalenceof thecyclic identityand Einstein’sequationsfor self-dualRab is thenobvious.
From the relation betweenR0b and Wab,

R01 = dcvo1+ w02 A w21 + w03 is

R23 = dcv23+ cv20 is 003 + 021 is w,3 etc.,
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we notice that Rab is self-dual,Rab = ±R~b,if cvab is self-dual,

cvab = ±Wab,

Thereforeone way to generatea solution of Einstein’s equationsis to find a metric with self-dual
connection. -

Remark:SupposeRab = ±Rab but Wab� ±Wab. Thenwe decomposeWab into self-dualandanti-self-dual
parts. Using an 0(4) gaugetransformationone can always remove the piece of (L)ab with the wrong
duality. The only changein Rab under the gauge transformationis a rotation by an orthogonalmatrix
which preservesits duality properties.Thus any self-dual Rab can be consideredto come from a
self-dual connection Wab if we work in an appropriate“self-dual gauge”.

Self-dualand conformallyself-dualstructuresin 4 dimensions
In the caseof four dimensionssome simplification occurssince the dualof the curvature2-form is

also a 2-form. Let us define self-dual and anti-self-dualbasesfor A
2 usingthe vierbein one-formse”:

A = e°is e’ ±e2 is e3
2 2 0 ‘ 3 I IbasisofA~= A~=eAe±eAe, *A~=±A~.

A ~ = e°is e3 ±e1 is e2

The curvaturetensorcan then be viewed as a 6 x 6 matrix R mappingA ~ into A ~ (see, e.g., Atiyah,
Hitchin and Singer[19781),

RA2_IA C~\(A÷
\C B )~A~

whereA is the 3 x 3 matrix whose first column is

A
1, = R0111,+ R0,23+ R23,,, + R2323

A2, = ~ + R~223+ R310, + R3,23

A3, = R030,+ R0323 + R120,+ R,223.

That is,

A,~= +(R,51,~+ 2�Ik,R01kI)+~i�i,nn(Rmnoi+ �JkjR,~~k,)

andB andC~aredefinedby changingthe four signs in the definition of A as follows:

A -~(+, +, +, +)

B—(+,—,—,—)

C~—(+,—,+,—)
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The Hodge * duality transformationactson R from the left as the matrix

113 0

I

Now if we let

S = TrA = Tr B

and subtract the trace,we find

/ TI! f’+

5 ~ VV, L-
— 66~c~~w~

where
C~= tracefreeRicci tensor

W±+ W_ = tracefreeWeyl tensor.

The interestingspacescan thenbe categorizedas

Einstein: C~=0 ~
Ricci flat: C~= 0, S = 0 ~ = 0)
Conformallyflat: W±= 0
Self-dual: W = 0, C~= 0
Anti-self-dual: W+ = 0, C~= 0
Conformallyself-dual: W_ = 0
Conformally anti-self-dual: W4. = 0.

Beware:Whatphysicistsreferto asself-dualmetricsarethosewhich haveself-dualRiemanntensorand
which mathematiciansmay call “half-flat”. The spaceswhich a physicist describesas having a
self-dualWeyltensoror as conformallyself-dualmaybecalledsimply “self-dual” by mathematicians.

Examples3.3
1. Schwarzschildmetric. The best-knownsolution to the empty space Einstein equationsis the

Schwarzschild“black hole” metric:

ds
2= _(i — dt2 + 1 — 2M/RdR2+ R2(d02+ sin2 0 dtp2)

O~O<ir, 0�~c<2ir.

Choosingthe vierbeins

e°=(1_~)”2dt~ e’ = (1_~~)”2dR,e2= R do, e3 = R sinO dq,
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andraisingandlowering Latin indiceswith flab = diag(—1, 1, 1, 1), we find theconnections

cv°,~dt w2
3=—cosOdç

02 = 0 cv~1= (1— 2M/R)”
2sin0 dç

003 =0 W’2 —(1—2M/R)112d0.

Thenthe curvature2-formsare

o 2M’ 0 1 2 2,Mr 2 3

R ,=-~~-eise R
3=-~-eise

~ “.M’ 0 2 3 —M 3 1

R 2=-~’3-e ise R 1=-~-eise

0 ~ 0 3 1 M, 2

ise R2=—~e ise,

andwe easilyverify that theSchwarzschildmetricsatisfiesthe Einsteinequationsoutsidethesingularity
atR =0.

2. Self-dualTaub—NUTmetric. Oneexample of a metric which satisfiesthe EuclideanEinstein
equationswith self-dualRiemanntensoris theself-dualTaub—NUT metric(Hawking [1977]):

ds
2= ~ dr~+(r~—m2)(u~2+ cry2)+4m2T rn

where o~,o~ando~.are defined in example 3.2.1 and m is an arbitraryconstant.We choose

e°= {1 (I. + ?n)hI’2 dr, (r2 — m2)”2cr~, (r2 — m2)”2cr~, 2m(l. lfl) 1/2~ }
and find the connections

0 2r 2 2m
0xr+m r+m

0 2r ~ 2m
02 0y

r+m r+m
,~ 2 / A 2~ -rm

W3(r+m)2O~ W2=(2—(+)2 O.Z,

andcurvatures
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R°,= —R2
3 — (r+rn)

3 (e°is e’ — e2 is e3)

R0
2=_R3l=(+~~)3(eoise2_e3ise1)

R°3=_R12=(~rn )3(eis e
3—e’ is e2).

3. Metric ofEguchi and Hanson [19781.Another solutionof the EuclideanEinstein equationswith
self-dualcurvatureis given by

ds2= 1 ‘~‘~)4+ r2(o’~2+a~2+ (1 — (a/r)4)o-~2)

wherea is an arbitraryconstant.Choosingthevierbeins

e’~= {(1 — (a/r)4~”2dr, ro
1, roy, r(1 — (a/r)

4)”2o
5}

we find self-dual connections

w0, = _w23= —(1 — (a/r)
4)U2a.

1

002 = _w~= —(1 — (a/r)
4)”2cr~

03 = ~W’2 = —(1 + (a/r)4)o~~,

andcurvatures

R°
1= —R

2
3 = ~~(_e0 is e’ + e

2 is e3)

R°
2= —R

3, = _(__e0is e2+ e3 is e’)

R°
3= —R’2 = — ~_(_e0 is e

3+ e’ is e2).

The apparentsingularitiesin the metric at r = a can be removedby choosingthe angularcoordinate
ranges

0�0<ir, 0�4~<21r,Osifr<2ir.

Thus the boundaryat ~ becomesP
3(R). (If 0 � <4ir, it would havebeen53~)See section 10 for

furtherdiscussion.
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3.4. Complexmanifolds

M is a complex manifold of dimensionn if we can find complexcoordinateswith holomorphic
transition functions in a real manifold with real dimension2n. Let Zk = xk + iyk be local complex
coordinates;the conjugatecoordinatesare 1k = x,, — iyk. We define:

ôI8zk = ~(8/8xk— 8/19)1k) 818zk = ~(8/8xk+ 8/19)’k)

dzk =dxk+idyk d~k=dxk—idyk.

Thenit is easilycheckedthat

df = ~ (8ff8zk)dzk+ ~ (c9f/c9ik)dzk= 8f+ äf (3.18)

where

8f= ~ (8f/8z~)dz~

f = ~ (8f/8~)dzk.

If f(z) is a holomorphicfunction of a single variable,

a?= (af/82)d2= 0.

In general,a function f on C1’ is holomorphicif af/32k = 0 for k= 1,. . . , n or equivalentlyif 8! = 0.
If Wk is anothersetof local complexcoordinates,then

- 8Wk
dwk = 8Wk + 8Wk = 8Wk = ~ -~— dz

1

d~k

We define the complextangentandcotangentspacesin termsof their local basesas follows:

T~(M)= {8/8z~} T~(M)= {8/82~,}

T~(M)={dz1} i~(M)={dZ~}.

In fact, thesespacesare invariantly definedindependentof the particular local complex coordinates
which are chosen. Wenotethat T(M)®C = T~(M)~JT~(M)and T*(M)®C = T~(M)~T~(M).

We can define complex exterior forms ~ which havebasescontainingp factorsof dzk and q



Eguchi, Gilkey and Hanson, Gravitation, gauge theories and differential geometry 255

factorsof d2k. The operators8 and19 actas

8: Ca(AJ~~~)_*Ca(~~l~), 3: C~(flP.~)~ C’°(A~41).

Clearly we can definedo = ôcv + 3cv for anyform cv EA~4.Theseoperatorssatisfy the relations:

88wr0, 33w’O, 83cv—38cv. (3.19)

We definethe conjugateoperatorswith respectto the inner productby

(3.20)

Therearethenthreekinds of Laplacians:

= (d + &)2

= 2(3+ 3*)2

Almostcomplexstructure: A manifold M hasanalmostcomplexstructureif thereexistsa linear mapJ
from T(M) to T(M) such that J2 = —1. For example,takea Cartesiancoordinatesystem(x, y) on
anddefineJ by the 2 x 2 matrix

= (0 —1\ (x\ = (—y
\yj \1 0J\y) \ x

j2(X\
1(X

\YJ \Y

Clearly J is equivalentto multiplicationby i =

i(x + iy) = ix — y

i
2(x + iy) = —(x + iy).

As an operator,J haseigenvalues±i.We note that, obviously, no J can befound on odd-dimensional
manifolds.

Kdhler manifolds:Let us considera Hermitianmetric on M given by

ds2= g
0~dz°di”, (3.21)

whereg~is a Hermitianmatrix. We definethe Kähler form
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K = g~dza ~dzb.

Then

= — g~di° A dzb = gba dZ” is dZ°= K

is a real 2-form.
A metric is said to be a Kähler metric if dK = 0, i.e., the Kähler form is closed.M is a Kähler

manifold if it admits a Kählermetric. Any Riemannsurface(real dimension2) is automaticallyKähler
sincedK = 0 for any2-form. Thereare,however,complexmanifolds of real dimension4 which admit
no Kähler metric.

If dK = 0, then,in fact, K is harmonic and

dK=öK=0.

For a Kähler metric, all the Laplaciansare equal;A = A’ = A”. A Kähler manifold is Hodge if there
exists a holomorphic line bundlewhose first Chernform is the Kähler form of the manifold. Hodge
manifoldsaregiven by algebraicequationsin P1’ (C) for somelargen.

If a metric is a Kählermetric, thenthe setof the forms

K,KisK,...,KisKis~”isK
(n times)

are all non-zeroand harmonic.They definecohomologyclassesin H”(M; R) for p = 2,. . . , 2n. (If the
metric is Hodge, then these are all integral classes.)P~(C) is a Kähler manifold and all of its
cohomology classes are generated by scalar multiples of the set of forms given above.

If M is anycomplexmanifold, it hasa naturalorientationdefinedby requiringthat

JKA...AK>0.

Examples3.4

1. Flat two space.Taking z = x + iy, we choosethe flat metric

ds
2=dx2+dy2=(dx+idy)(dx—idy)=dzd~.

HencetheKähler form is

K=~(dx+idy)is(dx—idy)dxisdy

which is obviouslyclosedand coclosed.
2. Two sphere, S2= P

1(C). We convert the standardmetric on S
2 with radius ~ into complex
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coordinates:

d2— dx2+dy2 — dzdz~

The Kähler form is then
K_!dZAdZ_ dxisdy

— 2 (1 +z~)2— (1 + x2 + y2)2~

Choosingvierbeinse’ = dx/(1 + x2 + y2), e2 = dy/(1 + x2 + y2) we find

K = e’ is e2

*K=1

soK is harmonic.We notethat

K = 1919 ln(1 + zZ).

3. Fubini—Studymetric on P.(C). The Fubini—Studymetric on P
1’ (C) is given by theKähler form

K=~aaln(1+~z0r)

= 2 ~ + ~ z~z~)— rz~]

For P2(C), we find

2 ~dz°d2’° ~rdz0z~dz$

ds 1+~z~r (1+~z”Z”)~

— dr
2 + r2(o~2+ cr~2+ p.2) — r2(dr2+ r2u~2)

— 1+r2 (1+r2)2

— dr2+ r2c’
2

2 + r2(o~2+ o-~2)

— (1+r2)2 1+r2

Choosingthevierbeinone-forms

e°= dr/(1 + r2), e’ = ro~/(1+ r2)”2

e2 = ro~/(1+ r2)”2, e3= ro
2/(1 + r

2)



258 Eguchi, Gilkey and Hanson, Gravitation, gauge theories and differential geometry

we find the connectionone-forms

~ 1, 2 1,

cv ,=——e cv 3=—e
0 12 3 12

0) 2~~”er r

r
2—1 1+2r2

(t)

3=—e 02= e.

The curvaturesareconstant:

R01=e°ne’—e
2ne3 R

23=—e°ise
1+e2ise3

R
02 = e°is e

2 — e3 is e1 R
3, = —e°is e

2+ e3 is

R
03 = 4e°ise

3+2e’ is e~ R
12= 2e°ne

3+4e’ is e2.

We find that the Ricci tensoris

~ab = 615ab

so Einstein’sequation

~ab —

2i5abPhl = “AI5ab

is solvedwith the cosmologicalconstant,

A = +6.

The Weyl tensor for the Fubini—Study metric is

W’abcd = RObCd —

2(öac6bd—

so the two-forms W
0b = ~Wabcd ec is ed are self-dual:

W01= W23=—e°ne
1—e2ise3

W
02= W31 =—e°ise

2—e3ne’

W
03 = 14112= 2e°is e

3+ 2e1 is e2.

