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If a is a diagonalizablematrix with eigenvalues{A,}, thenit is clear that

Det[a] = fl A, = exp(~In A~)= exp(TrIn[a]).

Since both sides of this equation are continuousand since we can approximateany matrix by a
diagonalizablematrix, this identity holdstrue for anymatrix. Thus to prove an invariant identity of this
sort, we mayin fact assumethat the matrix a is diagonal.

Now let (‘2 be an n x n matrix of curvature2-forms. If we imagine that 1? is diagonalizableinto n
2-forms(l~,thenthe Chernclass becomes

0

c(E)= Det(1 + ~— (1) = Det ( 2ir

\ 0 1+~—11~ (6.9)

=~ (1+i.01)=ñ(1+x1)
IT

wherewe will henceforthusethe formal notation

= ~— 12,,.

Eachof the terms(1 + x1) can be interpretedas the Chernclassof a one-dimensionalline bundleL1,

If we imagine that a k-dimensionalvectorbundleE hasa decomposition

then

c(E)= fl c(L1)= fl(1 + xi).

Thus c,(E) can be thoughtof as the lth elementarysymmetricfunction of the variables{x1}:

= x1, c2 = x•x1, ..., ck = x,x2.. . Xk. (6.10)

Sumsofbundles:If A andB arematrices,then

Det(A~B)=DetA~DetB.
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Consequently,if E andF arevectorbundles,then

c(E~F)=c(E)A c(F),

sincethis is true on the form level whenwe use theWhitneysum connection.Fromthepoint of view of
algebraictopology, this identity is first proved for bundlesE andF which actuallysplit into a sum of
line bundles.The splitting principle is theninvokedto deducethe identity for the generalcase.

Chern character: Many essentialmanipulationsin index theory involve not only Whitney sums of
bundlesbut alsotensorproductsof bundles.The total Chernclassbehaveswell for Whitney sums,but
not for productbundles.We arethus motivated to put asidec(E)= H~(1+ x1) andto find someother
polynomial in the {x,,} which has simple propertiesfor productbundlesas well as Whitneysums. One
such polynomial is the Cherncharacterch(E). In terms of matrices,the Cherncharacteris definedby
the following invariant polynomial:

ch(a)=Trexp(~—a)=~
4j~Tr(~—a). (6.11)

Since

ch(a ~/3)=ch(a)+ch(f3)

ch(a®f3) = ch(a)ch(f3),

theseidentities still hold when we substitutethe curvature2-form 11 to define ch(E). Note: since
Tr(fl~= 0 for j> n/2, we in fact havea finite sum.

The Cherncharacterof E hasthe splitting principle expansion

ch(E) =~ ex = k + c,(E)+~(ci2_2c
2)(E)+.... (6.12)

Other characteristicpolynomials:Using the splitting principle,we maydefine characteristicclassesby
their generatingfunctions. For example, the total Chernclass hasthe generatingfunction 11(1 + x1),
while the Cherncharacterhasthe generatingfunction ~ exj. Another classwhich appearsin the index
theoremis the Todd classwhich hasthe generatingfunction

td(E)= ~q1 —~-~ =1+~c,(E)+ ~Jc~+ c2)(E)+~.. (6.13)

The Todd class is multiplicative for Whitneysums,

td(E~ F) = td(E) td(F).

We can define other multiplicative characteristicclassesby using other generatingfunctions. Two
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other suchfunctionsare the HirzebruchL-polynomial

L(E) = 171 tan~ (6.14)

which appearsin the signatureindex formula, andthe A polynomial

A(E)— 171 sinh(x1/2) (6.15)

which appearsin the spin index formula.

Examples6.3
1. Chern classof P,(C) line bundle.Let L be the natural line bundleover basemanifold M = S

2 =

P,(C)(seeexample5.4.1)with the naturalcurvature

11 = —th9 ln(1 + 1z12) = ‘~ ~

Then

L __!~l2— 1 dxAdy — IrdrAdOc,( 2IT 1r(1+x2+y2)2IT(1+r2)2’

so the Chernnumbercharacterizingthe bundleis

C
1(L)=J cI(L)=_~J(1~)2JdO=-1.

Dual line bundle: The naturalcurvatureon the dual line bundleL* is the complexconjugateof thatfor
L,

f1(L*) = t~(L) = —.0(L),

so that the Chernclass reversesin sign:

ci(L*) = —c,(L)

C,(L*)=fci(L*)= +1.

Alternatively,wemayderive thisresult from the fact that the tensorproductbundle

L* ®L = I [trivial complexline bundleoverP,(C)]
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is trivial becausethe transitionfunctions(z,/z1)(z1/z,)= 1 are trivial. Thus we know that the total Chern
classis

c(L* ® L) = c (trivial bundle)= 1 + 0.

But thenthe Cherncharacterformula for productbundlesgives us our result:

0 = ci(L* ®L) = c,(L*)+ c1(L).

TangentandcotangentbundlesofS
2 = P,(C): We showedin example4.2.3 that

T(S2)= T~(P
1(C)) L* ® L*

T*(S
2)= T~(P,(C))=L®L.

Fromthe productbundleformulawe immediatelyfind

C,(T(S2))= C,(L*)+ C
1(L*) = +2

C,(T*(5
2))= C,(L)+ C,(L) = —2.

2. Chernclassesof P,.(C). We next considerthe natural line bundleL overP~(C) and its dualL ~

Choosingthe Fubini—Studymetric (example3.4.3)on P~(C),we computex from the Kähler form,

x = ci(L*) = ~ l1(L”) = -~-K (Fubini—Study).

The factor i/2rr is chosenso that the integral of x over P
1(C) is equalto 1. It can be shownthat the

integral of x” over P~(C) for any n is also1. The 2-form x generatesthe cohomologyring of P~(C)with
integercoefficients.The Betti numbersare

b,=b3=~~~=b2~_,=0

andthe Eulercharacteristicis

= ~ (~1)”bk= n + 1.

To computethe Chernclassesof P~(C),we first considerthe bundleE~±1consistingof the Whitney
sum of (n + 1) copies of L The total Chernclassis then

c(E~÷1)= c(L* ç~L*~. . . ~ L*) = (1 + x)”~’.

There is a naturalembeddingof TC(P~(C)) in E~+~. The quotientor complementarybundleis trivial.
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Thus

~

Thereforewe find that

c(E~+,)= (1 + x)”~’= c(T~(P~(C))). c(I) = c(T,(P~(C))).

It is customaryto define the Chernclass of a complexmanifold to be the Chernclass of its complex
tangentspace,

c(M)= c(T~(M)).

Thusin particular,

c(P~(C))= (1 + x)”’~’.

We notethat c~(P~(C))=(n + 1)x”, so

J c~(P~(C))=n+1.
P,,(C)

It is no accidentthat this is the Eulercharacteristicof P~(C). The expression

J c,,(M)= ~(M)

is, in fact, the Gauss—Bonnettheoremfor a complexmanifold of complexdimensionn.
3. Vectorbundlesover5”. Let n = 21 andlet E±bethe complexvectorbundlesover S” introducedin

example5.4.2.We recall thatE±was definedusingtheprojectionoperator11±,thatE±® E_ = 5” xC2’
andthat thefiber of E±hasdimension21_1. Choosingthe curvatureQ±(xo)= H±(xo)d.H±(xo)A dH±(x

0),
we recall that

Tr(IL.)
t = ±n!(2i)’ d(vol).

Consequently

J ch(Q±)= ±i”,

wherewe takeonly the lth component(the .n-form portion) of the ch polynomial. This showsthat the
bundlesE±are non-trivial.

If n = 2 (1 = 1), the fiberdimensionis one andwe havecomplexline bundleswith (the2-form part of)
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ch equalto c,(E±),so

Jc,(E±)=÷1.

The associatedprincipal bundlesfor theseline bundlesare the magneticmonopole bundlesdiscussed
earlier with charge±1.
Remark:While the matrix A(x) definedin example5.4.2 mapsS” ~GL(2’, C), the projection [L(x)
actsas

H±(x):5” —*Gr(2’, 2’’, C).

The vectorbundlesE±are simply the pullbacksunderH±of the classifyingbundles,H±*L(20,21_I, C).
This example illustrates the relationship between the homology of the embedding of 5” in
Gr(2’, 21_I,C) andthe cohomologyof the bundlescharacterizedby the Chernclassesof the classifying
space.

4. Chernclass of U(1) bundle.We now turn from vectorbundlesto the Chernclassesof principal
bundles.We recall that for a U(1) principal bundleP the curvatureis purely imaginary.Thus we may
write

~2=iF

andso find the total Chernclass

c(P)=Det(1+~~!_u1’~=1+-1--iF= 1—-~’-.

\ 2ir j 21T 21T

Hence

c,(P)= —F/2’Tr.

We notedin example5.5.1 that the integral of c, for the Dirac monopole U(1) bundleover S2 was the
integergiving the monopolecharge,

C, = J c, = —n.

Proof of topological invariance: The first Chernclass of the monopolebundle(M = S2,F = S’ = U(1))
dependsonly on the bundletransition functionsand is independentof whetherthe connectionA(x)
satisfiesMaxwell’s equations.

As before,the gaugetransformationon the equatoris given by

A+(x)=A_(x)+n d~.
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Applying Stokes’ theorem,we obtain,

_Jco=~[f dA++J dA]=~J(A+_A)~

where the sign changeoccursbecause3H_ = S1 has the oppositeorientationfrom o9H±= 5’. Using the
relationbetweenA~andA_,we find

—C
0~z~_Jndçb=n.

Only the gaugetransformation entersinto the computation.
5. Chern class of G-bundle. Let A~/2ibe a matrix basis for the adjoint representationof the Lie

algebra~ of thegroup G with Tr AaAb =
2&b. Thenthe curvatureis written as

12 =g_1Fa(x)~g.

Sincethe factorsof g’ andg annihilateone anotherin the determinant,the Chernclassof a principal
G-bundleP overM is

c(P)= Det(1 +~tAaF’~).

For G = SU(2), we can take theA,, to be Pauli matrices.We find

~ F)

so that

c,(P)=0

c
2(P) = ~-~—yTr(F A F).

We notedin example5.5.2 that the integralof c2(P) for the self-dualYang—Mills instantonconnection
on an SU(2)bundleover S

4 was

—C
2 = —J c2 = +k,

wherek is the “instantonnumber”.
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Proof o,f topological invariance: Let us demonstratethe topological invarianceof c2 for the instanton
G-bundle. We take M = S

4 to be covered by H±,with H+ fl H_ S3, and consider the gauge
transformation

A=~A÷’P’+~d~’

F =

Usingthe Bianchi identitiesandTr(A A A A A A A) = 0, onecan show

Tr(F A F) = dTr(F A A — ~A A A A A).

Then,by using Stokes’ theorem,we see that

C
2=J c2=~-~-r[JTr(F÷AF+)+J’Tr(FAF)]

=~-1-~J[Tr(F+ A A+ —~(A+)3)_Tr(F A A__~(A)3)].

Whenwe substitutethe expressionsfor A_ andF_ usingthe gaugetransformation,we find

C
2 = J c2 =8-’-rJ Tr[~k d ~ A I17 d~’ A ~ d~’—d(A+ n dP’

=~-~JTr(Pd1r’)
3.

The entire value of C
2 is given by the winding numberof the gaugetransformation ~ d~’ at the

equatorH+ fl H_ S
3.

Remark:Clearly the transitionfunctions ~(x) of the topological bundlefall into equivalenceclasses
characterizedby the valueof the integerC

2. If C2 is unchangedby taking

CP(x)—*h(x)~(x),

h(x) is referred to in the physics literature as a small gauge transformation; such functions are
homotopic to the identity map. If C2 is altered,h(x) is called a large gaugetransformation;choosing
sucha transitionfunction modifies the topology of the bundle.A typical largegaugetransformationin
an SU(2)bundleis

h(x)=t_~t 1, {A}=Paulimatrices.

If ~ = h”, wefind that the bundlehasC2 = —k.
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6.4. Othercharacteristicclasses

6.4.1. Pontnjagin classes

We now discuss the characteristicclassesof real vector bundles and their associatedprincipal
bundles. The bundle transition functions and the fibers of the principal bundles then belong to
GL(k, R). If one puts a fiber metric on a real vector bundle, the bundletransition functionscan be
reducedto 0(k). The associatedbundleof orthonormalframesis an 0(k) principal bundle.Thereare
some subtletiespresentin the real casewhich are absentin the complexcase.While the characteristic
forms of real vector bundles whose structure groups are 0(k) and GL(k, R) are different, their
characteristicclassesare in fact the same.

Sincewe can alwaysreducethe structuregroupto 0(k)andchoosea Riemannianconnectionon the
bundle,we first considerthiscase.