More geometricalpropertiesof P
2(C)will be exploredlater.
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4~51 x 52fl~i Let c be a complexnumberwith cl> 1. On C” — {0} we introducethe equivalence
relation z = z’ if z = c’~z’for some integer k. The resulting quotient manifold will be a complex
manifold and will be topologically equivalent to S’ xS2”’. We suppose n � 2, then
H*(Sl; R)®H*(S21’_~R) = H*(SI X S21’’; R) implies that H2(S’ x S21’’; R) = 0, so this complex
manifold doesnot admit any Kähler metric. It is worth noting that different values of the constantc
yield inequivalentcomplexmanifolds (althoughthe underlyingtopologicaltype is unchanged).

5. Metrics on the group manifoldsof U(n), SU(n), 0(n), SO(n). Let g(t), h(r): [0,s)—~Gbe two
curveswith g(0) = h(0) = g

0. We definea metric on G by defining the inner productof the two tangent
vectors (g’(O), h’(O)) = —Tr(g~’g’(0)g~’h’(0)).It is easilyverified that this is a positive definite metric
which is both left andright invariant on thesegroups;i.e.,multiplication on either the right or theleft is
an isometrywhich preservesthis metric.Up to a scalingfactor, this is the Killing metric.

4. Geometryof fiber bundles

Many important concepts in physics can be interpreted in terms of the geometry of fiber bundles.
Maxwell’s theory of electromagnetism and Yang—Mills theoriesare essentiallytheoriesof connections
on principal bundleswith a given gaugegroupG as the fiber. Einstein’s theory of gravitationdealswith
the Levi—Civita connectionon the framebundleof the space-timemanifold.

In this section, we shall definethe notion of a fiber bundleandstudythe geometricalpropertiesof a
variety of interestingbundles.We begin for simplicity with vector bundlesand then go on to treat
principal bundles.

4.1. Fiber bundles

We beginour treatmentof fiber bundleswith an informal discussionof the basicconcepts.We shall
thenoutline a moreformal mathematicalapproach.Supposewe are given somemanifold M which we
shall call the basemanifold as well as another manifold F which we shall call thefiber. A fiber bundleE
overM with fiber F is a manifold which is locally adirect productof M andF. That is, if M is covered
by a set of local coordinate neighborhoods {U1}, then the bundle E is topologically describedin each
neighborhoodU1 by the productmanifold

UxF

as shownin fig. 4.1.
A little thoughtshowsthat the local direct-productstructurestill leavesa greatdeal of information

aboutthe global topologyof E undetermined.To completelyspecifythe bundleE, we mustprovide a
set of transitionfunctions{t~i~}which tell how the fiber manifolds match up in the overlapbetweentwo
neighborhoods,U, fl U1. We write ~ as a mapping

~ Flu, 4FIu1 in U1 fl U,,. (4.1)

as illustrated in fig. 4.2. Thus,althoughthe local topologyof the bundleis trivial, the global topology
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~ F1—F1

4UJ

FIg. 4.1. Local direct-productstructureof a fiber bundle.A vertical Fig. 4.2. The transition function •~defines the mapping of the
line representsa fiber associatedto eachpoint, suchas p, in U1. coordinatesof the fibers over U to thoseover U, in the overlap

region U, fl U,.

determinedby the transition functions may be quite complicateddue to the relative twisting of
neighboring fibers. For this reason, fiber bundles are sometimes called twisted products in the
mathematicalliterature.
Example: The Möbius strip. A simple non-trivial fiber bundle is the Möbius strip, which we may
constructasfollows: Let thebasemanifold M be thecircle ~1parametrizedby theangle0. We coverS

1
by two semicircularneighborhoodsU±asshownin fig. 4.3a,

U±={0: —�<O<ir+e}, IL ={0: ir—�<0<2ir+e =0+e}.

We take the fiber F to be an interval in the real line with coordinatest E [—1,1]. The bundlethen
consistsof the two local piecesshownin fig. 4.3b,

U±x F with coordinates(0, t±), U_ xF with coordinates(0, L),

and the transitionfunctionsrelatingt± to t_ in U+ fl U_. This overlapconsistsof two regionsI and II

illustratedin fig. 4.3c.We choosethe transitionfunctionsto be:
= t_ in regionI = (0: —e<0 <e}

t+=—t_inregionII={0:ir--e<0~czir+e}.

Identifying t with —tin region II twists the bundle and gives it the non-trivial global topology of the
Möbius strip, as shownin fig. 4.3d.

Trivial bundles:If all the transitionfunctionscanbe takento bethe identity, theglobal topologyof the
bundleis thatof thedirect product

E=MxF.

Suchbundlesarecalled trivial fiber bundlesor sometimessimply trivial bundles.For example,if wehad
set t+ = t_ in both regionsI and II in the exampleabove,we would havefounda trivial bundleequalto
thecylinder51 x [—1,1].

It is a theoremthat any fiber bundleovera contractiblebasespaceis trivial. Thus, for example,all
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u+ ________

a) S~ ~(‘:~‘~ C) ‘‘~ ~ ~ft’[

9:0 8,r 9:2,r- I I

U÷xF d) I~fl

b)
~‘ KtA~’

U_xE -i~’~.~~)-i

Fig. 4.3. Möbius strip. (a)ThebasespaceS’ is coveredby two neighborhoodsU~which overlapat 9 0 and9—’ ir. (b) Piecesof the bundleformed by
takingthedirect productof U, with thefiber I—I, +I] havingcoordinatest_+. (c)TheoverlappingregionslandII of Li, x FandU_ x F. (d) A non-trivial
bundle,the Mtibius strip, is obtainedby setting t+ = t in region I and 1+ = —t_ in region II.

fiber bundlesover a coordinateball in R” or over the sphere5” minus a single point are necessarily
trivial. Non-trivial fiber bundlescan only be constructedwhenthe global topology of the basespaceis
non-trivial.

Sections:A cross sectionor simply a sections of a fiber bundleE is a rule which assignsa preferred
point s(x) on eachfiber to eachpoint x of the basemanifold M, as illustrated in fig. 4.4. A local section
is a sectionwhich is only definedover a subsetof M. We can alwaysdefine local sectionsin the local
patchesU1 X F from which the bundleis constructed.Thesesectionsare simply functionsfrom U, into
F. The existenceof global sectionsdependson the global geometryof the bundleE. Thereexist fiber
bundleswhich haveno global sections.

Formal approachto fiber bundles
A more sophisticated description of fiber bundles requires us to define a projection ir which mapsthe

fiber bundleE onto the basespaceM by shrinkingeachfiber to a point. If x EM, 1r’(x) is thefiber
over x; i~(x)acts like a flashlight shining through a hole at x to producea “light ray” equal to the
fiber. We sometimesdenotethe fiber F over x asF~.

We let ir”(U1) denotethe subsetof E which projectsdown to the neighborhoodU, in M. By
assumption,thereexists an isomorphismwhichmapsU, xF to ir’(U1). This amountsto an assignment
of local coordinatesin the bundleoften referredto as a trivialization. It is importantto observethat this
isomorphismis not canonical;we cannot simply identify U, xF with ‘i~(U1).We arenow readyto give
our formal description:
Formal definitionofa fiber bundle: A fiber bundleE with fiber F over thebasemanifold M consistsof a

Fig. 4.4. A local cross-sectionorsectionof a bundleis a mappingwhich assignsa point s of thefiber to eachpoint x of thebase.
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topological spaceE togetherwith a projection ir: E—*M which satisfiesthe local triviality condition:
For eachpoint x E M, thereexistsa neighborhoodU1 of x and an isomorphism P, Which mapsU1 xF
to the subset ir’(U,) of the bundle E. Letting (x.f) denote a point of U, xF, we require that

x as aconsistencycondition.Whenwe ignore the actionof P1(x,f) on the argumentx, we
may regard it as an x-dependentmapck.jf) taking F into F.

The transitionfunctions aredefinedas

(4.2)

in the overlapof the neighborhoodsU, and U1. For eachfixed x E U, fl LII,, this is a mapfrom F onto F;
t’k,, relatesthe local productstructureover U, to thatover U1. We requirethat thesetransitionfunctions
belongto a group G of transformationsof the fiber spaceF. G is called the structuregroup of the fiber
bundle.

The transition functions satisfy the cocycle conditions:

= identity

~ij~jk = ~ik forx EU, flU1 fi U,,.

A set of transitionfunctionscan be usedto definea consistentprocedurefor gluing togetherlocal pieces
of a bundleif andonly if the cocycle conditionsaresatisfied.A bundleis completelydeterminedby its
transitionfunctions.

Pullback bundles: Let E be a fiber bundleover the basemanifold M with fiber F and supposethat
h: M’ —~M is a mapfrom someothermanifold M’ to M. The pullbackbundleE’ denotedby h*E, is
definedby copying the fiber of E over eachpoint x = h(x’) in M over the point x’ in M’. If we denotea
point of M’ xE by the pair (x’, e), then

F = h*E = {(x’, e)EM’ XE suchthatir(e) = h(x’)}. (4.3)

ThusE’ is a subsetof M’ x E obtained by restricting oneself to the curve ~r(e)= h(x’). [Example:let h
be the identity map and let E = M = M’ = R; thenx = x’ is a line in 1R

2 = M’ xM and E’ = R.1 If {U,}
is a coveringof M such that E is locally trivial over U, andif ‘P

11(x) are the transition functionsof E,
then {h~(U,)}is a cov~ringof M’ such that E’ = h*E is locally trivial. The corresponding‘transition
functionsof the pullbackbundleare:

I.~1(x’)”~’(h*cI~,j)(x)=~i,1(h(x’)). (4.4)

It is clear that if M = M’ and if h(x) = x is the identity map, then h*(E) can be naturally identified
with the original bundleE.

Homotopyaxiom: If h andg are two mapsfrom M’ to M, we saythat theyarehomotopic if thereexists
a mapH: M’ x [0,1] -+ M suchthat H(x’, 0) = h(x’) andH(x’, 1) = g(x’). If we let h,(x’) = h(x’, t), then
we aresimply smoothlypushingthe maph = h0 to the map g = h,. It is a theoremthat if h and g are
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homotopicthen h*E is isomorphicto g*E. For example,if M is contractible, we can let h(x) = x be
the identity map and let g(x) = xo be the map which collapsesall of M to a point. Thesemaps are
homotopicso E = h*E is isomorphicto g*E = M xF; thisproves that E is trivial if M is contractible.

4.2. Vectorbundles

Let us consider a bundle E with a k-dimensionalreal fiberF = R~’over an n-dimensionalbasespace
M; k is commonlycalled thebundledimensionandwe shallwrite dim(E) = k eventhoughthisis in reality
the dimension of the fiber alone. (The totaldimensionof E isof course(n + k).)E iscalleda vectorbundleif
is transitionfunctionsbelongto GL(k, R) ratherthanto the full groupof diffeomorphisms(differentiable
transformations which are 1—1and onto) of R”. SinceGL(k, R) preservestheusualoperations of addition
and scalar multiplication on a vector space, the fibers of E inherit the structureof avectorspace.We can
think of avectorbundleas beingafamily of vectorspaces(thefibers) whichareparametrizedby thebase
spaceM Clearly there is a similar notion of a complex vectorbundleif we replaceR” by C1’ and
GL(k, R) by GL(k, C).

Vectorspacestructureon thesetof sections:We can usethevectorspacestructureon the fibers of avector
bundleto definethe pointwiseaddition or scalarmultiplicationof sections.We write sectionsof a vector
bundlein theform s(x) to emphasizetheirvector-valuednature.Thusif s(x)ands‘(x) aretwo local sections
toE, we can define the local section (s + s’)(x)= s(x)+s’(x)byaddingthevaluesin the fibers.If f(x)is a
smoothcontinuousfunction on M, we can define the new section[fsl(x) = s(x)f(x)by pointwisescalar
multiplication in the fibers.

Zero section: The origin {0} of Ck or R” is preservedby the generallinear group and representsa
distinguishedelementof the fiber of a vector bundle.Let s(x)= 0; this definesa global sectioncalled
the zero-section of the vector bundle. We can always choose a non-zero section in any single
neighborhood U,. If we assumethat this section is zero near the boundaryof U

1, we can extendthis
sectioncontinuouslyto be zerooutsideof U,. Therefore,anyvector bundlehas many global sections,
althoughthere may be no global sectionswhich areeverywherenon-zero.

Moving frames: At each point x of some neighborhood U of M, we can choose a basis
{e1(x) ek(x)} for the k-dimensionalfiber over x. We assumethat the basisvariescontinuouslywith
x if it variesat all; sucha collection of basesdefinedfor all x in U is called a frame. If we havechosena
local trivialization of U x C” —~ir’(U), then we can regardthe e1(x)as vector-valuedfunctionsfrom U
into C” andthe entire frame as a matrix-valuedfunction from U into GL(k, C). The coordinateframe
is thenthe set of constantsections:

e1(x)=(1,0 0)

e2(x)=(0,1 0)
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We remark that one may still discussthe notion of a frame without necessarilyhavingchosena local
trivialization.

A choice of frame {e1(x)} may in fact be used to specify the isomorphism i~j mapping U x C” -~

ir
t(U). If xE U in M andif z = (z, z,,)EC”, we define

P(x,z)=>~e,(x)z’(x). (4.5)

This introducesa local trivialization.Clearly t~b(x;0 1,0 0) = e,(x) is just the vector in the fiber
ir~’(x)associatedwith the sectione

1(x).

Changeofframes:Let U andU’ be two neighborhoodsin M and suppose that we have frames {e,} and
{e’,} over U and U’. Let {z’} and {z”} be the respectivefiber coordinates,and let .~P= b,,.,~.be the
GL(k, C)-valued transition function on U fl U’. Thenthe frames,coordinates,andtransitionfunctions
are relatedas follows:

e~(x)= e,(x) P~(x)

z”(x) = ~k11(x)z’(x) (4.6)

= (i, j) elementof thematrix P,,,.,~.

Hence

e,z’ =

as required.Note: reversingthe orderin whichthe transitionmatrix actswould interchangethe rolesof
right and left multiplication andwould changethe sign conventionin thecurvaturefrom R = dw + w n
w to R = du — w A (0.

Line bundles:A line bundleis a vectorbundlewith a one-dimensionalvector spaceas fiber. It is a
family of lines parametrizedby thebasespaceM. If we replacethe interval [—1,1] by the real line R in
the Möbius strip example,we find a non-trivial real line bundleover the circle. If we replace[—1,11 by
the complex numbersC, the resulting line bundle is isomorphicto 5’ x C and is thereforetrivial. Note
that GL(1, C) and GL(1, R) are Abelian groupsso right andleft multiplication commute;consequently,
for line bundles,it doesnot matterwhetherwe write the transitionfunction on the left or on the right.

Tangentandcotangentbundles:Welet the tangentbundleT(M) andthe cotangentbundleT*(M) bethe
real vectorbundleswhosefibers at apointx EM aregiven by thetangentspaceT~(M)or the cotangent
spaceT~(M).Thesespaceswerediscussedearlier;we observethatif x= (Xt,. . - ,x~)is alocal coordinate
systemdefinedon someneighborhoodU in M, thenwe can choosethefollowing standardbasesfor the
local frames:

{e/ax,,.. - , t9/i9x~} for the tangentbundleT(M)
(4.7)

{dx,,.. - , dx~} for thecotangentbundleT*(M).
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If U’ is anotherneighborhoodin M with local coordinatesx’, the transition functionsin U fl U’ are
given by:

onT(M)
öx, 8x1 8x,

(4.8)

dx, =dx~ onT*(M).

The complexifiedtangentandcotangentbundlesT(M)® C and T*(M)® C of a real manifold M are
defined by permittingthe coefficientsof the frames{ö/t9X,} and {dx,} to be complex.

If M is a complexmanifold with local complexcoordinatesz1, we definethe complextangentbundle
T~(M)to be the sub-bundleof T(M)® C which is spannedby the holomorphictangentvectors3/dz1.
The (complex) dimensionof T~(M)is half the real dimension of T(M). If we forget the complex
structureon T~(M)and considerT~(M)as a real bundle,then T~(M)is isomorphicto T(M).

Constructionson vectorbundles
If V is a vector space. wedefine the dualspaceV* to be the set of linearfunctionals.If V and W area

pair of vectorspaces,we can define the Whitneysum Vç~W and the tensor product V® W. These
and otherconstructionscan be carriedover to the vector bundlecaseas we describein what follows.

Digression on dual vector spaces:We first recall somefacts concerningthe dual space V* of linear
functionals.An elementv” E V~is just a linear map v*: V—~R.The sumandscalarmultiple of linear
mapsare again linear mapsso V~is a vectorspace.If {e1,... , ek} is a basisfor V and v~E V*. then
v*(e,z~~)= zlv*(e,), so the actionof vk on a sectionis determinedby the valueof the linear mapon the
basis. Wedefine the dual basis{e*I e*~~}of the dualspaceV* of linear functionalsby

e*I(ej) ô~ i.e. e*I(ejzI) = z’.

Theseequationsshow that we can regardthe e*l themselvesas defining coordinateson V. Similarly, the

e, define coordinateson V*. Wesee that
dim(V) = dim(V*) = k.

If we changebasesandsete, = e~11,thenthe new dual basisis given by

= ~_Ie*lJ = e*~1(c~t)~. (4.9)

The dual basis transforms just as a set of coordinateson V transforms.
Dual vector spacesarisenaturally wheneverwe have two vector spacesV and W togetherwith a

non-singularinnerproduct(v, w)ER or C wherev E V. w E W. Since(v, w) is a linearfunctionalon v,
wecanregard w asan elementof the dualspaceV* whoseaction is definedby

w(v)= (v, w).
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Since the inner product is non-singular,we mayidentify W with V*. Conversely,V and V* possessa
natural inner productdefinedby the actionof vK on v:

(v, v*)= v*(v).

We may regard V itself as a spaceof linear functionalsdual to V* if we definethe actionof vE V by

v(v*) = (v, v*)

If V is finite dimensional,we find that V** = V; this conclusionis falseif V is infinite dimensional.

A simpleexample:Let V be the vectorspaceof all polynomialsof degree1 or 0. Let V = W anddefine
an inner productby (v, w) = f~ v(x) w(x)dx. If {1, x} is a basisfor V, the correspondingdual basisfor
W V* relative to this pairing is {4 — 6x, —6 + 12x}.

Dual bundles: Let E be a vector bundlewith fiber F~let E* be the dual vectorbundlewith pointwise
fiber F~.If {e,} is a local frameforE, we havethe dualframe {e*1} for E* definedby e*(e1)~(e,,e*)=
~. If the transitionfunctionsof E are given by kx k matrices‘1, thenthe transitionfunctionsof E* are
given by the k x k matrices(~‘)‘.

If E = T(M) is the tangentbundle,then E* = T*(M) is the cotangentbundle.The {ô/ôx,} and the
{dx,} are dualbasesin the usualsenseand the transitionmatricesgiven earlier satisfyall the required
properties.

Whitneysumbundle: The Whitney sum V® W of two vectorspacesV and W is definedto bethe set
of all pairs (v, w). The vectorspacestructureof (v, w) is

(v, w)+(v’, w’)= (v + v’, w + w’) and A(v, w)= (Ac, Aw).

If we identify v with (v, 0) and w with (0, w), then V and W are subspacesof V® W. If {e,} and {f1}
form bases for V and W, respectively, then {e,f,} is a basis for V® W so dim(V® W)=
dim(V) + dim(W).

If E and F are vector bundlesover M, the fiber of the WhitneysumbundleE ® F is obtainedby
taking the Whitney direct sum of the fibers of E and F at each point xEM. If dim(E)= j and
dim(F)= k andif the transitionfunctionsof E and F are the j xj matrices1 andthe k xk matrices~P,
respectively,then the transitionmatrices of E ® F are just the (j + k) x (j + k) matrices 1 ~Pgiven
by:

(‘~ ~j,)=~~®w. (4.10)

If {e}, {f,} are local framesforE andF, then{e, e1,f, fk} is a local framefor E®F. Clearly,
dim(E® F) = dim(E)+ dim(F) = j + k.

Tensorproduct bundle: The tensor product bundle E ® F of E andF is obtainedby taking the tensor
productof the fibers of E andof F at eachpoint x E M. The transitionmatricesfor E ® F areobtained
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by taking the tensor product of the transition functions of E and the transitionfunctionsof F. A local
frame for E ® F is given by {e, ®f~}so dim(E® F) = dim(E)dim(F).

Bundlesof linear maps: If V and W are vector spaces,we define Hom(V, W) to be the spaceof all
linear maps from V into W. For example,Hom(V, R) = V” since V” is by definition the spaceof all
linear mapsfrom V to R. If dim(V) = j anddirn(W) = k, thenHom(V, W)can be identified with the set
of all kxj matrices and is a vector spacein its own right. If E and F are vector bundles,we define
Horn(E,F) to be the vector bundle whose fiber is Horn of the fibers of E and F. There is a natural

isornorphismHom(V, W)= V” ® W and similarly Horn(E,F) = E* ®F. Since E** = E. the isomor-
phism Hom(E*,F) = E ® F can be usedto give an alternativedefinition of the tensorproduct.

Other constructions: Let ®°(E) = E ®.. . ® E be the bundle of p-tensors.A“(E) is the bundle of
antisymmetricp-tensorsandS~(E)is the bundleof symmetricp-tensors;theseare bothsub-bundlesof
Ø”(E). If dim(E) = k, then

dim(®”(E)) = k°, dim(A”(E)) = (‘), dim(S°(E))= (k +p — 1)

The transition functions of A’~(E)andS”(E) are p-fold tensorproductsof the transitionfunctionsof E
with the appropriatesymmetryproperties.Note that C(A~~(T*(M)))is just the spaceof p-formson M.

Complementarybundles (normal bundles):If E is a real or complexvector bundleoverM with fiber V
of dimensionk, we can alwaysconstructa (nonunique)complementarybundleE such that the Whitney
sum E®E M xC’ is a trivial bundlewith fiber C’ for somel>k. A frequent application of this fact
occurs in the construction of the tangent and normalbundlesof a manifold. If M is an n-dimensional
complex manifold embeddedin Ca’, the bundle of tangentvectors T~(M)(dimension= n) and the
bundle of normal vectorsN~(M)(dimension= m — n) are both non-trivial in general. However, the
Whitney sum is the trivial n + (m — n) = m-dimensional bundle I,~:

T~(M)®N~(M)=I~,=MxC”. (4.11)

Fiber metrics (inner products): A fiber metric is a pointwise inner productbetweentwo sectionsof a
vector bundle which allows us to define the length of a section at a point x of the base. In local
coordinates, a fiber metric is a positive definite symmetric matrix h,1(x). The inner product of two
sectionsis then

(s,s’) = h,1(x)z’(x) i”(x), (4.12)

wherez denotescomplexconjugation,if the fiber is complex. Under a changeof frame,we obviously
find

h ~‘)~h~’.

A fiber metric defines a (conjugate) linear isomorphism between E and E*.
If E is a real vectorbundlewith a fiber metric,the fiber metricdefinesa pairing of E with itself and
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gives an isomorphismbetweenE andE*. If E = T(M), the fiber metric is simply a Riemannianmetric
on M; thus T(M) is alwaysisomorphicto T*(M).

If E is a complexvectorbundle,the fiber metric is conjugatelinear in the secondfactor. This defines
a conjugatelinear pairing of E with itself andgives a conjugatelinear isomorphismbetweenE and E*.
Thus in the complexcase,E neednot be isomorphicto E*; this fact can sometimesbe detectedby the
characteristicclasses,as we shall see later.

Examples4.2
1. Tangent and cotangentbundles of 52: Let U = S2— {(0, 0, — ~)} and let U’ = S2— {(0, 0, ~)} be

spheresof unit diameterminus the south/northpoles.We stereographicallyproject these two neigh-
borhoodsto the plane to define coordinatesx = (x, y) and x’ = (x’, y’). Let r2 = x2 + y2. In these
coordinates,the standardmetric is given by~

ds2= (1 + r2)2 (dx2+ dy2).

The U’ coordinatesarerelatedto the U coordinatesby the inversion

x’ = r~2x,

so

dx’ = r4(r2 dx — 2x (x dx)).

The transitionfunctions ax’/axl for T*(S2) are thereforegiven by:

‘~k~.~(x)’r4(t5
11r

2—2x,x
1) on U’ fl U.

We introducepolarcoordinateson R
2 — (0,0) andrestrictto r = 1, so that we are effectively working on

the equatorS’ of the sphere. Then we find

/—cos20 —sin20\
~ (cos 0, sin 0) = ~,,—sin20 cos 20)- (4.13)

(The transposedinverse matrix is of course the transition matrix for T(S2).) ~ representsa
non-trivial map of 5’ -+GL(2, R). This map is just twice the generatorof ir,(GL(2, R))= Z.

The bundlesT(S2)and T*(S2)are non-trivial and isomorphic. Let I denotethe trivial bundleover
S2 Wecan identify I with the normalbundleof 52 in R3 so T(S2)® I = T(R3)= j3 is the trivial bundle
of dimension3 over S2.Similarly T*(S2)®I = T*(Rs) = J3~If we regardthe transitionmap ‘J’u.u ® I
given above as a map from S’ to GL(3, R), thenit is still twice the generator. Since ir,(GL(3, R)) = Z

2,
the mapis null homotopicand T*(S

2)® I is trivial.
2. Thenatural line bundleoverprojectivespace.We definedP,, (C) to be the set of lines throughthe

origin in C”. Let I”” = P~(C)x C”~ be the trivial bundleof dimensionn + 1 overP~(C).We denote
a point of I”~’ by the pair (p, z); scalar multiplication andaddition areperformedon the secondfactor
while leavingthe first factorunchangedin this expression.Let L be the sub-bundleof I”~” definedby:

L={(p,z)EI”~’=P~(C)XC””suchthatzEp}. (4.14)
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In other words, the fiber of L over a point p of P~(C)is just the set of points in C” which belong to
the line p.

In example2.1.3we definedcoordinates~ = z,/z1 on neighborhoodsU, = {p: z1(p)� 0}. On U1, we
definethe sections~to L by:

s1(p)= (~W~(p),- . . , 1

The transition functions are 1 x 1 complexmatrices— i.e. scalars:

Sk(p) =

Sincethe transitionfunctionsareholomorphic,L is a holomorphicline bundle.
The dualbundleL* has sections s~sothats~(s1)= 1. (Note: since we havea line bundle,a frameis

given by a single section.The subscriptshererefer to differentcoordinatesystemsandnot to elements
of a frame.)The transitionfunctionsact as

* — *y(j)
5k’5J5k -

We now interpret the {s~}as homogeneouscoordinateson P~(C),since it is clear that

s~(p)= z,.