The total Pontrjagin class of a real 0(k) bundleE with curvature11 lying in the Lie algebraof 0(k)
is definedby the invariant polynomial

p(E)= Det(I — ~_ ii) = 1 + P’ + P2~~’ (6.16)

Since1? = —if, the only non-zeropolynomialsareof evendegreein (1. Thus p1(11)E A
4’(M) andthe

series expansionof p(E) terminateseither when 4j> n = dim M or when 2]> k = dim E. p~,(Q)is
alwaysclosedand the cohomologyclass it representsis independentof the metric and the connection
chosen;we let p

1(E) denotethis cohomologyclass. It is clear that the total Pontrjaginclassobeysthe
Whitneysum formula

p(E~3F)= p(E)p(F).

Any invariant polynomial for a real bundle can be expandedin the Pontrjaginforms p,,, in the
following sense:if 0(11)is aGL(k, R)-invariantpolynomial and(1 is agl(k, R)-valuedcurvature2-form,
then

0 =R(p1,p~,.. . ,pmax)+S(fl)

where R is a polynomial and S = 0 when 1? lies in 0(k). Furthermore,the cohomology class
representedby S(11)(for example:S= Tr 12) will always be zero, eventhough S(1’2) � 0 on gl(k, R).
Thus the GL(k, R) and 0(k) characteristicclassesare the same,while their characteristicforms may
differ.

Pontrjagin classesin terms of Chern classes:In many applications,it turns out to be convenientto
expressthe Pontrjaginclassesof areal bundlein termsof the Chernclassesof a complexbundle.If E is
a real bundle,we can defineE~= E ~ C as the complexificationof E. (This is definedby the natural
inclusionof GL(k, R) into GL(k, C).) If A is a skew-adjointreal matrix, we have the identity:

det(I+~—A)= 1 —p,(A)+p2(A)...
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wherethe factorsof —1 arisefrom the i2 terms. This yields the identity:

Pk(E) = (— I )‘~c2k(EJ. (6.17)

Conversely,given a complexbundleE of dimensionk. we canform the correspondingreal bundleE.
of dimension2k by forgettingthe complexstructureon E. (This is called the “forgetful functor”.) If we
then form (E,)~.this is a complex vector bundleof complexdimension2k. Let E denotethe complex
conjugatebundle,which is. in fact, isomorphicto the dualbundleE*. Then

(Er)cE~EE®E*.

Since

c(E)= 1 -c
1(E)+c2(E)-c1(E).

we find

c((Er)c) = 1 — pi(Er) + p2(Er)— . ‘ = c(E)c(E)

i[1—ci(E)+c2(E)...1.

Half the terms cancelout. Identifying the remainingtermsyields:

p1(E,)=(c~—2c2)(E)

p2(Er) = (c~— 2c,c1 + 2c4) (E), etc.

Using the splitting principle,we find the equivalentpolynomial expressions:

p2(E,)= ~ ~ (6.18)
i<j

and so forth. The form of these polynomials is related to the fact that the eigenvaluesof a
skew-symmetricmatrix occurin complexconjugatepairswith purely imaginaryeigenvalues.
Example:P~(C).The total Pontrjaginclassof a complexmanifoldsuchas P~(C)is computedby using
the forgetful functor to obtain the real tangentspace T(P~(C))from the complex tangentspace
T,(P~(C))andcomputingthe Pontrjaginclassof T(P~(C)).Fromexample6.3.2,we know that

c(T,(P~(C)))= (I + x)”~’

c(T~(P~(C)))=(1 —x)”~’

wherex is the generatorof the integral cohomologyof P~(C).Thenwe find
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c(T(P,,(C))~~C) = c(T~(P,,(C)))c(’t~(P,,(C)))= (1 — x2)nf 0

= I —p1(T(P,,(C)))+p2...

so that the total Pontrjaginclass is

p(T(P~(C)))=l+p’+p,+~’ =~(1+x
2)”~’.

6.4.2. TheEuler class
The transitionfunctionsof an orientedreal k-dimensionalvectorbundleE can always be reducedto

SO(k) transition functions.If k = 2r is even,we can define an additional S0(k)-invariantpolynomial
e(a)calledthePtaffian.Thispolynomialis notinvariantundertheorientation-preservinggroupGL+(k, R).
Thus the correspondingcharacteristicclasscan only be computedusinga Riemannianconnection,not a
general linear connection.There exist bundles E with e(E)� 0 which neverthelessadmit flat non-
Riemannianconnections.We recall that, in contrast,the Pontrjaginforms could be computedusinga
generallinear connection.

Let a
111 be a real anti-symmetrick x k matrix,in the Lie algebraS0(k). Taking {z’} to be local fiber

coordinatesin E. We constructthe 2-form

a = ~a,1dz’ A dz’.

e(a) is thendefinedby the r-fold wedgeproduct

=e(a)dz
1A A dz”. (6.19)

The Pfaffian e(a) is SO(k)-invariant.The Euler form of the bundleE is found by substitutingthe
bundle’sS0(k)-valuedcurvature2-form 11 for a:

Eulerform = e(11).

The Euler form is always closed and the characteristicclass e(E) is independentof the particular
Riemannianmetric andconnectionchosen.

Propertiesof the Euler class: While a real anti-symmetricmatrix like a
1, cannotbe diagonalized.it can

be put in the form

/ 0 x,
—x, 0

0 x~
—x, 0
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The splitting-principle formula for e(E) is thus

e(E)=x,x2.. .Xr.

Since

p,(E)=x~x~..

we concludethat e(E) is a squareroot of thehighestPontrjaginclass.If we changethe orientationof E,
we replacee(E)by —e(E),andchangethe sign of the squareroot.

It is clear that e is multiplicative for Whitneysums:

e(E~F)= e(E)e(F),

wherewe define e(E)= 0 for odd-dimensionalbundles.

Complex bundles: If E is a complex vector bundle of dimension r, then its real 2r-dimensional
counterpartE. inherits a naturalorientation.Thenwe know that

e(E,)
2= pr(Er) = c,(E)2.

In fact, the signs work out so that e(Er) is just the top Chernclassof E,

e(Er) = [pr(’Er)1’’2 = cr(E).

Gauss—Bonnettheorem: The Gauss—Bonnettheorem for an even-dimensionalmanifold M relatesthe

Eulercharacteristicto the Eulerclassby

x(M)=J e(T(M)). (6.20)

(If M is odd-dimensional,both e(T(M))= 0 and~(M) = 0.) The exampleof P~(C)was workedout in
6.3.2.

Stableand unstablecharacteristicclasses:In somecircumstances,the Eulerclassmaybe non-zeroeven
for bundleswith vanishingPontrjaginclasses.For example,considerthe tangentbundleof the sphere
T(Sm)for evenm. Sincex = 2, the Gauss—Bonnettheoremgives

e(T(Sm))= 2~V(S”),

where V(Sm)EHm(S”)is the normalized~m volume element.Since

T(Sm)~IJI=
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is a trivial bundleover Stm,we find

p(T(Sm)~JI)=p(T(Sm)).p(I)=p(T(Sm))=p(Im±O)=1.

Thus the Pontrjaginclassesof T(Sm)are trivial. Pontrjaginclassesare stablecharacteristicclasses,
while the Eulerclass is an unstable characteristicclass; stabilization is the processof addinga trivial
bundleto eliminatelow fiber-dimensionalpathologiesof which the Euler characteristicis an example
(seethe discussionof K-theorygiven below).

Examples:The Eulerclassesfor two or four-dimensionalRiemannianmanifoldsM aregiven by

n=2: ~

n = 4: e(T(M))= ~abcd~ A R~,

whereR’~’ is the curvature2-form in the orthonormalcotangentspacebasis.Since ~ as a matrix
belongs to so(n), we can see from the Weil homorphismconstructionhow e(T(M)) emergesas a
“squareroot” of a Pontrjaginclass which would itself be zero whencurvatureswere substituted.For
n = 2, we have

1 110 All A2
Det~I—~~_Aojj=1~j~=~P1,

sowe takeA = R,
2 to find

e = = R,2

For n = 4, with R4 = E,, R1,, = ~E~kBI,we have

/0 B3—B2E,
li—B3 0 B, E2Det I — 2ir ~ B2 —B, 0 E3 = 1+Pi + P2

\—E, —E2 —E3 0

_1+~~2(E+BY1~”yi(EB)

= 1 ‘~Rat,Rba +(2)464(EabcdRR).

Hencewe find the first Pontrjaginclass

pi=-~-~TrRAR
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andthe Eulerclass

e(T(M)) = (P2)”2 = 32IT~E~h~dR A R~.

Similar formulashold for all evendimensionalcases.
Remark:Clearly the existenceof the Euler class as a “square root” follows from the fact that the
determinantof an anti-symmetriceven-dimensionalmatrix is a perfectsquare.Forodd dimensions,this
determinantvanishes,and,in fact, the Euler classfor n odd is alwayszero.

6.4.3. Stiefel—Whitneyclasses
The Stiefel—Whitney classesof a real bundle E over M with k dimensional fiber are the Z

2
cohomology classes.In contrastto the other characteristicclasseswe havegiven earlier, theyare not
integral cohomologyclassesand are not given in terms of curvature. We identify the Stiefel—Whitney
classesas

‘w,EH(M;Z2) i=l n—i.

For i = n (n even), w,, hasvalues in Z ratherthanZ2 and is identifiable with the Eulerclass discussed

above.The total Stiefel—Whitneyclassis, as usual,definedby

The first Stiefel—Whitneyclass ‘~i,(T(M))is zeroif andonly if M is orientable.
The secondStiefel—Whitneyclass w2(T(M)) is of greatimportancein physicsbecauseit determines

whetheror not parallel transportof Diracspinorscan be globally definedon E = T(M). If

= ~w2(T(M))= 0,

then spinorsarewell-definedandM is a spin-manifold.If

w2(T(M))� 0,

then there is a sign ambiguity when spinors are parallel-transportedaround some path in M: such
manifoldsdo not admita spin structure.
Example1. Stiefel—Whitneyclassesof P~(C):The Stiefel—Whitney classescan be computedin closed
form from the expressionfor the cohomologyof T(P~(C)).The total classis just (Milnor andStasheff
[1974])

lv(T(P~(C)))= (1 + x)”~’= 1 + W2 + JV4 + ‘~ + 1l’2~,

wherex is the 2-form c1 of the naturalline bundleandall coefficientsof x” are takenmod2 exceptfor
w7~.Hencewe find for P~(C)

10 nodd
~v2—(n+1)Imod2’x 1i ‘x neven.
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In particular, P2(C), P4(C),... do not admit a spin structure,while P,(C), P~(C),... , do. Since
= (n + 1)’ x, we recoverour previousresult that the Euler characteristicis (n + 1). In addition, all

the manifoldsP~(C)are orientablesince w, = 0.
Example2: The total Stiefel—Whitneyclassof 5” is

u’(S”)= 1 +(i +(—l)”) V(S”)

where V(S”) is the normalizedn-form volume element. Hence ‘w2 = 0 and all n-spheresare spin
manifolds.
Remark:For S

2 = P,(C), ‘w
2 = 2x plays a doublerole: the Eulercharacteristic= 2, and2 (mod 2)= 0

implies that a spinstructureexists.

6.5. K-theory

K-theory is concernedwith the studyof formal differencesof vectorbundlesand plays an essential
role in index theory. From the standpointof algebraictopology, K-theory is an exotic cohomology
theory.althoughwe shall not adoptthis viewpoint here(see,Atiyah [19671).

Problems with formal differencesof vector bundles: In the precedingsections we have studied the
propertiesandcharacteristicclassesof Whitney sum bundlessuchas E ~ F. If E~ F E’ ~ F, thenit
is temptingto introducea formaldifferenceoperationwhich would allow us to cancelthe vectorbundle
F from both sides of this equationand to concludethat E F. Unfortunatelythis cancellationdoes
not work in general,as we maysee from the following example:

Considerthe manifold M = S
2 to be embeddedin R3, and let T(52) and N(S2)be the tangentand

normal bundles,respectively.Letting I” denotethe trivial real vector bundleof dimensionk, we note
that N(S2) I, the trivial line bundle.Thenwe find that

T(S2)(~jN(S2)= T(R3) I’~

I2~jN(S2)=I2~jI=I3.

If we couldperformthe formal cancellationof N(S2), thenwe would concludethat T(S2) 12, which is
false.Therearesimilarexamplesalsofor complexbundles.

Stable equivalenceof vectorbundles: The problemswith formal differencesof vector bundlescan be
resolvedby replacingthe notion of vector bundleisomorphismby the broaderrelationshipof stable
equivalence.If E andE’ are two vectorbundles,not necessarilyof the samedimension,we saythat E
andE’ arestablyequivalentandwrite E ~ E1 providedthat

E~I’ =E’~I’

for some integersI andj.
Taking the Whitney sum with trivial bundlesservesto eliminatepathologiesarisingfrom low fiber

dimension; this process is called stabilization. Two vector bundles of the same fiber dimension
k > dim(M) arestablyequivalentif andonly if they are isomorphic;thesetwo notionscorrespondif the
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fiber dfmensionis large enough. Since E ~ E’ and E’ ~ E” implies E ~E”, then ~‘ is an equivalence

relation.