Note that s~= 0 wheneverz,, = 0, i.e. wheneverp is not in the neighborhoodU1. The ratio of these
global sectionsmay be usedto definethe inhomogeneouscoordinates~.

Note: L* hasglobal holomorphicsectionss~whosezeroeslie in the complementof U,, which is just a
projectivespaceof dimension(n — 1). The bundleL doesnot haveany global holomorphicsections;
sinces,s~= 1 ands~= 0 on thecomplementof U,, s, must blow up like z7’ on the complementof U,.
The s, are thereforemeromorphicsectionsof L.

We definethe line bundleL” by:

L*®...®L* ifk<0

L°= I (thetrivial line bundle) (4.15)

L®~~~®Lifk>0.

BecauseL®L* = I, Li®Lk = Lj”” for all integersj, k. Any line bundleover P~(C)is isomorphicto
L” for someuniquelydefinedintegerk.Theintegerk is relatedto the first Chern class of L” aswe shall
seelater.

Let T~(P~(C))and T~(P~(C))= A ‘-°(P~(C))bethe complextangentandcotangentspaces.Then:

If~!3T~(P~(C))= L* ®. . . c~JL* (a totalof n + 1 times)

I®T~(P~(C))=L®.. .®L (atotalofn +ltimes).

(This identity doesnot preservethe holomorphicstructuresbut is an isomorphismbetweencomplex
vectorbundles.)
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3. RelationshipbetweenT(S2)andL”. Using therelationsS2 = P,(C)and T(S2)= T~(P,(C)), we may

combinethe two previousexamplesfor n = I to show

T*(S2)=L®L, T(S2)=L*ØL*. (4.16)

We prove theserelationshipsby recalling that we maychoosecomplexcoordinateson S2 of the form
= z,/z on U,, and~,= z,,/z,= on U,. We choosethe basisof T*(S2)to bedi,, on U, and—di, on

U,. The transition functions are given by

(—dr,) =

The local sections

= (1, ,), s, = (~~‘;‘I)

of L give the transitionfunction s~= ~ The L ® L transitionfunctionsarethus

S
1® S~=

so T*(S
2)andL ® L are isomorphicbundles.The isomorphismbetweenT(S2)andL* ® L* is obtained

by dualizingthe precedingargument.
4.3. Principal bundles

~vector bundleis a fiber bundlewhosefiber F is a linearvectorspaceandwhosetransitionfunctions
belohgto the generallinear groupof F. A principal bundleP is a fiber bundlewhosefiber is a Lie group
G (which is a manifold); the transitionfunctionsof P belongto G andacton G by left multiplication.
We can definea right actionof G on P becauseleft andright multiplicationcommute.This action is a
mapfrom P x G-+ P which commuteswith the projection IT, i.e.

‘ir(p~g)=iT(p) foranygEGandpEP.

We remind the readerthat the roles of left andright multiplication maybe reversedif desired.
We can constructa principal bundleP knowneither astheframebundleor as the associatedprincipal

bundlefrom agiven vectorbundleE. The fiber G~of P at x is the set of all framesof the vector space
F, whichis thefiber of E overthe point x. In order to be specific,let us considerthe caseof thecomplex
vector space of k dimensions,F = C’. Then the fiber Gof the frame bundleP is the collection of the
kx k non-singularmatriceswhich form the groupGL(k, C); i.e., G is the structuregroupof the vector
bundleE.

The associated principal bundle P has the sametransitionfunctionsas the vector bundleE. These
transition functions are GL(k, C) group elementsandthey act on the fiber G by left multiplication.On
the other hand the right actionof the group G = GL(k, C) on the principal G bundle P takesa frame
e = {e,, . . - , Ck} to a new framein the same fiber

e g {e,g,,, . . . , e,g,k} (sumover i is implied) (4.17)

for g,,j E GL(k, C).
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If P is a principal G bundleandif p is a representationof G on a finite-dimensionalvectorspaceV.
we can define the associatedvectorbundleP x 0V by introducingthe equivalencerelationon P x V:

(p,p(g)- v)=(p g,v) forallpEP,vE V,gEG. (4.18)

The transition functions on P x ~V are given by the representationp(I’) applied to the transition
functions t1 of P. If P is the frame bundleof E andif p is the identity representationof G on the fiber
F, thenP x ,,F = E. In this way we maypassfrom a vectorbundleE to its associatedprincipalbundleP
andbackagainby changingthe spaceon which the transitionfunctionsact from the vectorspaceto the
generallinear groupandback.

Unitary framebundles: If E is a vectorbundlewith an inner product,we can applythe Gram—Schmidt
processto constructunitary frames.The bundleof unitary framesis a U(k) principal bundleif E is
complexandan 0(k) principal bundleif E is real. If E is an orientedreal bundle,we mayconsiderthe
set of orientedframesto definean SO(k)principal bundle.

If E is a complexvectorbundlewith an inner productandif the transitionfunctionsareunitary with
determinant1, we can define an SU(k) principal bundleassociatedwith E. However,not every vector
bundleadmitsSU(k) transitionfunctions; the first Chernclass mustvanish.

Local sections: If y(x) is a local section to P over a neighborhood U in M, we can use right
multiplication to define a map

‘D: UXG-*IT’(U),

where ~(x, g) = y(x)-g. This gives a local trivialization of P. A principal bundleP is trivial if and only
if it has a global section; non-trivialprincipal bundlesdo not admitglobal sections. (The identity element
of G is not invariant so thereis no analogof the zerosection to a vectorbundle.)

Lie algebras:The Lie algebra~ of G is the tangentspaceTe(G) at theidentity elemente of G. By using
left translationin the group, wemayidentify ~ with the setof left-invariantvector fields on G. Let “&“

be thedualspace.We can identify ~ with theleft-invariant1-formson G.Let {La} be a basisfor ‘~and
let {4~}be the dualbasis for ~* The {La} obey theLie bracketalgebra

[La,LbI ‘~fabcLc, (4.19)

where the fat,,, are the structureconstantsfor ~. The Maurer—Cartanequation

dçba = ~f~t,,,4~t,A (4.20)

is the correspondingequationfor ‘s”.

Examples4.3
1. Principal Z2 bundle.Oneof the simplestexamplesof a principal fiber bundleis obtainedfrom the

Möbius strip examplewith M = 5’ by replacingthe line-intervalfiber F = [—1,11 by its endpoints±1.
Theseend pointsform a groupunder multiplication

Z2=S°={+1,—1},
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andwe havea fiber which is a groupmanifold. The transitionfunctions‘l. are Z2 group elementsand
acton the fiber F = Z2 by the groupmultiplication. We let M = 5’ be coveredby two neighborhoods,
so thereare two overlappingregionsI and II. Thenwe can constructtwo different typesof bundlesin
the following way;

trivial bundle: P~= ~,, E = 5’ xZ2 = two circles;

non-trivial bundle: c’b~= —~,,, E = doublecoveringof acircle.

Thesebundlescorrespondto the boundariesof a cylinder anda Möbius strip.
2. Magneticmonopolebundle.We shall see later that Dirac’s magneticmonopole correspondsto a

principal U(1) bundleover S
2. We constructthis bundleby taking

BaseM = S2 coordinates(0,~),0~ 0 < ir, Os4 <2ir

FiberF = U(1) = S’; U(1) coordinatee”.

We break52 into two hemispherical neighborhoods H,, with H,. fl H a thin strip parametrized by the
equatorialangle4i, as shownin fig. 4.5. Locally, the bundlelooks like

H+ x U(1), coordinates (0, j; c”)

H_ x U(1), coordinates(0. ~ e’t,).

The transition functions mustbe functionsof 4’ along H,, fl H_ andmust be elements of U(1) to give a
principal bundle.We thereforechooseto relatethe H,, andH_ fiber coordinatesas follows:

e’~= e”’’t’ efl”. (4.21)

n mustbe an integer for the resultingstructureto be a manifold; the fibers must fit togetherexactly
whenwe completea full revolutionaroundthe equatorin 4’. This is in essencea topologicalversionof
the Dirac monopolequantizationcondition.

For n = 0, we havea trivial bundle

P(n =0)=S2xS’.

o~o*

ci~

o~~o
Fig. 4.5. The magneticmonopolebundle,showingthe two hemisphericalneighborhoodsH, coveringthebasemanifoldM = S2. A fiber U(I) = Sl
parametrizedby 4/’ is attachedto eachpoint of H,. The intersectionof H~at 9— irl2 is a stripparametrizedby 4/i.
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The casen = 1 is the famousHopf fibering (Steenrod[1951];Trautman[1977])of the three-sphere

P(n = 1)=S3

and describesa singly-chargedDirac monopole.For generaln, we havea more complicatedbundle
correspondingto a monopoleof chargen.
Remark:n correspondsto thefirst Chernclass and characterizesinequivalentmonopolebundles.

3. Instanton bundle.Another interestingprincipal bundlecorrespondsto the Yang—Mills instanton.
We takethe basespaceto be compactifledEuclideanspace-time,namelythe four-sphere,andthe fiber
to be the groupSU(2):

BaseM = S4 coordinates(0, 4, ~i, r)

FiberF = SU(2)= 53; coordinates(a, /3, y).

We split 54 into two “hemispheres”H±whoseboundariesare S3’s. Thuswe mayparametrizethe thin
intersectionof H+ with H~along the “equator” of S4 by the Euler angles(0, 4), i/i) of S3. Using the
standardconstruction,we havea representationh(9,4), cu) of SU(2),

0 i
—. x+iy=rcos~exp~(i/i+4,)

h=t1~~~,r . .9 1
z +it = r sin~exp~(~—

where the A are the Pauli matrices. The fiber coordinatesare similarly given by SU(2) matrices
g(a, /3, y) dependingon the groupEulerangles(a, /3, y).

Thus wehave the local bundlepatches

H+ x SU(2), coordinates(0, 4), I/i, r; a~,/3±,y+)

IL x SU(2), coordinates(0, 4), ~fr,r; a_, (3-, y_).

In H±fl H, we construct the transition from the SU(2) fibers g(a+, /3+, y+) to g(a_,f3~,y_) using
multiplicationby the SU(2)matrix h(0, 4), 4i);

g(a_,/3_, y_) = h~c(0,4), 4’)g(a±,/3+, y). (4.22)

The powerk of the matrix h(0,4,, 4’) mustbe an integerto give awell-definedmanifold.

For k = 1, we get the Hopf fibering of S7 (Steenrod[1951];Trautman[1977]),

P(k=1)=S7.

This is the bundle describedby the single-instantonsolution (Belavin et al. [1975]).More general
instantonsolutionsdescribebundleswith othervalues of k.
Remark:k correspondsto the secondChernclass andcharacterizesthe equivalenceclassesof instanton
bundles.
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4.4. Spin bundlesand Clifford bundles

We haveconcentratedin mostof this sectionon vectorbundlesandprincipal bundleswhose fibers
hadstructuregroupssuch as 0(k) andU(k). Another importanttypeof vectorspacewhichmayappear
as a fiber is a spaceof spinors.The structuregroup of a spinor spaceis the spin group, Spin(k).For
example, the spin group correspondingto SO(3) is just its double covering, Spin(3)= SU(2). The
principal spin bundlesassociatedwith a bundleof spinorshavefibers lying in Spin(k).We notethat not
all basemanifoldsadmit well-definedspinorstructures;spinorsarisingfrom the tangentspacecan only
be definedfor manifoldswherethe secondStiefel—Whitneyclass(describedin section6) vanishes.

Spinorsmust in generalbelongto an algebraof anticommutingvariables.Suchvariablesarea special
caseof the more generalnotion of a Clifford algebra,which may alsobe usedto define a typeof fiber
bundle. For example, if we start with a real vector bundleE of dimensionk, we can construct the
correspondingClifford bundle, Cliff(E), as follows. The sections of CIiff(E) are constructedfrom
sectionss(x) ands’(x) of E by introducingthe Clifford multiplication

ss’+s’s=~2(s,s’), (4.23)

where (s,s’) is thevectorbundleinner product.Cliff(E) is thena 2” -dimensionalbundlecontainingE as
a sub-bundle.The Clifford algebraactson itself by Clifford multiplication; relativeto a matrix basis,this
action admits a 2” x 2” dimensionalrepresentationof the algebra. For k= 1, we find a 2 x 2 Pauli
matrix representation,while for k 2, we havethe 4 x 4 Diracmatrices.

We note that thereis a natural isomorphismbetweenthe exterior algebrabundleA *(E) and the
Clifford bundle,Cliff(E). For example,the 16 independentDirac matrix components1, y~,y~,~ and
[y,~,yr,] can be matchedwith the elements1, dx’ A dx2 A dx3 A dx4, dxi’, ~ df’ A dxA n dx” and
dxi’ AdX~of A*.

For furtherdetails,see Chevalley[1954]andAtiyah, Bott andShapiro[1964].

5. Connectionson fiber bundles

So far, we haveonly consideredfiber bundles as global geometricconstructions.The notion of a
connectionplays an essentialrole in the local differential geometryof fiber bundles.A connection
definesacovariantderivativewhichcontainsa gaugefield andspecifiesthe way in which a vector in the
bundle E is to be parallel-transportedalong a curve lying in the baseM. We shall first describe
connectionson vector bundles and then proceedto treat connectionson principal bundles.We shall
give severalexamples,including the Diracmonopoleand the Yang—Mills instanton.