Definition ofK0(M): If E ~ F E’ ~ F, thenE neednot be isomorphicto E’, but it is stablyequivalent

to E’,

E~E’.

If we defineK0(M) to be the set of stableequivalenceclasses,then formal differencesarewell-defined
on K0(M). Thus, for example, T(S

2) j2 and T(S2) is stably trivial. Let Vectk(M) be the set of
isomorphismclassesof vector bundles of fiber dimension k. We say that k is in the stable range
providedthat:

k > dim(M) (if we areworking with real vectorbundles)

k> ~dim(M) (if we areworking with complexvectorbundles),

where dim(M) denotesthe real dimensionof M. We can identify Vectk(M) with K
0(M) in the stable

range.In other words, oncek is large enough,given any bundleE thereis a bundleE’ with fiber
dimensionk such that E ~ E’. Furthermore,if E ‘~ E” is anothersuch bundle, thenE’ and E” are
actuallyisomorphic.

If E is a vectorbundle,we can alwaysfind a complementarybundleF suchthat E®F I’ is trivial
for someinteger I. The isomorphismclassof F is not uniquelydefined,but thestableequivalenceclass
of F is uniqueand definesan elementof K0(M). Since Ii representsthe trivial or “zero” elementof
K0(M), F is the formal inverseof E. We thus havea group structureon K0(M). Formal subtractionof
the bundleE is defined by taking the Whitney sum with the complementarybundleE’ = F. Since
K0(M) = Vectk(M) for k in the stablerange,this alsodefinesa groupstructureon Vectk(M).

UnreducedK-theory: K0(M) doesnot distinguishbetweentrivial bundlesof differentdimensionsince
I’ jk for anyk and1. We define a new groupK(M) usingthe following constructionof Grothendieck
(seeAtiyah [1967]).If E andF are vector bundles,we define the virtual bundleEe F representing
their formal difference.K(M) is the Abeliangroupwhoseelementsarevirtual bundles.Thus T(S

2)and
j2 representthe sameelementof K(S2).

The virtual dimension of EeF is dim(E)— dim(F). K
0(M) can be identified as the subgroupof

K(M) with vanishingvirtual dimension.
Note that the tensorproduct is distributive with respectto the Whitney sum and thus definesa

multiplicationor ring structureon bothK(M) andK0(M).
RationalK-theory.We defineK(M) by allowing objectsof the form jE wherej could be 0, positive

or negative.If j is positive,thisis justE~ . . (~3E,while if] is negative,thisis aformal objectinvolving
formal differences.It is convenientto considerothercoefficient groupsin this context just as we did for
homology andfor cohomology.K(M; 0) andK0(M; 0) arethe groupswhich arisewhenwe consider
objectsof the form qE whereq is rational:

K(M; 0) = K(M) x 0 K0(M; 0) = K0(M)x 0.
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So far, we havenot really distinguishedbetweenthe complexand real caseexceptto note that the
stable range is greaterin the complexcase.We shall reservethe notationK(M) and K,0(M) for the
group of complexbundlesand shall use the notationK

1(M) andK~(M)for the groupof real vector
bundles.

The Chern isomorphism: The Chern characterprovides the bridge betweenrational K-theory and
rationalcohomology.We recall that the Cherncharactersatisfiesthe identities

ch(E~ F) = ch(E)+ch(F), ch(E® F) = ch(E)ch(F).

We can, in fact, extendthe Cherncharacterto K theoryso that

ch(EeF) = ch(E)— ch(F).

This relationshipis oneof the importantconsequencesof the Grothendieckconstruction.
The Cherncharacteris a ring isomorphismfrom K(M; 0) to the even-dimensionalcohomologyof

M; it is a map

ch: K(M;O)’-*~H21(M;O).

If we restrictthe Cherncharacterto the subgroupK
0(M;0)~thench providesan isomorphism

ch: Ko(M;0)= ~ H
21(M; 0).

J>0

In otherwords,if M hasnon-trivial evencohomology,thenM will havenon-trivial vectorbundles.In the
realcase,c,(E)= 0 if j is oddso

ch: Kr(M; ~ ~JH41(M;0).

Thus,for example,any real vectorbundleover S2 is stably trivial sincethereis no real cohomologyin
dimensionsdivisible by 4 aboveH°.On S4, by contrast,thereare manynon-trivial bundleswhich are
parametrizedby the first PontrjaginclassPi becauseH4(S4 Q) = Q.

Torsionin K-theory: Supposek>~dim(M) is in the stablerangeandconsiderthe set of all cohomology
classesof the form ch(E) as E rangesover all possiblebundleswith fiber dimensionk. This setspans
the evenrational cohomology of M. Furthermore,if ch(E)= dim(E) (i.e., c,(E)= 0 for I >0), then
somemultiple of E is stably trivial: thereexistsan integerj suchthat

Ec~y.~E_JJ.d1m(E)

In otherwords,jE = 0 in K-theory so E is a torsion elementof K(M). The Cherncharacterpermitsus
to computeK(M) modulo torsion.

The existenceof torsionelementsin K-theory can be illustrated by the following example:consider
P

2(R),whichis 52 modulothe identificationof antipodalpoints,x —‘x. We defineL as thebundleover
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P2(R) obtainedby identifying (x. z) (—x, —z) in S
2 xC (this is a generalizationof the Möbius bundle).

A sections of L over P
2(R) is simply a function s on S

2 satisfying theidentity —s(x)= s(—x). Sinceany
such function must have a zero, L is non-trivial (and in fact is not stably trivial so L representsa
non-zero element of K(P

2(R))). A frame for L~~Lis just a map g: S
2—~GL(2,C)such that

g(x) = —g(—x). If we define:

/ x, x
2+ix3

g(x)=~.

then g(x)
2 = I for xE S2 Thus L ~ L = j2 on P

2(R) andL representsa torsionelementof K(P~(R)).
If M has only evendimensionalfree cohomology,thenthereare no torsionelementsin K(M) so we

can identify K(M) with ~j1H
2’(M;Z) additively (the ring structuresare different). Since both S” and

P~(C)satisfythesehypotheses,we concludethat:

K(S”)= {Z~Zifniseven K(P~(C))=Z~. .~ (n + 1 times)

K(S”) = K~(P~(C))= Z ~‘ ~Z (n times).

For example:if n is oddand if dim(E)>~n,thenE is trivial on 5” sinceK
0(S”) = 0. If n is evenandif

k > ~n,we may identify

Vectk(S”)= K,,(S”) = Z.

In other words, the stable equivalenceclass of any bundleE over 5” can be determinedfrom the
integer

J c,(E)

The bundlesconstructedin example5.4.2 give the generatorsfor K00(S”) if n is even.
Bottperiodicity is the statementthat the stablehomotopygroupsof U(k) are periodic. This means

that:

IZ for I oddand1< 2k
~0forj evenandj<2k.

This is relatedto the calculationof K0(S”’~’)= Vectk(S”~’)as follows: let E be a k-dimensionalbundle
overS”~’andlet D~.be theupperandlower hemispheresof S”~’.Thesearecontractibleso E is trivial
over thesesets.Let e±be unitaryframesfor F overD±andlet e_ = g(x)e+ on 5” = D~fl D_. g(x) is
the transitionfunction defining F andgives a mapg: S” —* U(k) which representsan elementof U(k).
This mapis in fact an isomorphismin the stablerange.Therefore:

~, ~, ~ — ,. ,,÷,~— 7 if n + 1 is even (i.e. n is odd)
— K,,~S ~ — . . .~0 if n + usodd (i.e. n is even).
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For example,we find that ir,(U(k))=Z, so Vectk(52)=Z for all k. Since ir
2(U(k))=0, we conclude

that Vectk(53) 0 for all k.
Another way of statingBott periodicity is to take k = x andwrite

rr~(U(x)) ir~±2(U(x)).

A similarbut somewhatmoreinvolved argumentfor the real groups0(k) leadsto the formula

ir,, (0(x)) = ir,, ~(0(x))

Remark:Difference bundlesof the typetreatedby K-theoryplay anessentialrole in the mathematical
definitionof high-spinfields, suchas the spin ~Rarita—Schwingerfield. K-theory is implicitly used in the
applicationsof index theoremsto high-spinfields describedin section 10.

7. Index theorems: Manifolds without boundary

The index theorem states the existenceof a relationship between the analytic propertiesof
differential operatorson fiber bundlesand the topological propertiesof the fiber bundlesthemselves.
The simplestexample is the Gauss—Bonnettheorem,which relatesthe numberof harmonicforms on
themanifold (Betti numbers)to the topologicalEulercharacteristicgiven by integratingthe Eulerform
over the manifold. In this case,the relevant differential operatoris the exterior derivative mapping
C~(A”)—*C~(A”~’),andthe analyticpropertyin questionis the numberof zero-frequencysolutionsto
Laplace’sequation.In general,theindex theoremgives analogsof the Gauss—Bonnettheoremfor other
differentialoperators.The index of an operator,determinedby the numberof zero-frequencysolutions
to a generalizedLaplace’sequation,is expressedin terms of the characteristicclassesof the fiber
bundles involved. Thus the index theorem gives us useful information concerningvarious types of
differential equationsprovided we understandthe topology of the fiber bundles upon which the
differential operatorsare defined.

We will first discussthe generalformulationof the index theoremand then apply it to the classical
elliptic complexes.We work out the index theoremexplicitly in dimensionstwo and four for the de
Rham,signature,Dolbeaultandspin complexes.The indextheoremsfor thesecomplexescorrespondto
the Gauss—Bonnettheorem,the Hirzebruchsignaturetheorem,the Riemann—Rochtheorem,and the
index theoremfor the A-genus.We concludewith a discussionof the Lefschetzfixed point theoremand
the G-index theorem.

7.1. The index theorem

We begin for the sake of completenesswith a fairly abstractdescriptionof the index theorem of
Atiyah and Singer [1968a,b; 1971a,b]. The readerwho is interestedin specific applications may
proceeddirectly to the appropriatesubsequentsections. For an alternative treatment using heat
equationmethods,see,for example,Gilkey [1974],andreferencesquotedtherein.

Let M be a compactsmoothmanifold without boundaryof dimensionn. We will considerthe caseof
manifoldswith boundary in section 8. Let E and F be vector bundlesoverM and let D: C~(E)—~
C”(F) be a first-orderdifferentialoperator.We chooselocal bundlecoordinatesfor E andfor F, with



322 Eguchi, Gilkey andHanson, Gravitation, gauge theories and differential geometry

{x,} being local coordinateson M. Then we can decomposeD in the form

D = a•(x) t9/t9x1 + b,

wherethe a and b are matrix-valued.

Symbolofan operator:The symbolof an operatoris its Fourier transform.Let (x, k) be local coordinates
on T*(M); we regardk asthe Fourier-transformvariable. Let f(k) be the Fourier transformof f(x) and
recall that

Df(x) = a~(x)-~+bf3x1

= J [ia~(x)k1 + b]J(k)e~dk.

The leading symbolD of D is the highest-orderpart of its Fourier transform,

15(x,k)=oi(D)(x,k)=ia1(x)k,.

This is a linear mapfrom E to F.

Elliptic complexes:If F = F andif 1
5(x,k) is invertible for k� 0, thenD is saidto be an elliptic operator.

A similardefinition holds for higher orderoperators.
Let {E~}be a finite sequenceof vector bundlesover M andlet D~:C~(E~)—~C~(E~+,)be a sequence

of differential operators.We assumethat this sequenceis a complex,i.e., D
0±,D0= 0. Figure 7.1 gives

the standardgraphicaldepictionof such a complex.Now let D: C~(E0±1)—~C~°(E~)be the dual map
andlet

~

be the associatedLaplacian.The complexis elliptic if i&,, is anelliptic operatoron C~(E0).Equivalently,
the complexis elliptic (or exacton the symbol level) if

Ker 1
5~(x,k) = image15

0,(x,k), k� 0.

cJIIIII~
~ E~+1

Fig. 7.1. A piece of acomplex with D~D~_,= 0. The hatched areais Im D~_,.The dotted area is KerD1,/hnDr..,.
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Herethe exactnesson the symbol level playsa role analogousto that playedby the Poincarélemmain
de Rham cohomology.Thesepropertiesdefine an elliptic complex,denotedby (F, D) = ({E~},{D~}).

Cohomologyof elliptic complexes:Thereis a generalizationof the Hodgedecompositiontheoremfor an
elliptic complex(E, D). If f~EC(E~), thenf~can beuniquely decomposedas a sum

.c _r’i .e ~ri*t L1..
Jp ‘p_,Jp_1~”~=’pJp+0~”rip

where h~is harmonicin the sensethat ~i0h0= 0.
We observethat

Ker D~3 ImageD~_,

becauseD,,D0_, = 0. We maythus definecohomologygroupsfor the elliptic complex(E, D) by (seefig.
7.1)

H~(E,D) = KerDr/ImageD~_,. (7.1)

As in de Rham cohomology,eachcohomologyclass containsa uniqueharmonicrepresentative,so we

havean isomorphism

H~(E,D) Ker ii,,. (7.2)

Thesecohomologygroupsarefinite-dimensional.
Theindexof an elliptic complex(E, D) is

index(E, D)= ~ (—1)” dim H~(E,D)

= ~ (—1~’dim Ker 4,. (7.3)

Example:Let E~= A°(M)andlet D0 = d be exteriordifferentiationon p-forms.Then

H~(E,D) = H°c,R(M) = H
t’(M; R)

by the de Rham theorem.The index of this complexis thereforethe Euler characteristic,

index(A”, d) = ~ (~1)1’dim H~(M;R) = ~ (—1~’b

0 = ~(M). (7.4)

Note that the leadingsymbolof the Laplacianis 1
5(x,k) = +1k 2, so the complexis indeedelliptic.

Rolling up the complex:It is possibleto constructa convenienttwo-termelliptic complexwith the same
index as a given complex(E, D). Let

F
0 = ~ E2~ F, = ~



324 Eguchi, Gilkey and Hanson, Gravitation, gauge theories and differential geometry

be the even andodd bundles,respectively.Thenwe considerthe operators

A=~(D2~+D’~,,)

A* =~(D~~+D21,,)

whereA: (‘~(F)—~C~(F,)andA*: C~(F,)—*C’~(F,). The associatedLaplaciansare

= A*A = E~i~

0 = AA* =

Therefore

index(F, A) = dim Ker~, —dim Ker LI

= ~ (—1)” dim Ker 4, = index (E, D). (7.5)

We note that if k� 0, the leading symbol A(x, k) of A is an invertible matrix mappingF0 to F,. In
particular,thesetwo bundleshave the samedimension.
Example:Let (E, D) = (A *, d) bethe de Rhamcomplex.ThenF is the bundleof evenforms, F, is the
bundleof odd forms, and A = d + 5. The Euler characteristicis the sum of the even Betti numbers
minusthe sum of the odd Betti numbers.

The index theorem: The general index theorem may be described as follows: Let (x, k) be local
coordinatesfor T*(M) andchoosethe “symplecticorientation”dx, A dk, A A dx,, A dk,,. Let D(M)
be the unit disk bundlein T*(M) defined

D(M) = {(x, k): k1
2 < 1}

andlet the unit spherebundleS(M).

S(M)= {(x, k): 1k12 = 1}

be its boundary.Now take two copiesD±(M)of the unit disk bundlesand glue them together along
their commonboundaryS(M) to define a new fiber bundle ~P(M) overM with fiber S”. V’(M) is the
compactifiedtangentbundleof M. The orientationon !P(M) is chosento be that of D+(M). Finally, let
p be the projection,

p: 1P(M)~o~M (7.6)

andlet p±be the restrictionsof p to the “hemispherebundles”D±(M),

p~:D±(M)—~M. (7.7)
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Giventhis structure,we wish to computethe index of an elliptic complex(E. D), whichwe roll up to
form a two-term elliptic complex (F, A). Let A(x,k) be the leading symbol of the operatorA. Now
considerthe pullbackbundles

F÷= p*÷(Fo) overD±(M)

(7.8)
F_ = p~(F,) overD_(M).

Intuitively, we are placing the two bundlesof the complexover the two hemispheresof 111(M). We
would now like to glue thesebundlestogetherto form a smoothbundleover 111(M).

We can regard A(x, k) = o1(A)(x. k) as a map from F+ to F_ over S(M)= D+(M) fl D_(M).
Becausethe complex is elliptic, A(x, k) is an isomorphicmap from F±to F over S(M). We use this
isomorphismto definethe vectorbundle1(A) obtainedby gluing F±to F_ usingthe transitionfunction
A(x, k) over S(M).1(A) is sometimescalled the symbol bundle.

Let td(M) be the Todd class of T(M) and ch(1(A)) be the Cherncharacterof the symbol bundle.
Thenthe Atiyah—Singerindex theoremstatesthat

index(E,D) = index(F,A) = J ch(1(A))A p~’td(M). (7.9)
‘I’(M)

We include in the integrandonly those terms of dimension2n = dim 111(M). For the four classical
elliptic complexes,this formulareducesto the form

index(E,D) = (_1)n(n+1w2 J ch(~(—1Y’E~)td(M)~ (7.10)

wheree(M) is the Eulerform andthe division is heuristic.
Note: The index of anyelliptic complexover an odd-dimensionalmanifold is zero; this would not be
true if we consideredpseudo-differentialoperators.For example,let

M=S’

F0 = F, = 5’ xC

A = e’’°(—i3,~+ (_3~2)1/2)— (i ~ + (.....a~2)i/2)

A(o,k)= e’°(k+ IkI)+ (k — Iki).

This is a pseudo-differentialelliptic complexwith index= 1.

7.2. Thede Rhamcomplex

The exterior algebraA *(M) can be split into two distinct elliptic complexes.In this subsectionwe
discussthe first, the de Rham complex,which is relatedto the Eulercharacteristic.We will discussthe
second,the signaturecomplex,in the following subsection.
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The de Rham complex arisesfrom the decompositionof the exterior algebrainto even and odd

forms:
4 even = 4 0 ~ 2 ,

4 odd = ~ ,4 . .

The operatorfor this elliptic complexis d + 6 where

(d + 6): C(A~~)-*C(A0~).

Theindexof the de Rhamcomplexis the Eulercharacteristic~(M),

index(A~en0~,d + 6) = ~(M). (7.11)

Whenwe apply the index theoremto the de Rham complex,we recoverthe Gauss—Bonnettheorem,

e(M), (7.12)

wheree(M) is the Eulerform. Using the resultsof the previoussection,we mayexpresse(M) explicitly
to show

n = 2:

11
x(M)=~j R011dvol

11• 11
I Ea~Rab —‘—j R,2,4irj 2ir

M M

n = 4:

= ~j7j~’~ ,,f (~R~Rk,k,—
2RIIEkR

0,k + ~RIIk,R0kI) d vol

11
= J �,,i~ R,,,, A Red,

whereRab is the curvature2-form of M.
It is worth noting that we can use theseintegralsto evaluate~(M) evenif M is not orientableby

regarding(d vol) as a measureratherthanas an n-form. The remainingindex theoremswill only apply
to orientedmanifolds.
Examples:(1) If M = S~,thenx = 0 for n = odd,x = 2 for n = even.(2) If M = P~(C),thenx = n + 1.
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7.3. Thesignaturecomplex

The secondsplitting of the exterior algebraleads to the signaturecomplex.We restrict ourselves
henceforthto oriented manifolds of evendimension,n = 2!. We recall that the Euler characteristic
~(M) can be regardedeither as a topological invariant or as the index of the de Rham complex.
Similarly, the signaturecan beregardedeither topologically, or as the index of an elliptic complex.

Topologicalsignature. Let 0 and ~ belongto the middle cohomologygroup H’(M; R) and define the
innerproduct

r(0~~J0 A

This inner product is symmetric if I = even (so n is divisible by 4) and anti-symmetric if I = odd. By
Poincaréduality, this innerproductisnon-degenerate:for any0�0, thereisa fr suchthat o-(0, ~) � 0. The
topologicalsignaturer(M) is definedas the signatureof thisquadraticform, i.e., the numberof positive
eigenvaluesminusthenumberof negativeeigenvalues.Note that if I = odd (i.e., n wasnot divisibleby 4),
then r(M) vanishesautomatically.

If n = 4k, we mayrelate the signatureto the spaceof harmonicforms H21~(M;R). Since *2 = 1 on
H21’(M; R), we may decomposethe harmonicforms into subspacesH~(M;R) with eigenvalues±1
under the action of Hodge *. Sinceo(0, t,b) is relatedto the standardinner productby

0 A

the decompositionof H2” into H~diagonalizesthe quadraticform. Therefore,we mayexpressthe
signatureof M as

r(M) = dim H~(M;R)— dim H~’(M;R)

(7.13)

wherewe havesplit the middle dimensionBetti numberinto b2k = b 2k + b ~

Examples: (1) If M = 520 then n = 21 and b, = 0, so r = 0. (2) If M = P,,(C), then n = 41 and
b

2, = b~, = 1, so ‘r = 1.

Signaturecomplex:We may use the aboverelationshipto computer(M) as the index of an elliptic
complex.We definean operatorw actingon p-formsby

(0 = ~ ~,

where &o = * on 42k if n = 4k. It is easyto show that

(02 = +1
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(Note that (—i)”’2w is just Clifford multiplication by the volume form.) Now let A~be the ±1
eigenspacesof w. Since U) anticommuteswith D = d + 6, we may define the elliptic complex

(d+6): C(A~)—~C(.4).

This is the signaturecomplex.The contributionsof the harmonicforms with eigenvalues±1under w
cancelexceptin the middle dimension.The indexof the signaturecomplexis the signaturer(M),

index(A~,d+ 6) = dim H~(M;R)— dim H~”(M;R) = r(M). (7.14)

When we apply the index theorem to the signaturecomplex, we recover the Hirzebruchsignature

theorem,

T(M)J L(M), (7.15)

whereL(M) is the HirzebruchL-polynomial

= 1+~p,+~(7p
2_p,2)+....

We only evaluatethe integralfor the part of L(M) which is an n-form, andso r(M) = 0 if n is not a
multiple of 4. Sincethe formula dependson the orientationof M, T(M) changessign when we reverse
the orientation.Usingthe resultsof the previoussection,we mayexpressL(M) explicitly to show

n = 2:

r(M)0

n =4

J p,(T(M))= - ~2 J Tr(R A R).

Twisted signature complex (Atiyah, Bott and Patodi [1973,1975]). Although ‘r(M) = 0 for n =

2, 6, 10 we can obtain a non-trivial index problem by taking coefficients in anothervectorbundle
V. We can extend(d + 6) to an operator(d + 6)~,,where

(d+8)k~: C(A~®V)-~C(A®V).

The index theoremthen becomes

index(A ® V. (d+ 6)~)= J L(M) A ch(V), (7.16)
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whereth is the Cherncharacterwith 11 replacedby 2(1. i.e.,

-= / ‘

ch(V) = ~ &—) ~ Tr(Q~). (7.17)
k ~~7T i...

Thus,in particular,we find

n = 2:

index= J 2c,(V)= TrIl

n =4:

index = dim(V)~JPo + I (2c~’(1/)—4c2(V))

dirn(V)JTR AR5LJ TrQA(1

where11 is the curvatureof the bundleV. (Recallthat if F is a 2-form correspondingto physicalgauge
field strengths,then 11 = iF for U(1) bundles,11 = (A”/2i)F,, for SU(n)bundles,etc.)

If we perform the correspondingconstructionfor the de Rham complex to define (d + 6)~.:
C(A~”~’®V)_,.C(Abddf® V), thenthe index of this elliptic complexis just dim(V)x(M); the twisting
is not detectedby the de Rham complex.However, the signaturecomplex is quite sensitive to the
twisting, which can be usedto producean elliptic complexwith non-zeroindex evenin dimensionsnot
divisible by 4.

7.4. TheDolbeault complex

If M is a complexmanifold of real dimensionn (complexdimensionn/2), we maysplit the exterior
algebrain yet anotherway. In section3.4, we examinedcomplexmanifolds and definedthe operator

8: C(A”
4)—* C(A”~).

The Dolbeaultcomplexis obtainedby taking p = 0. We write the index of this complexas

n/2
index(8) = ~ (—l)~dim H°”(M),

q =0

where ~ is the cohomologygroup of ~ on C(flh~~),The index of the Dolbeault complex is the
arithmetic genusof the manifold and is the complexanalogof the Eulercharacteristic.If the metric is

Kähler, thereis a naturalidentification
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H”(M;LR)= ~
P ~q ~-k

so that the H” can be regardedas a refinementof de Rhamcohomology.
When we apply the index theorem to the Dolbeault complex, we recover the Riemann—Roch

theorem:

index(~)= J td(T~(M)), (7.18)

where T~(M)is the complex tangentspaceintroducedin section3.4 andtd is the Todd class:

td(T~(M)) = ~ I = 1 + c, + (c~+ c~)~

In the specialcasesn = 2 andn 4, we canrelatethe arithmeticgenusto the signatureandthe Euler
•characteristicas follows:

n = 2:

index(8)=

n = 4:

index(8) = ~(~(M)+ r(M)).

Examples:(1) If M = P,,(C), index (8) = 1. (2) If M = 5’ x S’, index (a) = 0.
Remark:We can use theseformulas to show that certainmanifolds do not admit complexstructures.
For example,if M = S

4, thenx = 2, r = 0 andindex (a) = ~,which shows54 is not complex.P
2(C)with

the properorientationhasindex (a) = ~(3+ 1) = 1 andis complex;P2(C)with the oppositeorientationis
not complexsinceindex (8) = ~(3— 1) =

TwistedDolbeault complex:Just as in the caseof the signaturecomplex,we can considerthe tensor
productbundleflO,~® V andobtaina correspondingelliptic complex.The indextheoremthenbecomes

index(~v)=Jtd(T~(M))A ch(V) (7.19)

where ch(V) is the ordinary Chern characterof V without any additional powers of 2. Thus, in
particular,we find

n = 2:

index(~~)= dim(V) f c,(T~(M)) + J c,(V)

=~dim(V)x(M)+~—JTrO
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n = 4:

index(a~)= dim(V) J [c2(T~(M))+ c~(T~(M))I+ ~ J [c1(T~(M))n c,(V)+ c~(V)— 2c2(V)].