5.1. Vectorbundleconnections

TheLevi—Civita connectionon a surfacein R3
The modern concept of a connection arose from the attempt to find an intrinsic definition of

differentiation on a curved two dimensionalsurfaceembeddedin the threedimensionalspaceR3 of
physicalexperience.We takethe unit sphereS2 in R3 as a specificexample.Let the coordinates

x(0,4)) = (sin 9 cos4), sin 9 sin 4,, cos9), 0 � 0 ~ ir, 0 � 4) � 2ir
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parametrizethe sphere.We observethat x(0, 4,) is also the unit normal. The Riemannianmetric
inducedby the chosenembeddingis given by:

(8~~x.8~x8x~8~x\ (1 0
g~1— “~8~x. 8,~x ~ . 8,~x)— \~0 sin

2 0

so that

ds2= do2+ sin2 0 d4)2.

The two vectorfields

U, = t9
0x = (cos 9 cos4), cos0 sin 4), —sin 0)

= 8~,x= (—sin 0 sin4), sin 0 cos4), 0)

are tangentto the surfaceandspanthe tangentspaceprovidedthat0< 0 < ir (i.e., away from thenorth
andsouthpoles,wherethis parametrizationis singular).Clearly, any derivativecan be decomposedas
shown in fig. 5.1 into tangentialcomponentsproportionalto u1 and u2, and a normal componentñ
proportionalto x. We identify u, andu2 with the bases8/80and 8/84) for the tangentspacebecause

of(x)/80= u, 8f/ax, 8f(x)/84)= u2~öf/öx

wheref(x) is a function on
Our goal is now to differentiatetangentialvector fields in a way whichis intrinsic to the surfaceand

not to the particularembeddinginvolved.
First we computethe ordinarypartial derivatives

89(u,)= (—sin 0 cos4), —sin 0 sin4), —cos0) = —x

cosO
8,~,(u1)=80(u2)=(—cos9sin4),cos0 cos4),O)=—-—~u2

8,,,(u2)= (—sin0,cos4), —sin 0 sin 4), 0)= —sin
2 Ox —cos 0 sin 0u

1.

We define intrinsic covariantdifferentiationV,,~with respectto a given tangentvectorX by taking the

Fig. 5.1. Normal direction ñ and tangentialdirectionsu1 and U2 at apoint (0, q~.)of S
2embeddedin R3.
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ordinaryderivativeandprojectingbackto the surface.V,,~is thenthe directionalderivativeobtainedby
throwing away the normalcomponentof the ordinarypartial derivatives:

V~,(u,) 0

V~,(u2)= V~,(u,)= cot 0 u2

V~,(u2)= —cos9 sin Ou,.

V is the Levi—Civita connectionon S
2 Using the identification of (u,, u

2) with (8/80,0/04)), we write

va/so vu1, vaia..~

Now the Christoffel symbol is definedby

V~,(u1)= UkF ,J or V4(8~)= 1k

8k

where8, = 8/89, 82 = 8/84,. Then,in our example,we find

12,2 = 122! = cot 0, Fy22 = —cos 9 sin 0, 12,~= 0otherwise.

Geodesicequation:Supposex(t) is a curve lying on S2 This curve is a geodesicif thereis no shear,i.e.,

the accelerationi hasonly componentsnormal to the surface.This conditionmaybe written

V
1(i)=0. (5.1)

For example, if we consider a parallel to latitude 1(t) = x(0 = 9~,4) = t) then I = u2 and V~(i)=
—cos0~sin9~u,. This curve is a geodesicon the equator,9~,= ir/2. The curvesx(t) = x(0 = t, 4) =

alwayssatisfy the geodesicequationsbecausex = u, andV~(I)= 0; theseare greatcirclesthrough the
north and southpoles.

Parallel transport: TheLevi—Civita connectionprovidesa rule for the paralleltransportof vectorson a
surface.Let x(t) be a curvein ~2 andlet s(t)be a vectorfield definedalongthe curve.We saythat s is
paralleltransportedalongthe curve if it satisfiesthe equation

VE(s) = 0,

i.e., ~ is normal to the surface.Given an initial vector s(t0) and the connection, s(t) is uniquely
determinedby the paralleltransportequation.

Parallel translationaround a closed curve need not be the identity. For example, let x be the
geodesic triangle in S

2 connecting the points (1,0,0), (0,1,0) and (0,0,1). x consists of 3 great
circles:

(cos(t), sin (t), 0) t E [0, ir/2]
x(t) = (0, sin (t), —cos(t)) t E [ir/2, ir]

(—sin (t), 0, —cos(t)) t E [ir, 3ir/2].
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Let s(0) be the initial tangentvector

s(0)=(0,a,/3)

at (1,0, 0). When we paralleltransports(0) alongx(t) usingthe Levi—Civita connectionwe find

(—asin (t), a cos(t), (3) t E [0,ir/2]
s(t)= (—a, /3 cos(t), /3 sin(t)) t E [ir/2, ir]

(a cos(t), —/3, —a sin(t)) t E [ir, 3ir/2].

Onemayverify that s(t) is continuousat the cornersir/2, ir andsatisfiesVs(s) = 0, since 8s/8t is normal
to the surface.Parallel translationaround the geodesictriangle changess from s(0)= (0,a,/3) to
s(3ir/2) = (0, —/3, a), which representsa rotationthroughir/2 (seefig. 5.2). Note that ir/2 is theareaof
thesphericaltriangle.

Holonomy: Holonomy is the processof assigningto each closed curve the linear transformation
measuringthe rotationwhich resultswhen a vector is paralleltransportedaroundthe given curve. In
our example,theholonomymatrix changings(0) to s(3ir/2) is

fi 0 0
11,1=10 0 —1

~0 1 0

The setof holonomymatricesformsa groupcalledthe holonomygroup. The non-triviality of holonomy
is relatedto theexistenceof curvatureon thesphere:paralleltransportaroundaclosedcurvein a plane
gives no rotation.

Generaldefinitions of the connection
In the generalcase,thereis no naturalembeddingof a manifold M in Euclideanspace.Thus,even

for the tangentbundle, it is meaninglessto talk aboutnormalsto M. The problemis evenmoredifficult
for a generalvector bundle. Therefore,we now proceedto abstract the intrinsic featuresof the
Levi—Civita connectionwhich allowedus to discussparalleltranslation.

(0,0,1)

(0,1,0)

Fig. 5.2. Paralleltransportof avector aroundasphericaltriangle.
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Background:Let E be a generalvector bundle.On eachneighborhoodU we choosea local frame
{e,,e2 ek} and expressvectorsin ir’(U) in the form

Z = ~ e,f.

This gives a local trivialization of ir’(U) U X F anddefines local coordinates(x, z). The vectorse,
themselveshavethe form

e,=(0 0,1.0 0)

in each local frame. This, however,doesnot meanthat e is a constantvector on M since the local
framesmaybe different in eachneighborhood.The dependenceof e on x due to the changeof the
local frame is dictatedby the rule of covariantdifferentiationdescribedbelow. A local section to the
bundleis a smoothmapfrom U to the fiber andcan be regardedas a vector-valuedfunction,

s(x) >~e,(x) z’(x).

The tangentspaceT(E) andthe cotangentspaceT*(E) of the bundlemaybe assignedthe local bases

T(E): (8/Ox”. 8/Of)

T*(E): (dx”, dz’).

We now give a seriesof equivalentdefinitions of a connectionon a vectorbundle.
(1) Parallel transportapproach.The Levi—Civita connectionlets us takethedirectionalderivativeof a

tangentvector field andget anothertangentvector field. We generalizethis conceptfor vectorbundles
as follows: Let X be a tangentvectorand let s be a sectionto E. A connectionV is a rule V~(s)for
taking the directional derivative of s in the direction X and getting anothersection to E. The
assignmentof a connectionV in a generalvectorbundleE providesa rule for the parallel transportof
sections.

Let x(t) be a curve in M; we saythat s(t) is parallel-transportedalongx if s satisfiesthe differential
equation

V1(s)=0. (5.2)

There always exists a unique solution to this equationfor given initial conditions. The generalized

Christoffel symbolsr’~,giving the actionof a connectionV on a frame of the bundleE are definedby

VS/AX~(e,)= ~

We recall that we mayassociatethe operatord/dt with I” because

df(x)/dt = x” Of/Ox
TM.



Eguchi, Gilkey and Ha.’zson. Gravitation, gauge theories and differential geometry 279

In termsof the Christoffel symbols,the parallel transportequationtakesthe form

V(s) = Vd/d,(e,z’)= Vd/dl(e,)z’+ e1f

= i”(V315~~(e,)z’+ e1 O~z’)

= .~“e1(F’~z+ 8~z’)= 0.

Note: we haveimplicitly madeuseof variouspropertiesof V~(s)which we will formalize later.
(2) Tangentspaceapproach.Parallel transport along a curve x(t) lets us comparethe fibers of the

bundleE at differentpointsof thecurve. Thusit becomesnatural to think of lifting a curvex(t) in M to
a curve

c(t) = (x”(t), z’(t))

in the bundle.Differentiation alongc(t) is definedby

d_.~8 .,8

~7-X ~—~+Z ~7’

wheref is given by solving the paralleltransportequation:

1’ + T’,~1,~”z~= 0. (5.3)

Thus we maywrite

F’
d~_x ~—~-— ~z ~—7—x

where

8

D~=~—~-—F~1zTa—;. (5.4)

is the operatorin T(E) knownas the covariant derivative.
We are thus led to define a splitting of T(E) at xE U into vertical componentV(E) with basis

{818z’} lying strictly in the fiber anda horizontalcomponentH(E) with basis {D~}:

T~(E)=V~(E)~H~(E)

18

basis= ~—, D~
This splitting is illustratedschematicallyin fig. 5.3.
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vertical

V ~ D~ hoontala ~Fig. 5.3. SplittingthetangentspaceT(E) of thebundle into verticalandhorizontalcomponents.

(3) Cotangentspace approach. In the cotangentspaceapproach,one considersa vector-valued
one-form

= dz’ + F’,~1dx” z’ (5.5)

in T*(E) whichis essentiallythe deviationfrom the paralleltransportlaw given above.We observethat
w’ is the uniquenon-trivial solution to the conditions

(w’,D~)0.

(w’, 8/8z
1)= 8,~. (5.6)

Conversely,theseconditionsdetermineD,. if cv’ is given. The connectionone-formcv’ annihilatesthe
horizontalsubspaceof T(E), andis, in somesense,dual to it.

We now introducethe matrix-valuedconnectionone-formF, where

P
1 = F~jJdx”.

The total covariantderivativeV(s) is definedby

V(s) = e,® dz’(x)+ e~® F’1z’(x) (5.7)

which mapsC~(E)to C~(E® T*(M)). Notethat this is thepullbackto M (usingthe sectionz(x)) of a
covariantderivativein the bundlegiven by

e,®cv’, (Z = e•z’ E ir’(U)),

where cv’ belongs to T*(E) rather than T*(M). The total covariant derivative containsall the
directionalderivativesat the sametime in the sameway that df = (of/ax”) dx” containsall the partial
derivativesof I

(4) Axiomaticapproach. We beganthis sectionby discussingcovariantdifferentiationas a direc-
tional derivative.We now formalize the propertiesof covariantdifferentiationthat we havebeenusing
implicitly in the previousapproaches.The axiomaticpropertiesof theconnectionV~(s)are
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1. Linearity in s:

V~(s+ s’)= Vx(s)+Vx(s’)

2. Linearity in X:

V~+~(s)= V~(s)+V~.(s)

3. Behaveslike a first-orderdifferentialoperator:

V~(sf)=sX(f)+(Vx(s))f

4. Tensorialityin X:

Vix(s)fVx(s)

wheres(x) is a section to E, X is vector field on M andf(x) is a scalarfunction. Theseare clearly
desirable properties which are straightforwardgeneralizationsof the featuresof the Levi—Civita
connection.

The axiomaticpropertiesof the total covariantderivativeV are:

1. Linearity in s:

V(s + s’)= V(s)+V(s’)

2. Behaveslike a first-orderdifferentialoperator:

V(sf)=s®df+V(s)f.

The relationshipbetweenthesetwo differentialoperatorsis given by

1. V(s)=VS,SXM(s)®dx”

(5.8)
2. Vx(s)=(V(s),X),

whereX EC°°(T(M))andV(s)E C~(E® T*(M)).
Onecan extendtotal covariantdifferentiation to p-form-valuedsectionsof E by the rule

V(s®0)=V(s)nO+s®dO (5.9)

where s EC°~(E)and 0 EC~(A”(M)).V thus extendsto a differential operatorwith the following.
domainandrange:

V: C’~(E®A”(M))-*C’~(E®A”÷’(M)).
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(5) Changeofframeapproach.Under a changeof frame,

e~= e.’PJ’(x), z” =

andsectionsareinvariant:

s(x)=e1z’=ez’ =s’(x).

We see that

V(e~)= V(e,)® ~J’ + e ®d~J’= e~F’1’

where

F1 = ‘t~,k1,~1~!J+ PIk ~ (5.10)

so the connection1-form F’1 transformsas agaugefield rather thanas atensor.We mayin fact definea
connectionas a collection of one-forms[“i obeying the transformationlaw (5.10).

Using eq. (5.10), we can check that V is independentof the choiceof frame andis thus well-defined
in the overlapregion U fl U’. We find

V(s)= V(e,z’)= e1 ®F’,z’ + e1 ®dz’ = e’1 ®F”~z”+ e’1 ®dz”.

5.2. Curvature

The curvatureof a fiber bundlecharacterizesits geometry. It can be calculatedin severaldifferent
equivalentwayscorrespondingto the different approachesto the connection.