In particular,if we take V= 4P.O then we can compute~ (1)” dim Htr~(M)for anyvalue of p. not
just for p = 0.

7.5. Thespin complex

The spin complex is perhapsthe most subtle andinterestingof the classicalelliptic complexes.The
deepestinsight into its mathematicalstructurecan be achievedusingClifford algebrabundles(Atiyah.
Bott and Shapiro [1964]).Clifford algebrasalso provide a unified context for treatingall four of the
classical elliptic complexes.In fact, one mayuse the Clifford algebraapproachto show that the spin
complexis interpretableas the square-root ofplus or minusthe de Rhamcomplex.Here we shall give a
moremundanetreatmentof the spin complex.

We begin by restricting ourselves to a four-dimensional Euclidean-signatureRiemannian spin
manifold M. We chooseDiracmatricesobeying

{ya ~b} ~ayb + ~b~a =

andtakethe representation

ya = (0 laa) aa = (I, iA), t~a= (I, iA)

where {A} arethe 2 x 2 Pauli matrices

/0 1\ /0 —i\ /1 0
A,~1 o)’ A2~. o)’ A3=~0 —1

Then the chiral operator~5 is diagonal,

0021 /1 0
y5=yyyy=~\0 —I

andwe maysplit the spaceof Dirac spinors{~‘~}into two eigenspacesof chirality ±1:

= ±~(±.

The Dirac operator D is defined using the covariant derivative with respect to the basis of
orthonormalframesof T~(M). Thus we take

D = y~E,,~(x)D~(x)

= yaE~‘(x)(_~_...+~~Yb~c]w~(x))~
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whereE,,M is an inversevierbeinof the metricon M andw~dxi’ is the spin connectionintroducedin
section3. We observethat

DtD = DDt = ~ + ~[y,,,Yh14[Ye’ yd]R

g 3x~’8x~

so the leadingpart of the operatoris elliptic for metricswith Euclideansignature.
Clearly the spinors ~i+ (x) upon which D acts are the analogsof C°°sectionsof the fibers of the

bundleswe treatedin previousexamples.We thereforemust introduce a pair of correspondingspin
bundlesii±overM with local coordinates

zl=: (xi’, 1/14

Thus we finally arrive at the following definition of the spin complex

D: C~)-*C~i)

Dt: CL)-*C~(z.l+).

Theindex of thespin complexis

index(~L,D) = dim Ker D — dim Ker D’

(7.20)

where

n.. = (numberof chirality = ±1normalizablezero-frequencyDirac spinors).

Whenwe apply the index theoremto the spincomplex,we find

n+ — n = J A(M) (7.21)

wherethe A-roofgenusis given by

L sinh(x
1/2) = 1 —hp,+~~(7p,2_4p2)+...

whenn = dim M is a multiple of 4. For n = 4, we find

n+ — n = —~P, ns_~Jp,(T(M))= ~24 .877.21 Tr(R A R).

HenceP, is a multiple of 24 for anycompact4-dimensionalspin manifold without boundary.
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Twistedspin complex:As for the othercomplexes,we can take the tensorproductof the spin complex
with a vectorbundleV to producea twistedspin complex,

~® V.

The Dirac spinors then have two sets of indices, one set of spinor indices for ~ and one set of
“isospin” indicesfor V. In a typical physical application,the connectionon V would be takenas

A~(x)~

where A~.is the Yang—Mills connectionon the associatedprincipal bundle and {t’~}are dim(V) x
dim(V) matricesgiving a representationof the correspondingLie algebra.When the Dirac operatorD
is extendedto the operatorD~including the connectionon V, the indextheorembecomes

index(~L® V, D~)= J A(M) A ch(V). (7.22)

The index itself is the differencebetweenthe numberof positive and negativechirality spinorsin the
kernelof the combinedDirac—Yang—Mills operatorD~,

index(~~1+® V)~v~—

For n = 2, the index theoremfor the twistedspin complexreducesto

v+-ii=J ci(V)=~_J TrQ.

For n = 4, we find

— = — d~VJ pi(T(M))+~J(c1(V)
2—2c

2(V))

= +2~’~8’~’2J Tr(R A R)-~-~-rJTr(fl A 11).

Examples: 1. U(1) principal bundlein 2 dimensions.Since 11 = iF where F = ~ dx’~A dx’ is the
Maxwell-field 2-form, we have

11
‘.‘+—i’_—— j F.2ir j

M
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2. SU(2)principal bundleoverS4. We choosespinorstransformingaccordingto the spin ~represen-
tation of SU(2), so dim V = 2. SinceTr R A R = 0 for S4 andc

1 = 0, we find for the index

~~—v=- f c2(V)=—~ I Tr(Q A Q)~k
J

8,TT.-J
M M

where11 = ~(Aa/2~)F~,.df’ A dxv. Note that the “instanton number” k definedby k= — ii- is minus
the 2nd Chern number;k is positive if 11 is self-dual and negativefor anti-self-dual[1. In the actual
instantonsolutions. p~= 0 for k<0, k > 0, respectively.

For spinors i/i belonging to a (2t + 1)-dimensional representationof SU(2) labeled by t =

0, 1/2, 1,3/2 the curvature11, must be expressedas a matrix in the representationof ~i. If we
define

k=_~-~JTr(QA 11)

where (2 = (11/2 is a matrix in the spin 1/2 representation,then the index theorem for (2t + 1)-
dimensionalSU(2)spinorscan be shownto be

Tr(12, A fl,)=~t(t+1)(2t+1)k.

SeeGrossman[19771for solutionsof the Diracequationwith arbitraryk andan explicit verification of
the index theoremfor the twistedspin complex.

7.6. G-indextheorems

The G-index theoremis a generalizationof the ordinary index theorem.It is applicablewhen oneis
given in addition to the elliptic complexa suitablemapf which takesthe basemanifold into itself, f:
M —~M,andwhich thereforeactson the cohomologyof the complex.For the deRham complex,!may
be any smoothmap; for thesignaturecomplex,f mustbe an orientation-preservingisometry;f mustbe
holomorphicfor the Dolbeaultcomplex,and, for the spin complex,f mustbe an orientation-preserving
isometrywhich alsopreservesthe spin structure.

The ordinaryindex theoremcomputesthe alternatingsum of dimensionsof the cohomologygroups
of the elliptic complexin termsof characteristicclasses;the G-indextheoremcomputesthe alternating
sum of the trace of the action of f on the cohomology groups (the Lefschetznumber) in terms of
generalizedcharacteristicclasses.

We first examinethe Lefschetzfixed-point theorem,which is a specialcaseof the G-index theorem
for the de Rham complex.Then we briefly outline the applicationof the G-index theoremto eachof
the classicalelliptic complexesand presenta numberof examples.

7.6.1. Lefschetzfixedpoint theorem
Lefschetznumbers:Let M be a compact real manifold of dimension n without boundaryand let
H”(M;R) be the pth cohomology class of M. Let f: M—~Mbe a smooth map and let f~be the
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pull-back map on Ht’(M; R). Then if we choosea suitablebasis,f~:H”(M; R)—*H~(M;R) can be
representedas a matrix with integerentries.The LefschetznumberL(f) is the integer

L(f) = ~ (—1~’Tr(f~).
p = 1)

L(f) is ahomotopyinvariant off. If f(x)= x is the identitymap,thenf~= ‘dim(H~) is the identitymapon
so

L(identity) = ~ (—1)” dim(H~)= ~(M)
p 0

is the index of the de Rhamcomplex.Thus theLefschetznumbercan be thoughtof as a generalization
of the Eulercharacteristic.

Lefschetzfixed-pointtheorem: We considerfirst the specialcaseof an isometryf: M -÷M.Then the
fixed point set of f consistsof totally geodesicsubmanifolds~ of M. Lefschetzprovedthat

L(f) x(j.L~). (7.23)
I)

(If f is not an isometry,thereareadditionalconditionswhichf mustsatisfy;in thissituation,the terms
in the sumaresignedaccordingto the direction of the normalderivativeof f.) Whenf is homotopicto
the identity andhasonly isolatedfixed points,thenthe Eulercharacteristicof M equalsthe numberof
fixed pointsof f,

~(M) = (numberof fixed pointsof f).

Vectorfields: Let V = V(x) 3Iax~’be avectorfield with isolatednon-degeneratezeroeson amanifoldM
andlet the mapf(t, x) be the infinitesimalflow of V:

f~’(O,x)= xM

(t, x) = ~ (f(t, x)).

f(t, xo) is the trajectoryof the flow of V beginningat x
0. Sincethe flow is homotopicto the identitymap,

the Lefschetznumberof the flow is the Eulercharacteristicof the manifold M. Furthermore,thefixed
points of the flow correspondto the zeroesof the vectorfield. We concludethat the Eulercharacteristic
of M is equalto the numberof zeroesof V:

~(M) = (numberof zeroesof vectorfield). (7.24)

We note that if the flow is not an isometry(i.e., V is not a Killing vectorfield), thenthe zeroesof V
haveassociatedplus or minussigns;the Eulercharacteristicis then the signedsum of the zeroesof V.
Example:S

2= P
1(C). We know that~(S

2)= 2.
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Case(I) The mapz

is an isometry which is the flow of a vector field ra 3/80 where z = r e~°.It has two fixed isolated
non-degeneratefixed pointsat z = 0 and z = ~. eachof which appearswith a positivesign.

Case(2) The mapz — z + I

is the flow of thevectorfield 3/3x, where z = x + iy, andhasa degeneratedoublefixed point at ~.

7.6.2. G-indextheorem
For the remainderof this section,we will only consider mapswith non-degenerateisolated fixed

points, although there are correspondingformulas for mapswith higher dimensional invariant sets.
With this restriction,we treatthe G-index theoremfor the four standardelliptic complexes.

We beginby choosinglocal coordinatesXM E U on M such that themapf can be written in the form

f~(x)=f~(x~)+(x~— x~)8f’~(x1)/8x’~+~“

where x11 is a fixed point of the map. We denotethe Jacobianmatrix f’ of the map by

f’(x) = Iaf~(x1)/8x~.

We assumethatf is non-degenerate,i.e., thereare no tangentvectorsleft infinitesimally fixed by f’ at
x~.This is equivalentto requiringthat f’ doesnot havethe eigenvalue1:

Det(I —f’) � 0.

Let (E+, E_) denote the rolled-up elliptic complex under consideration,and let f” denote the
pull-backoperationmappingE±—~E±.Let H~denotethe cohomologyof the elliptic complexandlet f*
acton thecohomologyby the pullback.The Lefschetznumberof the elliptic complexis thendefinedto
be

LE(f)nsTr(f*H+)_Tr(f*H_).

The G-index theoremexpressesthe global invariant LE(f) in terms of local geometricinformation:

L — ~ Tr 1* (xo)E+ — Tr f* (xo)E_~
{fixed poifliS x5} ~ J ~

We next apply this formula to the four classicalelliptic complexes;for moredetails,see Atiyah and
Singer[1968b].

de Rhamcomplex.Let E÷= A~VCfl(MR), E = Aodd(M R). Thenthe G-indextheorembecomes

~T’ It*Aeven\.....’T’ If*Aodd

L (f\ — ‘ç~ iru ~ iru 11

de\~h~m— IDet(I —1)1
{points}
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After somealgebra,an applicationof the splitting principle showsthat

L (f) = ~ Det(I _f = ~ signDet(I —f’).
fixed et( f) fixed

point’, points

Whenf is an isometry, Det(I _f’) = 1, 50 LdeRham(f) is just the numberof fixed pointsoff.
Example:Analysisoflocal behaviorof an isometryneara fixedpoint. Let n 2 andlet f bean isometry
which hasthe local form

(f1\_(coso —sin0\(x
V2)\sino coso)\y

(Note: We need not specify M globally, becauseany orientation-preservingisometry has this local
form.) f’ is arotation aboutthe fixed point at the origin:

= (cos0 —sin 0
‘ \~sin0 cos0

As basesfor fleven.odd we choose

seven — I I \ flodd — (dx
~.~dxAdy)’

Then

*Aeven( 1 \f1 0\( I
— ~df1A df2) — ~0 1) \dx A dy

odd — fdf1\ — (cos0 —sin 0 \ (dx
\dfJ~sin0 cos0)~dy

so Tr(f*A even~— Tr(f*A odd) = 2 —2 cos0.
We verify that this agreeswith Det(I — f’) = 2 — 2 cos0. There is onelocal fixed point at x= y = 0, so the
contributicnto the Lefschetzformula is

2—2cos0 —

12—2cos 01

Signature complex: Let M be an oriented manifold of even-dimensionn 21 and let f be an
orientation-preservingisometry. Let E~ A ±(T*(M))be the signaturecomplex and let H~be the
correspondingcohomologygroups.We define

Lsign(f) = Trf*H+ — Trf*H_ = Trf*Hi~— Trf*H~,

since all ,termscancelexceptthosein the middledimensionalcohomologyclass.The G-indextheoremis
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then

T ~ 4“~ T ‘~‘A
Lxign(f) = r~. rJ

fixed i.et~i j

points

where the determinantis positivebecausef is an isometry.
Example:Let n = 2 andlet! be the samelocal map usedin the de Rhamcomplexexample.As bases
for .4 we choose

A~={dx±idy).

We verify that under theactionof the signatureoperatorw = i *, the basesbehaveas theyshould:

w(dx±idy)±(dx±idy).

Applying the pullback map,we find

f*A+df+idfe+iO(dx+idy)

f*fl— =df1—idf2=e~’°(dx—idy).

Again, thereis one fixed point at the origin, so the contributionto the G-signaturetheoremreads

e±tO— e~ . sin 0
= +1 = i cot(0/2).2(1—cos0) 1—cos6

We may extend this result to higher evendimensionsn = 2! as follows: Let f’ be an orthogonal
matrix which we may think of as a rotation about a fixed point at the origin. We decomposethis
rotation into a productof commuting2 x 2 rotationsthrough angles0~,j = 1 1. Then we may show
that the local contributionto the fixed point formula at the fixed point is

I a IlslnUi
=flicot(01/2).

~=t cos,1 ~

Dolbeault complex.Let M be a holomorphic manifoldand letf be a holomorphic map.Let E÷= ~

andE_ = Ao.0c~be the bundlesof the Dolbeault complex.Then

LD0I(f) = Trf*Ho.e~~I~— Trf*HO0~k~

The G-indextheoremis

T 1* A 0,even P (* A 0,odd
.~ irj ~ — ~r1 ~‘

l-’Dol~J 3— r’~ti’, — p
fixed LJe~ks J

points
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Example:Let n = 2, takef to be the local rotationaboutthe origin usedabove,andchoosethe bases

= {1}, A°’°~= {d~= dx — i dy}.

Thenthe pullbackactsas

~ = 1, f*AO.Odd = df1 — i df2 = e_tO dZ.

The contributionto the 0-indextheoremis therefore
1 — e_lO

2—2cos 0.

In higher dimensionsthe contributionis givenby the productof suchterms.

Spin complex: Let M be a spin manifold and let f be an orientation-preservingspin isometry. Let
E±= ± bethe bundlesof the spincomplexandlet H

5~”~be the correspondingcohomologygroups(or
the harmonicspaces)of the Dirac operator.Then

= Trf*H~~~±— Trf*Hs~_,

andthe G-index theorembecomes

Trf*~i+_Trf*~_
L

5~1~(f)= f~d Det(I —1)1
points

Example:As before,let n = 2 andtake f’ to be the local rotationaroundthe origin. The spinorbases
for ~i_,

~+=(~)~~=(?)~
transformunder the rotationf’ as

(~)*e4~b0/2(t~), (?) ~e~0ul2(?).

Thus the contributionto the G-spintheorembecomes

e~
1812— e~°’2 i

=+ .

2—2cos0 2sin(0/2)

The contributionto the 0-spinindex for higher dimensionsis a productof suchterms.
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Examples7.6
1. Let G be a compact Lie group of dimensionn >0. Let g(t) for I E [0, 1] be a curve in G with

g(0) = I and g(t) � I for t > 0. Let f,(X) = g(t)~X. Then f11(X)= X so f~is the identity map and
L(f~)= ~(G). For I >0, f1(X)= g(t)~X� X since g(t) � I. Thus f has no fixed points, so .L(f,)= 0.
Since L(f~)= L(f1), ,y(G) = 0. This shows that the following Euler characteristicsvanish: ,y(U(k)) =

~(SU(k)) = ~(O(k)) = ~(SO(k)) = 0 for k> 1. If k = 1, thenwe cannotuse this argument;for example,
x(O(i)) = 2 since 0(1) consistsof two points±1.

2. Let M = P~(C)for n even(sothe dimensionof M is divisible by 4). Let x EH
2(P~(C);R) be the

generatordiscussedin 6.3.2; x’~EH21’(Pn(C); R) is a generatorfor k = 1,..., n. Let f: M—tM and
f*x = Ax. Since f* preservesthe ring structure.ft(x’~)=Akx~(Therefore

If n is even, this has no real roots so L(f) � 0. Thereforef must have a fixed point.
3. Let M = 5’ xS and let f(0,, 02) = (02, 0,) be the interchange.Let {1, do,,do

2, do, A dO,} be the
basis for H*(M; R) discussed earlier. Then

f*(1) = I f
t(dO,)= dO

2 f*(d02)= do, f*(dO, A d02)= —dO A do2

Trf~,=1 Trf~=0 Trf~=—1

so L(f)= 1 —0+(--1)=0.The fixed point set of f is the diagonalS’so L(f)=x(S’)=O. If g(0,,02)=
(—02, 0,) then

g*(1) = I g*(dO,) = —do2 g*(do,) dO, g*(dO, A do2) = do, A do2

so L(g)= 1 —0+ 1 = 2. g has two isolatedfixed points (0,0) and (ir, ir).
Let M = S

2x 52, The cohomology ring of M has generators 1 EH°(M;R) R, w,, (02 E

H2(M; R) R~ R, w, A w, EH4(M; R) R wherethe o, EH2(S2R) for eachfactor. If f(x, y)= (y, x)
then

ft(I)=I f*(~)~ ~ f*((0A(0)_(0A(0(0A(0

so L(f)= 1—0+1=2. The fixed point set of f is the diagonal 52 so L(f)=x(52)=2. If g(x,y)=
(—y, x), then

g*(1) = 1 g*((0,) = ~ g*(~.,)= (0~ g*(Wl A (02) = —w A W2

so L(g)= I —0+(—1)=0. In this case g has no fixed points.
4. Let M = S’ x S’ be the 2-toruswith generatorsdo, anddo

2. Then (with w = i *)

Ci) ~d0,jd92, Ci) ~d02=—id0,,

so (do,± i do2) spansH~(M;R). If f(O,, 02) = (0,, 02) is the identity map, thenTrf~— Trf~= 1 — 1 =

r(M) = 0. Supposethat g(0,, 02) (—02, 0~),then
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g* do, = —do2 g* do2= do, g*(do, A do2)= dO, n do2

g*(do, + i dO~)= i(dO, + i dO,)

g*(do, — i dO2)= —i(dO, — i dO2)

Lsign(g)= i — (—i) = 2i.

Since L’,ign(f) is a homotopy invariant, we use an argumentsimilar to that given for the ordinary
Lefschetznumberto show r(M) = 0 either if M is a compactLie groupor if M admitsa Killing vector
field withoutzeroes.

8. Index theorems: Manifolds with boundary

The applicationsof the index theoremdescribedin the previoussectionhold only for bundleswith
basemanifoldsM which areclosedandcompactwithoutboundary.Many interestingphysicalsituations
deal with base manifolds M which havenonemptyboundariesor which, for M noncompact.can be
treatedas limiting casesof manifolds with boundary. This section is devotedto the extensionof the
index theorem to manifolds with boundary carried out by Atiyah, Patodi and Singer
[1973.1975a,1975b, 1976].

Eulercharacteristicboundarycorrections: In order to understandmoreclearlythe necessityfor boundary
correctionsto a topological index, let us review the familiar case of the Euler characteristicof a
two-dimensionaldisc. The generalformula can be written

x[MM]=~JR+~J ~+~-~(ir-0).

Here R is the curvature2-form (essentiallythe Gaussiancurvature),i/p is the geodesic curvature on
the boundary and 0, is the interior angle of each vertex, as shown in fig. 8.1. We illustrate the
applicationof the formula to the threespecialcasesdepictedin fig. 8.2:
(a) Flat. n-sidedpolygon: We simply recoverthe fact that

~ 0, =(n—2)ir

implies

x=
0+0+1.

Fig. 8.1, An arbitrary two-dimensional surface with the topology of a disc. Fig. 8.2. Special cases: (a) polygon. (h) circle. (c) hemisphere.
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(b) Flat circle of radiusr; with ds = r d4 andp = r, only the geodesic term contributes:

x =0+1+0.

(c) Hemisphere: the geodesicsnormal to the equator are parallel at the equator, so p = ~, R =

(1/r2) r2 d~d cos0 andonly the Gaussiancurvatureterm contributes,

x = 1 +0+0.

Weconclude that although the Euler characteristicof a disc is alwaysx = 1, theGaussiancurvature
and the boundaryterms interact in complicatedways to maintain the topological invarianceof the
formula.
Remark:The areaof asphericalpolygon can be computedfrom the formulaaboveusingx = 1. Taking
the sphereto haveunit radius,we find

Sphericalarea= J R = ~ 0, — (n — 2)ir.
polygon

For flat polygons(sphereof infinite radius), the “area” vanishesandwe recover~ 0, = (n — 2)ir. On a
hyperboloid, the curvature is negative and the effective area is the angulardefect,

Hyperboloidalarea= (n — 2)ir — ~ 0~.

8.1. Indextheoremwith boundary

When we considermanifolds with boundary,we must first study the boundaryconditionswhich
determinethe spectra of the operators.Ideally, one would like to find an index theorem using
conventional local boundaryconditions such as those appearingin ordinary physical problems.
However, Atiyah and Bott [1964]have shown that in generalthereexist topological obstructionsto
finding good local boundaryconditions.The spin, signature,and Dolbeault complexesin particular do
not admit local boundaryconditions,althoughthe de Rham complexdoes.Thereforeif onewantsa
generalindex theoremfor a manifold with boundary,one mustconsidernon-localboundaryconditions.
Atiyah, Patodi and Singerdiscoveredthat appropriatenon-local boundaryconditionscould indeedbe
usedto formulatean index theoremfor elliptic complexesover manifoldswith boundary.

We now outline the general nature of the Atiyah—Patodi—Singerindex theorem. We begin by
consideringa classicalelliptic complex(E, D) over a manifold M with nonemptyboundary3M. For
simplicity, we assumethat {E} is rolled up to a 2-term complex, D: E,,—*E,. In order to formulatethe
index theorem,we require analyticinformationon the boundaryin addition to the purely topological
informationwhich sufficed in the casewithout boundary.

Boundarycondition: We assumefor the time being that M admits a productmetric

ds2 = f(ro) dr2 + g
0(ro, Ok) doi do’
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on the boundary,where r = r,, defines the boundarymanifold 3M. (We will deal later with the case
when M does not admit a productmetric.)Then we constructfrom D a Hermitian operatorwhose
eigenfunctionsqS are subjectto the boundarycondition

4—’e~ k>0 (8.1)

near the boundary.

Theindex: We now define cohomologyclassesW (E, D, 3M) whoserepresentativesobey the required
boundaryconditions.The correspondingindex is thentakento be

index(E,D, 3M) = ~ (—1~H”(E,D, 3M).

Form of the index theorem: The extendedindex theoremof Atiyah—Patodi—Singerfor manifolds with
boundarytakesthe form

index(E,D, 3M) = V[M] + S[3M] + ~[8M]. (8.2)

Here

V[M1 = the integral over M of the same characteristicclassesas in the 3M = 0 case. V is
computablefrom thecurvaturealone.

S[3M] = the integralover 3M of the Chern—Simonsform, describedbelow.S is computablefrom the
connection,the curvature,andthe secondfundamentalform determinedby a choiceof the
normal to the boundary.

~[3M] = c~[M] = a constant c times the Atiyah—Patodi—Singern-invariant of the boundary,des-
cribedbelow.The n-invariantis determinedby the eigenvaluesof the tangentialpart of D
restrictedto the boundary3M. For severalimportantcases,q can be computedalgebraic-
ally.

The surfacecorrection S[3M1 is presentonly if one usesa metric on M which doesnot becomea
productmetric at the boundary.The ~[3M1correctionis absentfor the de Rhamcomplex,but playsa
crucial role in the Dolbeault,signatureandspin complexindex theorems.

Generalnatureof the boundarycorrections: One can developan intuitive feeling for the natureof the
boundarycorrectionsto the index theoremby examininga pair of manifoldsM andM’ with the same
boundary

L = 3M = 3M’.

We give M andM’ eachametric andaconnectionandassumethat theyadmit thesameproductmetric
neartheir boundaries.Thus we maysew M andM’ togethersmoothlyalongtheir commonboundaryto
form a new manifold M U M’ without boundary.

Now assumeM and Ml are4-dimensionalandconsider,for example,the signature‘r of M U M’. By



Eguchi, Gilkey and Hanson, Gravitation, gauge theories and differential geometry

the no-boundaryindex theorem,

r(MUM’)--5 J Tr(QtJl)
M U M

where11 is the curvatureof the assumedmetricson M andM’.
Now we break the integral into two parts, one involving M, the other M’ with the opposite

orientationto its orientationin M U M’ (this gives M andM’ the samerelative orientation). If we call
(1’the curvaturein M’ with the new orientation,we find

MUM’ Tr(ulAQ)=JTr(QAI1)-J Tr(11’AQ’).