(1) Parallel transport. Curvaturemeasuresthe extentto whichparalleltransportis path-dependent.If
the curvature is zero and x(t) is a path lying in a coordinateball of M, then the resultof parallel
transportis always the identity transformation(this neednot be true if the pathenclosesa hole,as we
shall see later whenwe discusslocally flat bundles).For curved manifolds,we get non-trivial results:
parallel transportarounda geodesictriangle on S

2 gives a rotationequalto the areaof the spherical
triangle.

A quantitativemeasureof the curvaturecan be calculatedusingparallel transportas follows: Let
(x’, x2,. . .) be a local coordinatechartand takea squarepath x(t) with vertices,say, in the 1—2 plane.
Let H,

1(r) be the holonomy matrix obtained by traversing the path with vertices (0,0, 0,. .

(0, r”
2, 0,.. .), (r~’2, r~2, 0,. . .), (r~2, 0, 0,. . .). Then the curvaturematrix in the 1—2 planeis

R
1(1,2) = ~—I~Ijj(r)I,o. (5.11)

The correspondencebetween this curvature and those to be introduced below may be found by
expandingthe connectionin Taylor series.

(2) Tangentspace.The curvatureis definedas the commutatorof the componentsD,. of the basisfor
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the horizontalsubspaceof T(E),

[Dy,Dj = —R’1~,.z’8/8z’, (5.12)

whereR’1~,,can be expressedin termsof Christoffel symbolsas

R’1~,.= 8~.F~— 8,. F’~1 + F’~kF~— F’,.kF”~1.

Note that the right-handside of eq. (5.12) hasonly vertical components.R’1~,.is interpretableas the
~obstructionto integrabilityof the horizontalsubspace.

(3) Cotangentspace.In this approach,the curvatureappearsas a matrix-valued2-form

R’1 = dF’1 + F’,. A F”1 = ~R’J~,.dx” A dxv. (5.13)

We observethat R’1z’ is the covariantdifferentialof the one-formcv’ ET*(E):

R’1z’ = dcv’ + F’, n cv’.

Note that althoughcv’ hasdz” components,theycancelout in R’1.
(4) Axiomaticformulation. Curvaturemeasuresthe extentto which covariantdifferentiationfails to

commute.We definethe curvature operator as

R(X, Y)(s)= V~Vy(s)—VyV~(s)—V1xy1(s), (5.14)

where

R~ ~ (e,) =

The axiomaticpropertiesof the curvatureoperatorare

1. Multilinearity:

R(X+X’, Y)(s)=R(X, Y)(s)+R(X’, Y)(s)

2. Anti-symmetry:

R(X,Y)(s)=—R(Y,X)(s)

3. Tensoriality:

R(fX, Y)(s)=R(X,fY)(s)=R(X,Y)(fs)

~r~fR(X,Y)(s)

whereX and Y arevectorfields, s(x) is a sectionandf(x) is a scalarfunction.
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The total curvatureR is a matrix-valued2-form given by

R(s)= V2(s) V(e,,®F’
1z’ + e1 ®dz’)

= ek ®F’~A F’,z’ +ek ®(dF”,z’ —Fe’, A dz’)+ek ®Fk, A dz’ +0

=ek®Rz. (5.15)

The matrix R = IIR’11t is alsogiven by

R=~R(~z,a~)dx”Adx’

actingon a sections. The axiomaticpropertyof R is just thestatementthat it is a 2-form valuedlinear
mapfrom E—*E.

(5) Changeofframe. By using (5.13),wefind that R’, transformsas

R”, =

under the changeof frame(4.6) and(5.10). Henceby (5.15) R(s) is in fact invariant undera changeof
frame.

The curvaturecan be regardedas an obstruction to finding locally flat (i.e., covariantconstant)
frames.Givene~,let usattemptto find a new frame e’, = e,”b~ which is locally flat. If we setV(e’,) = 0,
we find the matrix differentialequation

PF~+~d~’=0.

This equationis solvedif F is a pure gauge,

F’1 = —(d~’)’,.,,j,,k = (~‘Y,.di~’1.

If Fobeysthisequation,the curvaturevanishes.Conversely,by the Frobeniustheorem,if the curvature

vanishes,F can bewritten as a pure gauge.
5.3. Torsionand connectionson the tangentbundle

Oneadvantageof the cotangentspaceformulation(5.7) of the vectorbundleconnectionV is that it is
independentof the coordinatesystem{x”} on M. Furthermore,multiple covariantdifferentiationof an
invariant one-form such as p~dx” is independentof the connectionchosenon the cotangentbundle
T*(M). However,if we chooseto differentiatethe individual tensorcomponentsz’;~ of the covariant
derivativeof a sections (x) = e,z’ (x) of a vector bundle,we must specifyin addition a connectionon
T*(M) to treatthe “s” index. (Wewill show in the nextsectionthat connectionson T(M) givenatural
connectionson T*(M), andvice-versa.)Torsion is a propertyof the connectionon the tangentbundle
which must be introduced when we examine the double covariant derivative. We have already
encounteredtorsionin section3 whenwe studiedmetric geometryon Riemannianmanifolds.Herewe
extendthe notion to generalvectorbundles.
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Let {F’~,,}be the Christoffel symbolson the vectorbundleE, andlet {‘y~} be theChristoffel symbols
on T(M). We define the componentsof the doublecovariantderivativeof a sections(x)= e,z’(x) as

= 8,.(8~z’ + F’~1z’)+F’,,,(8~z’+ F’~~z”)—7A (85f + F’AJz’).

~Fhesign in front of 7A~~follows from the requirementfor lowering indices to get the connectionon

T*(M).) The commutatorof doublecovariantdifferentiationon a sectionyields the formula
— z’.,..~= —R’1~,.z’— TATM,.z~A, (5.16)

wherewehaveintroduceda new tensor,the torsion,

TA — A — A

— 7 ILP 7 P~L

Multiple covariantdifferentiationcan bewritten schematicallyin the form

C~(E).!~.C’°(E® T*(M)) -~C°°(E® T*(M)® T*(M)),

which againemphasizesthe requirementfor a connectionon T*(M), or equivalentlyon T(M).
Note: We remark that the multiple covariantderivative treatedhere is not the operatorV

2 used to
define the curvature2-form, sinceV2 is independentof the connectionon T*(M) and hasvalues in
C°°(E®A2(T*(M))).

Axiomaticapproachto torsion: We definethe torsionoperatoron T(M) by

T(X, Y)=V~Y-V~X-[X, Y].

This is a vectorfield with components

/8 ~\ A A

~ ~

Levi—Civita connection:Once a metric (X, Y)= g~~x”y” hasbeenchosen,the Levi—Civita connection
on T(M) is uniquelydefinedby theproperties

1. Torsion-free: T(X, Y)= 0 (5.17)

2. Covariantconstancyof metric: d(X, Y)= (VX, Y)+ (X, V Y).

Theseconditionswerediscussedin detail in section3.

5.4. Connectionson relatedbundles

Dual bundles:If E andE* aredual vectorbundleswith dual framebases{e,} and{e *i}, the connection
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on E* is definedby the requirementthat the natural inner productbetweensectionss and s’ be
differentiatedaccordingto the following rule:

d(s, s”) = (V(s),s”) + (s,V*(s*)).

In other words,

V(e,) = e1[’~, dx”

V*(e*) = _e*sF~~,dx”.

If E has a fiber metric, we may identify E with E* using a conjugate linear isomorphism. The
connectionV is said to beRiemannian if V = V*, i.e.,

= —F’~, (5.18)

relative to an orthonormal frame basis.The curvatureof a Riemannianconnection relative to an
orthonormalframe basisis anti-symmetric:

R1 = —R’1. (5.19)

The Levi—Civita connectionon T(M) is the uniquetorsion-freeRiemannianconnection.

Whitney sum bundle: If E and F are vector bundleswith connectionsV and V’, thereis a natural
connectionV ® V’ definedon E® F by the following rule:

(V®V’)(s ®s’) = V(s)®V’(s’).

In other words,

(V® V’) (e, ®f~)= ek ®F”~,dx” ®f~® F”,~,dx”. (5.20)

The curvatureis givenby the direct sum of the curvaturesof E andF.

Tensorproductbundle: Thereis a naturalconnectionV” definedon E®F by the following rule:

V”(s ® s’) = (V® 1 + 1 ® V’) (s ® s’) = V(s)®s’ + s ® V’(s’).

The curvatureof V” is given by

R”=R®l+l®R’. (5.21)

Pullback bundle: Let f: M —~M’ andlet V’ be a connectionon the vector bundleF over M’. Thereis a
naturalpullback connectionV = f*VI with Christoffel symbolswhich arethe pullbackof the Christoffel
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symbolsof V’, that is:

F’~,= F”~1

The curvatureof V is the pullbackof the curvatureof V’:

/,~ “.~ i13 ,~~ ifS

R’ -‘R”2 )afS~\8x~Ox
T — OxT Ox”

Projectedconnections:Let E be a sub-bundleof F andlet ir: F —~E bea projection. If V is aconnection
on F, we can definethe projectedconnectionV’T on E by

V’T(s) = ir(V(s))

where s is a section of F belonging to the sub-bundleE. Note that the curvatureof V’T may be
non-trivial evenif the curvatureof V is zero. (Our introductory example deriving the Levi—Civita
connectionon S2 embeddedin R3 was in fact of thistype.)

If ir is an orthogonalprojection relative to some fiber metric and V is Riemannian,then V’T is
Riemannian.

Examples5.4
1. Complexline bundleofP

1(C). Let L be the line bundleoverP,(C)definedin example4.2.2.This
is a naturalsub-bundleof P1(C)x C

2. We denoteapoint of thebundleL by (x; z
0, z,),where (zo,z,) lie

on the line in C
2 correspondingto the pointx in P,(C).The natural fiber metric on L is given by

((x; z
0, z,), (x; w0, w,))= z0ii’

1
0 + z,~,.

(This is inducedby the canonicalmetric on C
2.)

Now let

h(x; z
0,z,)= z0~

2+ z,12

be the lengthof a point in L andform a connectioncv lying in T*(L) given by

2
0dz0+2,dz,

cvh ah= IzoI
2+Iz,12

Thecurvaturethenis

1=dcv+wAw=(3+~)(h’8h)+O=—3ä~lnh.

In order to carry out practicalcomputations,we choosea gauge(that is a local sectionof L) with
coordinates(x; ~ 1).
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Here

= z0/z,= u + iv

for u, v E R. Thenwecompute

h = 1+ u
2+ v2

— ~1 2 2_ 2iduAdv

——38 n~+u +V (1+u2+v2)2

We recognizethis from section3.4 on Kählermanifoldsas (2i) timesthe Kähler form for S2 = P,(C).
We thuscan readoff the metric directly from [1.
Remark1: In somesensecv = h~Oh is a“pure gauge”with respectto a curvatureinvolving only 8. We
find non-trivial full curvaturebecause(1 involvesd = (0 + 0).
Remark2: The Fubini—Studymetric on P~(C)can bedefinedin this samemannerby taking

h(x;zo,z,,..

Remark3: The sameconstructionworks for an arbitrary holomorphic line bundle over an arbitrary
complexmanifold oncea fiber metric is chosen.

2. Vector bundlesoverS~.If we let n = 21, the trivial bundleS~x C2’ can be split into a sum of
non-trivial bundlesEn, by constructinga projectionoperator11±:5” xC2’ —*E±.To accomplishthis, we
embed5” in R”’’ using coordinates(x,,.. . , x~+~)ER”” and considerthe set of 2’ x 2’ seif-adjoint
complex matrices{A

0, A,,.. . , A,,} obeying

A,AJ+AJA, =2~

A~A,...A~=i’I

whereI is the identitymatrix. The {A,} are Paulimatrices(A0 = r~,A, = r,,A~= 72) for 1 = 1 and Dirac
matrices(A0 = y~,A, = y,, A2= 72, A3 = y~,A4 = y~)for I = 2. We now definethe complexmatrix

A (x) =

with {~}lying on 5”, so that

A
2(x)=I.

A(x) is a mapfrom C2’ to C2’ which dependson the point x of the basespace5”. SinceA2(x)= I, we
maydecomposeits actionon vectorszE C2’ into the two eigenspaceswith eigenvalues±1,

A(x)~z = ±z.
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We thenchooseasour projectionthe matrix

[I±(x) = ~(1±A (x))

which selectsthe2’-’ dimensionalvectorspacein C
2’ with A . z = ±z.

We denoteby E~thecomplexvectorbundlesover S” whosefibers at eachpoint xE 5” aredefined
by theactionof lr±(x).If I = 1, we obtain complexline bundlesover S2 Clearly

E±~ E =5” x C21.

We chooseasour connectionson E~theprojectionV±of the flat connectionV acting on a sectionof
E±.To carryout this procedure,we choosea constantframee°÷of E+ at a point x

0 andgeneralizeit to
arbitraryx using theprojection;

e÷(x)= I1±(x)e~.

is a frame of E+ everywhere.Since11÷(xo)e+(xo) = II+(x0) e°+ e±(x0),we maytakee+(x0) = e°±.The flat
connectionjust actsby exteriordifferentiation,V(e) = de;while the projectedconnectionis difficult to
calculatein general,it can beevaluatedat x,, astheprojectionof the flat connectionsincee±(x0)= e~,

V±(e±)I~= 11±de±I~,,= (IL1, dI1±)I~,,e°±.

The curvatureis obtainedin a similar way;

(V±)
2(e±)I~,, = 11±d(11±dfl’± e°±)= 11±dIl± A dH±e°±.

Hencethe curvature2-form at x
0 is

11±(x,,)= I1±(x,,)dH±(x,,)A dIl±(x,,).