Sincewith our chosenorientationthe Novikov formulagives (see,e.g. Atiyah andSinger[1968b])

r(M U M’)= r(M)—r(M’),

we find

r(M) + ~ J Tr(11 A 11)= r(M’) + ~ J Tr((1’ A 11’).

Hence the quantity

iis[L] = r(M)+ ~j~5 J Tr(f1 A (1)

dependsonly on the metric on L = 3M. The index theoremgives an alternativeexpressionfor n~in
terms of the eigenvaluesof the signatureoperatorrestrictedto 3M.

Next, supposethat we havea metric ~ on M which is not a product metric on the boundary. Let ii
be the connectionobtainedfrom ,~,5andlet (1 beits curvature.Then,as shownin section6. thedifference
betweenTr 11 A 11 andTr (1 A (1 is a total derivative,

dQ(~,w)=(TrQn fl-TrllnIl),

where 1? is the curvatureof the metric g which is a productmetric on 3M. This expressiongives an
additional analyticcorrectionto the index,

o.

We now turn to a precisedefinition of the n-invariant.
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8.2. Then-invariant

We consider our 2-term elliptic complex (E, D) with D: E0—~E, a linear operatorobeying the
boundaryconditions(8.1). We chooset9I8T to representtheoutward normalderivativeon 3M We write
D as

D “AS 3+B8/3r=B(B~A. t9+3/t9r)

whereA andB are matricesandA . 8 representsthe tangentialpart of D. WhereasD itself might not
havea true eigenvaluespectrumbecauseE0 � E, in general,the operator

15= B’A

mapsE0—*E0 on 3M and doeshavea well-definedspectrum.We let {A~}denotethe eigenvaluesof the
tangentialoperatorD actingon 3M

The n-invariantof Atiyah—Patodi—Singeris then definedby examininga naturalgeneralizationof the
spectralRiemannzetafunction for non-positiveeigenvalues:

flD[5, 3M] = 5ign(A1)~~~~5,s> n/2 (n = dimM).
A~#0

It hasbeenshownthat, despitethe apparentsingularitiesat s = 0, this expressionpossessesaregular
analyticextensionto s = 0; thiscontinuationdefinesthe n-invariant:

77D[t9Ml ,j,,[s = 0, 3M]. (8.3)

Harmoniccorrection: If the elliptic operatorD in questionadmitszero eigenvalues(asdoes the Dirac
operator),thenonemust be carefulto accountfor the missingzeroeigenvaluesin the definition of flD.

The correctprescriptionis to add hD(3M), which is the dimensionof the spaceof functionsharmonic
underD

71D~?1D+hD.

Intuitively, it is clear that flD counts the asymmetrybetweenthe numberof positive and negative
eigenvalueson the boundary.Furthermore,~ is independentof the scaleof the metric, andhenceis
independentof the numericalvalues of the {A

1}. If the spectrum{A1} varies with someparameter,
typically a parameterspecifyingthe location of the boundarysurface,the smallestpositiveeigenvalue
(sayAk), may changesign at somepoint: one seesimmediately that then there is one less positive
eigenvalueandonemore negativeone,so

71D jumpsby two:

?7D ~871D —2.

(Clearly many jumps with either sign can occur.)However, we note that exactly at the point where
Ak = 0, we mustomit Ak from the sumandaddone, thedimensionhD of the new harmonicspace;thus
thereis no changein ~D until Ak <0.
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Computationof ‘qD: There are variety of special circumstancesin which ~ can be calculated directly,
e.g.,when D = the signatureor Diracoperator.The simplestsituationis that in which the metricon 3M
possessesan orientation-reversingisometry;in this case

?1D[8MI = 0.

(If. D is the Diracoperator,one mustalsoassumethat M is simply connected.)
Anothercasewhich hasbeencalculateddirectly is that where the metric on 3M is that of a distorted

S3,

ds2 = ~2 + o~2+ A 20z2.

Hitchin [19741hasshown by solving for the eigenvaluesof the Diracoperatorthat

flDirac = ~(1— A 2)2

When A2 = 1, the S3 metric hasan orientation-reversingisometryand ?loirac vanishes as it must.
If onetakesthe symmetric(A = 1) S3 metric and identifies oppositepoints to get a metric on P

3(R),
~ remainszero but

7lDirac maybe non-zero becauseP
3(R) is not simply connectedandpossessestwo

inequivalentspin-structures.In fact, the ~-invariantsfor thestandardoperatorscan be calculatedfairly
straightforwardiyusingG-index theory when the metric on 3M is that of S

3 modulo a discretegroup.
We define the Lensspacesof 53 by taking R4 = x R2 and identifying the first R2 with itself when
rotatedby &O1, then doing the samething for the secondR2 rotated by etO2, where 0, and 02 have
rationalperiods.The simplestcase,P

3(R), is obtainedby setting0, = 02 = ir.
Let mO,= m02= 2ir. Then the general formulas for the n-invariant correctionsto the indices for

Lensspaceboundariesare (Atiyah, PatodiandSinger[1975b];Atiyah [1978];HansonandRömer[1978]):

Signature: = cot ~k0,cot ~kO2
m k=1

(=0 forP3(R))

1”’ 1

Dirac: ~Dtrac = — 4m ,~‘, sin~k0,sin~k02

(=—~ forP3(R))
rn-I cos ,+ cos 2Rarita—Schwinger: ~RS = — ....L 2 k01 2~1k0 1

m k=t sin2k0, sin2k02

(=+~ forP3(R)).

(Seesection10 for additional caseswith physicalapplications.)

8.3. Chern—Simonsinvariantsand secondarycharacteristicclasses

In our treatmentof characteristicclassesin section6, we introducedthe expression
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Q(w’,co)rJP(w’_w~Qt,.. . ,u11)dt

derivedfrom an invariant polynomialP([i) of degreer with

= dw1+ ~, A W~.

w~ tw’+(l—t)w.

~Theexterior derivativeof 0 wasjust the differenceof the two invariantpolynomials,

dO = P(fl’)— P(fI).

If M hasno boundary,the integralof dOvanishes.However,if 3M� ,ø, thenby Stokes’ theorem,

JdQ=J o

isnot necessarilyzero.In thiscasetheforms Q(w’, w)arecharacteristicclassesin theirownright andareof
independentinterest(Chern[1972];ChernandSimons[1974]).

Yang—Millssurfaceterms: The Chern—Simonsformulas areequallyvalid for Riemannianconnections
andfor Yang—Mills connectionson a principal bundle.In the Yang—Mills case,if we set

P(F)=Tr(FAF)

F=dA+A AA

we find

Q(A,0)=Tr(A AdA+~AAAAA).

Thusthe familiar physicists’ formula

Tr ~ =

where

J~.= ~ Tr(A,,8~A7+ ~A,,A~AY)

is simply a specialcaseof the Chern—Simonsformula.
Other casesof the formulaappearin discussionsof Yang—Mills “surface terms” (see,e.g., Gervais,

Sakita and Wadia [1975]).Choosing A’ � 0 in the Chern—Simonsformula for Tr(F A F) and setting
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a = A — A’, we find

, 2
Q(A,A)Tr(2aAF—aAda—2aAAAa+~aAaAa).

Secondfundamentalform: Now let us considerthe Levi—Civita connectionone-form o on M following
from a metric which is not a productmetric on 3M. Then we choosea productmetric on M which
agreeswith the original metric on 3M; the connection one-form W~ of this metric will have only
tangentialcomponentson 3M The secondfundamentalform

0 = — W~j

is amatrix of one-formswhichis covariantunderchangesof frameandhasonly normalcomponentson
3M. As usual, we take

to,’tw+(1t)w
0, R1=dw,+w,Aw,,

and observe that

O=dw,/dt.

In four dimensionswith P = Tr(R A R), we find

Tr(R A R)= dO(w,Wo),

where

O(w, w,,) = 2 JTr(0 A R,)dt

=Tr(20 AR +~0A 0 A 0—20A WA 0—0A do),

andwe notethat Tr(R,,A R11)= 0 for a productmetric.The formula for 0 simplifies considerably at the
boundary, where the non-zero componentsof the matrix 0a~,are the normal componentsof the
connection~ab,

= ~01, 023 = 03~= 0t2 = 0.

Using R = dw + w A W, we find aftersomealgebrathat

Q(o.), W0)Iboundary = 2w~,A R1() = Tr(0 n R).

Surfacecorrections to the index theorem: We now use the Chern—Simonsformula to correct the
Atiyah—Patodi—Singerindextheoremfor the casewherethe metric is not a productmetric on 3M (for a
treatmentof the signaturecomplex,see Gilkey [1975]).Supposethe standardindex theoremintegral
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over curvaturecan bewritten in termsof aninvariant polynomialP(R)as

V[M]=cJP(R)

for someconstantc. Thenthe surfacecorrectionis

S[oM] = —c °~,Wo).

The correctionmaybe understoodintuitively by noting that

VIM] + S[19M] c J (P(R)— dO(w,co,,)) . (8.4)

is effectivelythe integral over cP(R0). But sinceM may not admit a productmetric with curvatureR0
away from 3M, P(Rt)) cannot always be integratedover M. The surfacecorrectioncircumventsthis
difficulty.

Locally flat bundles:The Chern—Simonsinvariantsappearin placeof ordinarycharacteristicclassesin a
variety of problemsinvolving odd-dimensionalmanifolds. One interestingcase is the study of the
holonomy of locally fiat bundles; this problem is closely related to the Bohm—Aharonoveffect in a
region free of electromagneticfields.

As a simple example,let us take a connection

Ci) = —iq dO

on a bundle E = S’ x C, where0< 0 <2ir are coordinateson the basespace5’. Then we choose
sections

s(0) = elI?
0

such that s(0) is parallel-transported,Vs = 0. As 0 rangesfrom 0 to 2ir, we find a holonomyor phase
shift e2’~resultingfrom the traversalof a circuit aroundthe basespaceS’. The secondarycharacteristic
class correspondingto the first Chernclassc, = (i/2ir) Tr Ii is

O(o,0)=—’-- Icodt=-~--d0.2irj
0

The Chern—Simonsinvariant is interpretableas a charge:

J Q(w,0)=q.
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Anotherexampleis provided by taking the flat connectionon the line bundleE = ~2 X C andusing
the induced connectionon the P3(R) line bundle E obtainedby identifying the points (x, z) with
(—x, —z) in E. If y is a path traversinghalf a great circle in S

3, it is a closed loop in P
3(R) which

representsthe non-zeroelementof ir,(P3(R))= Z2. A phasefactor of —1 is obtainedby integratingthe
secondarycharacteristicclassover y.

8.4. Indextheoremsfor the classicalelliptic complexes

Here we briefly summarize the results of the Atiyah—Patodi—Singer index theoremfor the classical
elliptic complexesin four dimensions.
de Rhamcomplex.Let R”b be the curvature2-form and Oab = (dab — (WO)°b the secondfundamental
form. Thenthe index theoremfor the de Rham complexis (seeChern [1945]),

�abcdR b A R~d ~abcd(
2Oh A Red ~°b A OCe A Oed). (8.5)

Signaturecomplex.For the Hirzebruchsignaturecomplex,we find the index theorem

Tr(R AR)+~-I--_
2 J Tr(0 A R)—i,~(3M). (8.6)

Dolbeault complex.The index theoremfor the Dolbeault complexwith boundaryinvolves additional
subtleties which we will not discuss here. See Donnelly [1977]for further details.

Spin complex.The index theoremfor the spin complextakestheform

index(zl±,D) = 24 ~8ir
2J Tr(R n R) 24 8ir2 J Tr(0 A R) ~E?1Dirac(3M)+ h(8M)I. (8.7)

Explicit examplesare workedout at the end of this subsection.
Twistedspin complex.The treatmentof twistedcomplexesover manifoldswith boundaryis straight-

forward in principle. We work out the index formulas for the twistedspin complexas an illustration.
Onefirst choosesa connectionand a combinedDirac—Yang—Mills operatorD~on the twistedcomplex
4±® V. The index is the difference in the number of positive and negative chirality spinorsin the
kernel of D~obeyingthe Atiyah—Patodi—Singerboundaryconditions. (Recall that theseare nonlocal
boundary conditions and thus may not correspondto thosewhich onemight be temptedto usefrom
physical considerations.)We write

index(4±® V. 3M) = v+(3M) — i’(3M).