Remark1: Note that althoughtheconnectionandcurvaturematricesusedherearedoublethecorrect
dimension,all tracesof productsof thesematricesinvolve only themeaningfulportionof thematrices.
The rank of thematricesequalsthe fiber dimension.
Remark2: To evaluatean invariantpolynomialof i2~,it in fact sufficesto performthecalculationat x0
alone.Onemaythus showthat

Tr(D±’)= n!(2i,)’ d(vol),

where d(vol) is the n-form volume elementof S”. This formula will be used later to examinethe
characteristicclassesof this bundle.
Remark3: If I = 1, theassociatedprincipal bundlesto E±describethe Dirac magneticmonopole.

5.5. Connectionson principal bundles

Werecall that a principal bundleP is afiber bundlewhosefiber andtransitionfunctionsboth belong
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to the same matrix group. The gauge potentials of Maxwell’s theory of electromagnetismand
Yang—Mills gaugetheoriesareidentifiable with connectionson principal bundles.Herewe give a brief
treatmentof the specialaspectsof connectionson principal bundles.

Maurer—Cartanformsand the Lie algebra: We let G be a matrix groupand ‘~ be its Lie algebra.The
Maurer—Cartanform g’ dg is a matrix of one-forms belonging to the Lie algebra ~. This form is
invariant underthe left action by a constantgroupelementg0,

(g,g)’ d(gog)= g’ dg.

Let {~1~a}be a basisfor the left-invariantone-forms.We thenexpressthe Cartan—Maurerform as

g’ dg = ba ~, (5.22)

whereAa/2~is a constantmatrix in ~. Sinced(g’ dg)+g’ dg n g’ dg = 0, we find that ~ obeysthe

Maurer—Cartanequations
d~a+ ~jfabc~Pb A = 0, (5.23)

wherethe tab,, arethe structureconstantsof ~.

The dual of ~Pa is the differentialoperator

/ Aa 8\ 1 8

La =Tr~,,g~Ta~’r)=~gj,.[Aa1,.i ~j

obeying

(~a,Li,) = 8db, [La, Lh] = fabeLc. (5.24)

{La} is aleft-invariantbasis for the tangentspaceof G.

The correspondingright invariant objectsaredefinedby

dgg’ ~ La =Tr(~g~ir) (5.25)

where

dtPa ‘~fabc’~PhA ~ =0

(&~Lb) = ‘5ab, [La, Li,] = fabcLc. (5.26)

That is, all structureequationshavea reversedsign. Note that La andL~commute:

[La, Lh] = 0. (5.27)

La and Lb generalizethe familiar physicaldistinctionbetweenthe space-fixedandbody-fixed rotation
generatorsof a quantum-mechanicaltop.
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Parallel transport: Let P be a principal bundle. If we choosea local trivialization, then we have
coordinates(x, g) for P, whereg EG. A local sectionof P is a smoothmapfrom a neighborhoodU to
G. The assignmentof a connectionon a principal bundleprovidesa rule for the parallel transportof
sections.A connectionA of a principal fiber bundleis a Lie-algebravaluedmatrix of 1-formsin T*(M),

A(x)=A0,.(x)~~dx~~. (5.28)

If x(t) is a curve in M, the sectiong,1(t) is definedto be parallel-transportedalongx if the following
differentialequationis satisfied:

g1~+ A,.1,(x)1” g1~= 0, (5.29)

whereA,. is the connectionon P. We mayrewrite this as:

‘~+ ‘I’A” (x-~-—~=0
g dt g ~

Tangentspaceapproach:Paralleltransportalongacurvex(t) lets us comparethe fibers of P at different
points of the curve. In analogyto the methodsused for vector bundleconnections,we may lift curves
x(t) in M to curvesin P. We definedifferentiationalong the lifted curve by

~i.=~’ ~ gki i—) =

wherewe haveusedthe paralleltransportequationfor ~. Now the covariantderivativeis definedas

D,. zzr/_~-_A~(x)La. (5.30)

We are thus led to define a splitting of T(P) into horizontalcomponentH(P) with basis D,., and a
verticalcomponentV(P) lying in T(G):

T(P)=H(P)® V(P).

This splitting is invariant underright multiplicationby the group.
The curvatureis definedby

[D,.,D,,1 =

where

F”,.,, = O,.A”~— 3,.A,~+fabcA~A,,. (5.31)

As expected,the commutatorof covariantderivativeshasonly vertical components.
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Cotangentspaceapproach: We may regard the connectionon P as a ~-valuedone-formcv in T*(P)

whoseverticalcomponentis the Maurer—Cartanform g’ dg. In local coordinates,we maywrite

cv =f’Ag+g’dg,

where A(x)= A~(x)(AaI2~)dx”. We observethat, as in the vector bundle case, cv annihilatesthe
horizontalbasis of T(P) and is constanton the verticalbasis:

(w,D,.)=0, (cv,L~)—A~/2i. (5.32)

Underthe right actionof the group, g-+gg0,A remainsinvariant andcv transformstensorially,

cv -_~~g0’cvgo.

Thecurvaturein this approachis a Lie-algebravaluedmatrix 2-form definedby

f1=dw+cvncv=g’Fg (5.33)

where

F=dA+A AA =~F,.,.”~dx” Adx
T.

11 obeysthe Bianchi identity,

dfl+cvAfl—i’lAcvO. (5.34)

Note that11 hasno verticalcomponents.It transformstensoriallyunderright action,

(1

Gaugetransformation:The transitionfunctionsof a principalbundleacton fibers by left multiplication.
Let us considertwo overlappingneighborhoodsU and U’ and a transitionfunction ~ = ‘P. The
local fiber coordinatesg and g’ in U and U’ arerelatedby

g’ = ~g.

Then, in order for the connection1-form cv to be well-defined in the overlappingregion U fl U’, A

must transformas

A’=~A~+~dP’. (5.35)

We verify that

cv = g’Ag + g’ dg = g’’A’g’ + g’ dg’,

so cv is indeedwell-definedin T*(P). Thetransformation(5.35) is the gaugetransformationof A. Using
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(5.31),we find the gaugetransformationof F to be

F’ =

It is easyto checkthat the curvature2-form 12 is alsoconsistentlydefinedoverthe manifold,

11 = g’Fg = g’’F’g’.

Pullback to basespace:By choosinga sectiong = g(x), onecan pull back cv and12 to the basespace.A
andF are equivalentto the puilbacksg*w andg*Q, which aresometimesdenotedsimply as cv andLi.
Gaugetransformationsof A andF correspondto changesof the section.

In the theory of gaugefields, the structuregroupG is called the gaugegroup: the choiceG =

for instance,gives the theory of electricity and magnetismand G = SU(3) gives the color theory of
stronginteractions.The (pulled-back)connectionA of a principalbundleis the gaugepotentialandthe
(pulled-back)curvatureF gives the strengthof the gaugefield. When matter fields are presentin the
gaugetheory, theyare describedby the associatedvectorbundles.

Examples5.5
1. Dirac magneticmonopole.We now put a connectionon the U(1) principal fiber bundleover the

basespaceS2 describedin example4.3.2. If we chooseaparticularconnectionwhich satisfiesMaxwell’s
equations,the physicalsystemdescribedcorrespondsto Dirac’smagneticmonopole.As before,we split
S2 into hemispheresH±and assignU(1) connection1-forms to eachhalf of the bundle,

JA÷+dt/i÷ onH÷
cv_lA+d~4, onH

(For U(1), we conventionallyfactor out the (i) arising from our conventionthat Lie algebrasare
representedby antihermitianmatrices:g’ dg = e”~de” = i d~i-~ dvi.) Thenthechoiceof the transition
function (4.21)

= e”’4’ e’~

implies the gaugetransformation,

A÷=A...+nçb.

GaugepotentialswhichsatisfyMaxwell’s equations(in R3 — {0}) andare regularin H±andH_ aregiven
by (seeexample2.4.3),

A±=~(±1—cos0)d~nxdy—ydx
2 2r z±r

The curvatureis given by

~
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It is easyto see that althoughthe A~are regularin H±,they havea string singularity in H-~.We will
allow A±to be usedonly in its regular neighborhood.It is clear that F is closed but not exact,since
dA±is only definedlocally in H±.
Remark1: We shall see in the nextsection that the monopolechargeis minusthe first Chernnumber
C, characterizingthe bundle:

_Ci=_Jci=+~JF=+~[J F++J F~]=n.

Remark2: It is instructive to carryout the abovecalculationsusingthe S2 metric (dx2 + dy2)/(1 + x2 +

y2)2 = (dr2 + r2 d~2)/(1 + r2)2 obtainedby projectionfrom the north or southpole onto R2. In this case
the “string singularity” occurs at r = 0 or r = ~. This treatmentclosely resemblesthe instantoncase
describedbelow.

2. BPSTInstantonin SU(2) Yang—Mills (Belavin etal. [1975]).The instantonsolutionof Euclidean
SU(2) Yang—Mills theory is a connectionon a principal bundlewith

BaseM = S4, Fiber G = SU(2)= S3.

We takethe 54 metric (seeexample3.2.3)

2 2 ~‘ ‘ 2 3

d 2_ dx,.dx,. ,dr +r(u;+o;+o
2)_v j a\2

— (1 + r
2/a2)2 — (1 + r2/a2)2 — ,~,~e ,,

obtainedby projectionfrom the north or southpoleonto R4.
As in example4.3.3, we split S4 into “hemispheres”H±.In the overlapregion

H+ fl I-L

we relatethe SU(2) fibers by the transition functions

g_ = [h(x)1” g,,

wherek is an integer,h = (t — iA . x)/r andA are the SU(2)Pauli matrices.We notethat

h’ dh = iA~o,.= iAkfl”,.,~x,.dx,,/r2

dh h’ = —iAkôk = —iAk~”,.,.x,.dx,./r2

where i~,,~are ‘t Hooft’s etatensors(‘t Hooft [1977];seeappendixC).
The connection1-formsin the two neighborhoodsof the bundlethenmaybe written as

_fgi,i’Ag++gi~i’dg÷ onH+
cv ~gI’A’g_+gI’dg onIL
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where

A’(x) = h”(x) A(x) h~”(x)+h”(x) dh~”(x).

In the casek = 1, we havethe single instantonsolution,

2 2r —, r
H+: A = r2 + a2~h dh = r2 + a21 Akuk

which is singularat the “south-pole” at r = ~, andthe gauge-transformedsolution,

H_: A’ = h[
2~.2 h’ dh] h’ + h dh

1 = 1+r2/a2 = 1+r2/a2

which is singular at the “north-pole” at r = 0. (Note: A and A’ are the Yang—Mills analogsof
the two gauge-equivalentDirac monopole solutions with Dirac strings in the upper and lower
hemispheresof s2)

The field strengthsin H±areeasilycomputedto be

H±: F÷=dA+AAA=iAk4(e0Aek+~Ekjje~ne’)

H: F..=dA’+A’AA’—hF÷h’.

SinceF is self-dual,

the Bianchi identities imply that the Yang—Mills equations

DA*F=d*F+A A *F—*F n A=0

are satisfied.Replacingh(x) by h’(x) and interchanging0’~and k throughoutwould give us an
anti-self-dualsolution.
Remark1: In the next section,wewill seethat the “instanton number” k is minusthe secondChern
numberC

2characterizingthe bundle:

k=-C2=-J c2=_j
1-~JTrFAF

=~~~-i-4JTrF±AF±+JTrFAF]=_~(_~)J e°Ae’ne2Ae3=-l-1.

(Recallthat the volume of 54 with radiusa/2 is ir2a416. SeeappendixA.)
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Remark2: Note that A(~)= A~±)(Aa/2i)for k = ±1are derivable from the self-dual or anti-self-dual
combinationsof the 0(4)connectionsWah of S4given in example3.2.3,

(r/a)2A(+) = W

111 — W23 = —2u~1 + (na)
2’ cyclic,

A~_)= +W,,l — W

23 = — + (r/a)
2’ cyclic.

Here the diameter2R of 54 is identified with the instantonsize a. This is relatedto the fact that the
k = 1 bundleis the Hopf fibration of 57,

Remark3: Under an 0(4) transformation,the k = I instantontransformsinto itself up to a gauge
transformation.Under an 0(5) transformationof S4, it also transforms into itself up to a gauge
transformation;the BPST instantonsolution is unique in possessingthe 0(5) symmetry (see, e.g.,
Jackiwand Rebbi [1976a]).

6. Characteristicclasses

We havenow seenexplicitly how the constructionof nontrivial fiber bundlesinvolvescertainintegers
characterizingthe transition functions. Furthermore,we observed in passing that when we put
connectionson the bundles, these same integers correspondedto integrals involving a bundle’s
curvature. In this section,we will develop more thoroughly the conceptof the characteristic classes
distinguishinginequivalentfiber bundles.The manipulationof characteristicclassesplays an essential
role in index theory,which is the subjectof the nextsection.

In the preceding sections we have been careful to distinguish among connection 1-forms and
curvature2-forms usedfor differentpurposes:w”,, andR”,, were usedfor Riemanniangeometryin an
orthonormalframebasis,F’

1 andR’1 were usedfor vectorbundles,andA andF wereusedfor principal
bundles.The notation cv was alsoused for connectionslying in T* of the bundleratherthan in T* of
the base,while .0 was usedfor the correspondingcurvature.In this section,we loosenthesedistinctions
for notationalconvenienceandemploy thesymbolscv and(1 to denotethe valuesof the connectionand
curvatureforms pulled backusingsectionsof a bundle.

We shall deal with the following four categoriesof characteristicclasses.
1. Chern classesc,. . . , ck are definedfor a complexvectorbundleof dimensionk (or equivalently

for GL(k, C) principal bundles).c, E H
2’(M).

2. Pontrjagin classesp Pi are definedfor a real vectorbundleof dimensionk (or equivalently
for GL(k, R) principal bundles).p E H41(M). (j = [k/2] is the greatestintegerin k/2.)

3. TheEuler cl,~sse is definedfor an orientedbundleof evendimensionk with a fiber metric (or
equivalentlyfor SO(k’) principal bundles).e EH”(M).

4. Stiefel—Whitneyclassesw
1 Wk are defined for a real vector bundle of dimension k (or

equivalently for GL(k, R) principal bundles).They are Z2 characteristicclassesand are not given by
curvature.w, E H’(M; Z2).

6.1. Generalpropertiesof Chernclasses

We beginour studyof characteristicclassesby examiningthe Chernclassesassociatedwith bundles
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havingGL(k, C) transitionfunctions.Many of the methodswe discusswill thenbe applicableto other
groupsandcharacteristicclasses.

Invariant polynomials:Let a be a complexk xk matrix andP(a) be a polynomial in the components
of a. P(a) is called an invariant polynomialor a characteristicpolynomialif

P(a)=P(g’ag) (6.1)

for all g E GL(k, C). If a haseigenvalues{A, Ak}, P(a) is a symmetricfunction of the eigenvalu’es.
If S1(A) is thejth symmetricpolynomial.

S1(A)= ~ A•A, A~1,
I.C,:<

thenP(a) is a polynomial in the S,(A):

P(a)= a + bS,(A)+cS2(A)+d[S(A)]
2 +

Examplesof invariant polynomialsare

Det(I+a)= I+S,(A)+S
2(A)+~. ~ (6.2)

andTr(expa), which are usedto definethe Chernclassand the Cherncharacter.
If a matrix-valuedcurvature2-form Li is substitutedfor the matrix a in an invariant polynomial,we

find the following properties:
(1) P(t1) is closed
(2) P(Q) has topologically invariant integrals.

We will prove theseassertionsfollowing Chern [19671.SupposeP(a, a,) is a homogeneous
invariant polynomial of degree r, Using the invariance of the polynomial under an infinitesimal
transformationg = I + g’, we can deduce

P(a,, . . . , g’a, — ag’ a,)= 0.

Then if 0 is a k xk Lie-algebravalued matrix of 1-forms and the {a,} are k xk Lie-algebravalued
forms of degreed, we find

~ (_~)dl4~ +d,-1 P(a,,..., 0 A a,,..., a,)— ~ (~l)”~“~ P(a, a A 0 a,)= 0. (6.3)

Thereforeif we choose0 to be the connection1-form cv, we may write

dP(a, a,)= ~ (—1)’~”’ +d,, P(a, Da, a,)
, �,

where

Da, = da, + cv A a, —(—1)”a, A cv

is the covariantderivativeof the form a.
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If a, = 11, the curvature2-form, we concludethat

dP(Q)=0

becauseof the Bianchi identity (5.34).
Now let cv andcv’ be two connectionson the bundleand11 and12’ their curvatures.We considerthe

interpolationbetweencv andcv’,

w,cv+t77 0�t�1,

where~ =w’—w.

Then
17,=dw,+w,Aw,=12+tDfl+1277A77,

whereD
77 = d77 + cv A i~+ ~ At,).

Let P(a, a,) be a symmetricpolynomial andlet

q(/3,a)=rP(f3,a,...,a).

r— 1

Then

A

On the otherhand

Dli, = tD
2

77 + t
2(D

77 A ~7’1 A D77)=t((l A ~1’7 A Q)+ t
2(D

77 A 77 77 AD77)

= t(f1, A 77 77 A 11,),

so that

dq(-q, (2,)= q(D77, (2,)—r(r — l)P(77,DA”1,, (2,,. . . ,ul,)

= q(D77,11,)—r(r — 1)tP(77, (12, A 77 —77 A 12,), 11,,. . . ,11,).

Eq. (6.3) with 0=a,=77,a2=~~~=cr,=11,gives

2q(77 A 77,fl,)+r(r—1)P(77,(fl,A77—77A12,),(1,,...,11,)0.

Combiningthe last two equations,we get

dq(~,12,)= q(D”q, 12,)+2tq(~A 77, 11,)=
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Hence

P(12’)— P(ul)= dJq(cv’ — cv, 11,) dt dQ(cv’, cv). (6.4)

SinceP(fl’) andP((2) differ by an exactform dQ, their integralsover manifoldswithout boundarygive
the sameresults.Thus we haveprovenboth properties(1) and (2).

Chernform: The Chernform of a complexvectorbundleE overM with GL(k, C) transition functions
~anda connectioncv is obtainedby substitutingthe curvature2-form 11 E gl(k, C) into the invariant
polynomial Det(1 + a). We define the total Chernform as

c(12)= Det(I + ) = 1+c,(!I) + c~(Q)+~‘, (6.5)

wherethe individual Chernforms c1(11) arepolynomialsof degreej in 12:

c0 = 1

c, =_!_Trul

AQ-Tr.0 ATrQ}
- 8ir

cn=~L{—2Tr.0Al? A.0+3(Tr.0 Al’l)ATr.0—Tr.0 A Tn? ATrQ}

The explicit expressionsfor c1 areobtainedfrom the eigenvalueexpansionof a = diag(A, Ak):

Det(I+_~_a’~=(1+_!_AI’~(1+_LAn”~...(1+—i_Ak21T/ 2ir j\ 2irj \ 2ii

= 1 +~—S,(A)+(~)2S
2(A)+...

wherethe 51(A) are the elementarysymmetricfunctionsdefinedearlier.For example,

(i)
2 ~ A

1A, = (i)
2 (1) ((‘Fr a)2 — Tr(a2))

givesc
2 if the matrixa is replacedby 11. Sincec,(fl)E A

21(M),we seethat

c~=0 for2j>n=dimM.

Thus c(l1) is alwaysa finite sum.
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Since any invariant polynomial P(a) can be expressedin terms of the elementary symmetric
functions,P(a)can be expressedas a polynomial in the Chernforms. Thus the Chernforms generate
the characteristicring.

Chern classesand cohomology:SinceP(l’2) is closed,anyhomogeneouspolynomial in the expansionof
an invariant polynomial P(11) is closed:

dc,(11)=0. (6.6)

We mayverify thisexplicitly usingthe Bianchi identities; for example,

dc,(fl)=~-Trd(dw+cv A cv)=~—Tr(liA W —WA

We concludethat the Chernforms c,(Q) define 2jth cohomologyclasses,

c1([l)EH
2’(M). (6.7)

This cohomologyclass,which we will often denoteby c
1(E), is independentof the connectionbecause

P(12) — P(11’) is exactfor anycharacteristicpolynomial.

Chernnumbersand topological invariance: It is aremarkablefact that the cohomologyclassesto which
the Chernforms c1(fl) belongareactually integer classes.If we integrate c1(l1) over any2j-cycle in M
with integer coefficients,we obtain an integer which is independentof the connection.The Chern
numbersof a bundlearethe numberswhich result from integratingcharacteristicpolynomialsover the
entire manifold; for example,if n = 4, theonly two Chernnumbersare

C2(E)=J c2(l1)

C~(E)= J c,(Q) A c,((l).

Characteristic classesof unitary bundles: One can show that the U(k) and GL(k, C) characteristic
polynomialscan be identified.Thereforetheir characteristicclassescan beidentified.This is not true for
GL(k, R)and0(k)orSO(k).The SU(k)charactenisticclassesaregeneratedby (c2 ck)becausec = 0.
Notethatif c, � 0for acomplexvectorbundleE, thereis no associatedSU(k)principalbundle.(Warning:
thereexist bundleswith c, = 0 whichalso do not admit an SU(k) structure.)

Chern classesof compositebundles: Let c(E) = c0(E)+~ + ck(E), with c1(E)E H
2’ (M), denote the

total Chernclassfor a k-dimensionalcomplexvectorbundleE over M. Thenwe find
(1) Whitneysum:c(E~ F) = c(E)A c(F).
(2) c,(L® L’) = c,(L)+ c,(L’) for L, L’ = line bundles.
(3) Pullbackclass:c(f*E)=f*c(E), wheref: M’~MandE’ =f*E is the pullbackof E over M’.
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Thesepropertiesplus the requirementthat C,(L) = —1 for the line bundleL over P,(C)aresometimes
usedas an axiomaticdefinition of the Chernclass.

The Weil homomorphism:It is well-known that the “Casimir invariants”or polynomialsin the centerof
a Lie algebra~ with matrix basis{X,} aregeneratedby the determinant

Det(t~I+a,X,)= ~ tkP~(a,).

The Chernclassesare thusobtainedby substitutingthe Lie-algebravaluedcurvature2-formsinto each
of the resultingcharacteristicpolynomials.

6.2. Classifyingspaces

We motivatetheconceptof classifyingspacesfor fiber bundlesby showinghow thestandardcomplex
line bundleL overP~_1(C)maybe usedto classifyotherline bundles.Let E be a complexline bundle
overM andassumethat we can find a complementarybundleE suchthat

E®E=MxC”

for somen > 1 (this is alwayspossible).The fibers of E arethenlines in C”. We definea mapf(x) from
the pointsx EM to P,,,(C)which associatesto eachpointx the line in C” given by thefiber F~.Then
the line bundleE is isomorphicto thepullbackof the natural line bundleL overP,,

E=f*L.

We can generalizethis constructionby consideringthe Grassmannmanifold Gr(m, k, C) of k-planesin
Cm; just as the points of Gr(m, 1, C)EPm_i(C)correspondto lines through the origin in Cm, each
point of Gr(m, k, C) correspondsto a k-plane through the origin. The natural k-plane bundle
L(m, k,C) over Gr(m, k,C) has as its fiber the k-plane in Cm over the correspondingpoint in
Gr(m, k,C); L(m, 1, C) is just the naturalline bundleL over Pm_i(C).We now quotewithout proof a
basictheorem(see,e.g., Chern[1972]):

Theorem:Let M be a manifold of dimensionn andE any k-dimensionalcomplexvectorbundleover
M. Then thereexistsan integermo (dependingon n) suchthat for m � m1>,

(a) thereexistsa mapf: M~Gr(m,k, C) such that E =f* L(m, k, C);
(b) givenanytwo mapsfandg mappingM-*Gr(m, k,C), thenf* L(m, k,C)=g* L(m,k,C) if and

only if f andg arehomotopic.
As a consequenceof thistheorem,the setof isomorphismclassesof k-dimensionalvectorbundlesis

itself isomorphicto the set of homotopy classesof maps from M to Gr(m, k, C); in this manner,
questionsabout the classificationof vectorbundlesarereducedto questionsabouthomotopytheory in
algebraictopology.

Classifyingspacesof principal bundles: P(m, k, C), the bundleof framesof L(m,k,C), is a principal
GL(k, C) bundleoverGr(m, k, C). For m � m0, very large,P(m, k,C) andL(m, k,C) aredescribedby
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thesameset of homotopyclassesof mapsfrom M ~ Gr(m, k,C). In fact, we canmakethe identification

Gr(m, k, C) = GL(m, C)/GL(k, C) x GL(m - k,C)
(6.8)

P(m, k,C) = GL(m, C)/GL(m— k,C)

where the projection i~:P(m, k, C)—*Gr(m, k.C) projectsout the fiber GL(k, C). Clearly similar
constructionscan be carried out for GL(k, R) principal bundles, SO(k) principal bundles, SU(k)
principal bundles,etc.

Universal classifying spaces: We define the universalGrassmannianGr(co, k,C) by taking the union of
the natural inclusion mapsof Gr(m, k, C) into Gr(m + 1, k,C). We denote the universal classifying
bundlescorrespondingto Gr(~,k,C) by L(x, k,C) andP(~,k, C). The cohomologyof Gr(co,k,C) is
simpler than that of Gr(m, k,C) and is a polynomial algebrawith generatorsc = c(L(c/~,k, C)) =

c,(P(x,k,C)). Givena k-dimensionalbundleE anda map

f: M-÷Gr(ce,k,C)

f* L(~,k,C)=E,

we seethat

c(E)=f*c,.

f is defineduniquelyup to homotopyso thecohomologyclassesareall well-definedanddependonly on
the bundleE.
Note: from this approach,it is obviousthat U(k) bundlesand GL(k, C) bundlesboth have the same
classifyingspaceGr(c13,k,C), andthusthe samecharacteristicclasses.

6.3. The splittingprinciple

Algebraic identities involving characteristicclassesare a centralpart of index theory.Such manipu-
lations are madevastly simpler by the use of a tool called the splitting principle (seee.g. Hirzebruch
[1966]).

We gaveabove a brief descriptionof the characteristicclassesc,(E) using our knowledgeof the
cohomologyof the classifyingspacesGr(m, k, C), the Grassmannmanifolds.This is an approachbased
on algebraictopology; from this viewpoint the splitting principle is the idea that eventhougha given
bundleis not, in general,a direct sum of one-dimensionalline bundles,characteristicclassmanipula-
tions can be performedas though this were the case.We also discussedthe characteristicclassesusing
invariant polynomials and curvature. From this differential geometricpoint of view, the splitting
principle is simply the assertionthat the diagonalizablematricesare dense.

We illustrate the conceptsof the splitting principle with the familiar identity

Det[a] = exp(Trln[a]).