The twisted n-invariant ~(4± ® V. 3M) must be computedfrom the appropriatespectrum{A,} of D~
restrictedto 3M; computing~ could in generalbe quite difficult. If the given metric is not a product
metric on the boundary,we choosethe desiredsecondfundamentalform and add the Chern—Simons
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correctionto the tangentbundle curvatureterm; no analogouscorrectionis requiredfor the vector
bundlepiece.Hencefor n = 4, we find the indextheorem

index(4±® V, 3M)ns v±(t9M)—v_(3M)

dim V I C
24~8ir2 ~J Tr(R n R)— J Tr(O A R)] (8.8)

M SM

— ~-r J Tr(F A F)—~[7)DV(z.1± ® V, 3M)+ hDr(zL.® V, 3M)].
M

Examples8.4
1. Self-dualTaub—NUTmetric (Eguchi, Gilkey andHanson[19781).Considerthe metric

2 r+m 2 2_m2)[tYx2+17y2+( 2m ~2 21ds= dr+(r 1 ~
r+mj j

r—m

andthe productmetric

2

ds
0

2= r
0+ m dr

2+(r(,2— m2)[ux2+uy2+ ( 2m ‘~cTz2].
\T

0+ mj
— m

The connectionsare

r r — 2m
2

= — 0x~ ~02 = — + m ~ ~03 — — 2r+m r (r+m)

m m (2m2 ‘~

21 )tr,O~x, (V3~=~ +m0~’ (O,2” (r+m)r+m r

and

2m2
21~Tz(Wo)o, = 0, (WO)t2 = ((p

0+ m) I

m m
(wo)~3= — O~, (Wo)~,= — r0 + m £T~.r0+ m

Hence the secondfundamentalform at the boundaryr = r0 is

______ r0 2m
2

r
0 + m00, = — ~ 002= — r,,+ m ~ 003= (ro+m)2°~~

023=031=012=0.
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Then the Dirac index is

index(Dirac, r(,) = 24 .8~.2( J Tr R A R— f Tr 0 A R) — ~ [i —2 (2:)2 + (ro2-~m)4]’
M(rij) S’at

wherewe usedHitchin’s formula [1974]for the n-invariant. Performingthe integrals(the r-integration
is from m to To), we find

14m3(m —2r
0) / 1 \] 2m

2(ro—m)2 1 1 8m2 16m4
index(Dirac,ro) = L 3(r

0+ m)
4 — ~ 12)1 — 3(ro+ rn)4 12 L1 — (ro+ m)2+ (ro+ rn)4

=0.

Thus the Atiyah—Patodi—Singerindex theorem statesthat thereis no asymmetrybetweenpositive and
negativechirality Diracspinorsobeyingthe appropriateboundaryconditions.

2. Indextheoremsfor the metric of Eguchi and Hanson (Atiyah [1978];Hansonand Römer[1978]).
We takethe metric treatedin example3.3.3,

ds2 = (1 —(aIr)4)+ r2(u,2 + o.~2+ (1 — (a/r)4)u~2),

whereo’~,o~,o~,rangeover P
3(R), andchoosethe productmetric at r = r,, to be

ds0
2 = (1 (/)4) + r

0(o~+ u~
2+ (1 — (a/r~)4)u

2
2).

The secondfundamentalform 0 = w — o at the boundaryr = r
0 is then

= —(1 — (a/r0)
4)”2u~, 002 = —(1 — (a/ro)4)”2o~~, 0o3 = —(1 + (a/ro)4)o~~

012 = 023 03t = 0.

We choosethe orientationdr A o~,n o~~ o~to be positive.
Integratingthe appropriateforms for the Eulercharacteristicover the manifoldM andits boundary

P
3(R)with r0-+~,we find both a 4-volumeterm anda boundarycorrection,

The integral of the first Pontrjaginclassfor thismetric is

Tr(R nR)=—3,
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while the Chern—Simonsboundarycorrectionvanishes,

Qi[3M—Ps(R)]=~-r J Tr(OnR)=0.
P3(R)

The signaturecomplexn-invariantcorrectionfor the P3(R) boundaryis

~ 2~

~~=~cot 1=0,

so the signatureis

The index of the spin ~Diracoperatoris

1112 = index(Dirac,3M) = —~Pt+ ~Dirac

For P3(R), ~Dirac is ~the G-index,

_1f i i \1
5~Dlrac — 2 ‘~2sin(ir/2) X 2 sin (ir/2)) — —

Thus thereis no asymmetrybetweenpositiveandnegativechirality Dirac spinors,

‘1/2 = —~(—3)— = 0.

The spin ~Rarita—Schwingeroperatorindextheoremreads

13/2 = index(Rarita—Schwinger,3M) = ~P, + 5~RS

where

— 1(2cosO1+2cosO2—1)

~ (2sin~0,)(2sin~02)

For P3(R) boundaries(0~= 02 = ir), we have

r 2ti ‘,s

~3/2— ~~1,3) + 8 — —

Hence

‘3/2 = 2r
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andtheredoes exist an asymmetrybetweenpositiveandnegativechirality Rarita—Schwingerspinorsfor
this metric.

9. Differential geometryandYang—Mills theory

In this section, we first give a brief introduction to the path-integral method for quantizing
Yang—Mills theoriesand then describesomeof the Yang—Mills instantonsolutions.The last part of the
sectioncontainsa list of mathematicalresultsconcerningYang—Mills theorieswhosedetailedtreatment
is beyondthe scopeof this article.

9.1. Path-integralapproach to Yang—Millstheory

The most useful approachto the quantizationof gauge theories appearsto be Feynman’spath
integralmethod.Froma geometricpoint of view, the pathintegral hasthe advantageof beingable to
take the global topology of the gaugepotentialsinto account,while the canonicalperturbationtheory
approachto quantizationis sensitiveonly to the local topology.

At present,a mathematicallyprecise theory of path integration can be formulated only for
spacetimeswith positive signatures(+, +, +, +); we refer to such spacetimesas “Euclidean” or
“imaginary time” manifolds.Physically meaningfulanswersareobtainableby continuingthe resultsof
the Euclideanpathintegrationbackto the Minkowski regimewith signature(—, +, +, +).

In the Euclideanpath-integralapproachto quantization,eachfield configurationq~(x)is weightedby
the “Boltzmann factor”, i.e., the exponentialof minusits EuclideanactionS[~]:

(contributionof 4(x))= exp(—S[~i]).

For Yang—Mills theories,the Euclideanactionis

S[A]=+~J F~F~g1’2d4x=_~JTrF A *F, (9.1)

which is positive definite. The contributionof eachgaugepotential or connectionA~(x) to the path
integral is thereforeboundedandwell-behaved.

The completegeneratingfunctionalfor the transitionamplitudesof a theory is obtainedby summing
(or functionally integrating)over all inequivalent field configurations.Since the first-order functional
variation of the action vanishesfor solutionsof the equationsof motion, theseconfigurationscor-
respondto stationarypointsin the functionalspace.Therefore,in the path-integralapproach,we first
seek solutions to the Euclideanfield equationswith minimum action and then computequantum-
mechanicalfluctuationsaroundthem.

The Yang—Mills field equationsfound by varying the actionmaybewritten as

d*F+A A *F—*F A A=0,

while the Bianchi identitiesare
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dF+A nF-FnA =0.

Thesetwo equationstogetherimply that thecurvatureF is harmonic in a suitablesense.

Minima of the action: In order to find the minimumactionconfigurationsof theYang—Mills theory,let

usconsiderthe inequality

J (F~.± *F~,)
2gI/2 d4x � 0.

This boundis saturatedby theself-dualfield configurations

F=±*F. (9.2)

In fact, thesefield configurationssolve the Yang—Mills field equationssincethe Bianchi identitiesimply
the field equations.The actionnow becomes

S=—~JTrFA *F=~JTrFAF=41rIk~~

where

—C
2=k=-~--JTrFAF (9.3)

is the integral of the 2nd Chern class. ‘t Hooft [1976a]called such special field configurations
“instantons” sincein the caseIkI = 1 their field strengthis centeredaroundsomepoint in space-time
andthusattainsits maximumvalueat some“instant of time”.

Physical interpretation of instantons: The instanton can be interpretedas a quantum-mechanical
tunnelingphenomenonin Yang—Mills gaugetheories.It inducesa transitionbetweenhomotopically
inequivalentvacua.The true groundstateof Yang—Mills theory then becomesa coherentmixture of all
thesevacuum states.For more details on this subject,see,for example, Jackiw [19771.One-loop
quantum-mechanicalfluctuationsaboutthe instantonhavebeenexplicitly calculatedby ‘t Hooft [1977],
whoshowedthat the instantonsolvedthe long-standingU(1) problemvia its couplingto the anomalyof
the ninth axial current.

9.2. Yang—Millsinstantons

The dominant contribution to the Euclidean path integral comes from the instanton solutions
obeyingthe self-dualitycondition

F= ±*F
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All gauge-potentialsor connectionssatisfying the Yang—Mills equationswith self-dual curvatureare
now, in principle,known (seesection9.3).

1. BPSTsolution (Belavin et al. [1975])[seeexamples4.3.3. and 5.5.2]. The instantonof Belavin,
Polyakov,SchwarzandTyupkin solvesthe Yang—Mills equationswith k = ±1. Although the spacetime
of the solutionappearsto be R4, the boundaryconditionsat ~ allow the spaceto be compactifiedto S4.
Hencethe BPSTinstantonis a connectionwith self-dualcurvatureon an SU(2) principal bundleover S4
with secondChernnumberC

2 = —1. Since the action of the BPST instantonis S = 4ir, it hasthe least
actionpossiblefor a nontrivial topology and thus is the most importantsolution in Yang—Mills theory.
We note that the BPST instantonis, in fact, a connectionon the Hopf fibering ir: 5~—~5~(Trautman
[1977])and for this reasoncan be obtainedfrom self-dual combinationsof the standardRiemannian
connectionson S

4 (seeexample5.5.2).
2. Multi-center SU(2) solutions. A special class of self-dual solutions of the SU(2) Yang—Mills

equationsfor arbitrary “instanton-number”k is obtainedby the following simple ansatz(‘t Hooft
[1976b];Wilczek [1976];Corrigan andFairlie [1977]),

~ (9.4)

where the constants ~,.and ~ are given in appendixC. Imposing the self-duality condition, one
obtains

LIIçb/çb =0.

‘t Hooft gavethe following solutionto this equation,

~(x) =1+ (x _x~)2

x andp~areinterpretedas the positionandthe size of the ith instantonandthe solutiondescribesthe
k-instantonconfiguration.The k-anti-instantonsolution is obtainedby replacingi~by i~.

This classof solutionswas furthergeneralizedby Jackiw, NohI andRebbi [1977]who noticedthat the
‘t Hooft solution is not invariant underconformal transformationsandcan, in fact, be generalizedas

k±l

cb(xY~~, (x—y,)2~

This solution againdescribesa k-instantonconfigurationandpossesses5k +4parameters(overall scale
is irrelevant).Here, however,the parametersA, andy, are not directly relatedto the size andlocation
of the ith instanton.In the specialcasesof k = 1 and2, the solution possesses5 and 13 parameters,
respectively,whenone excludesparametersassociatedwith gaugetransformations.

9.3. MathematicalresultsconcerningYang—Mills theories

There exist a variety of mathematicalresults concerningYang—Mills theories and differential
geometrywhosedetailedtreatmentis beyondthe scopeof this work. We presentherealist of assorted
mathematicalfactswhich we feel might be of relevanceto physics.
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1. Parameterspacefor instantonsolutions.Schwarz [1977]andAtiyah. Hitchin andSinger[19771have
applied the index theorem to an elliptic complex correspondingto the Yang—Mills equations.This
complexallows oneto analyzesmall self-dualfluctuationsaroundthe instantonsolution. Determination
of theindex of the complexthen allows one to computethe numberofpossiblefree parametersin an
instantonsolution.They found that for the k-instantonSU(2)solution,

no. of free parameters= 8k — 3.

in agreementwith the resultsof Jackiwand Rebbi [1977]andBrown, Carlitz andLee [19771who used
physicists’methods.Thus the Jackiw—NohI—Rebbisolutionexhauststhe numberof availableparameters
only for k = 1 and k = 2.

The analysisof small self-dual oscillationsaroundinstantonsolutionswas thenextendedto include
all Lie groups(Atiyah. Hitchin and Singer [1978];Bernard,Christ, Guth and Weinberg[19771).The
dimensionof the spaceof parametersfor irreducibleself-dualconnectionson principal G-bundlesover
S4with C

2 = —k is given in table 9.1 for eachG. We alsolist restrictionson k which musthold if there
are to exist irreducibleconnectionswhich are not obtainedby embeddingthe connectionof a smaller
group.

Table 9.)

Irreducibility
Group Dimension of parameter space condition

SU(n) 4nk _~:~ k �n/2
Spin(n) 4(n —2)k—n(n — 1)12 k �n14(n �7)
Sp(n) 4(n+1)k—n(2n+1) k�n

16k—14 k�2

F4 36k—52 k�3
E~ 48k—78 k�3

728—133 k�3
E~ 120k —248 k ±3

Thus,for example,SU(3)solutionshave12k — 8 parametersandfor k � 2 thereexist irreducibleSU(3)
solutionswhich are not obtainedfrom SU(2)solutions.

We remark that physicists often refer to the dimensionof the parameterspaceas the numberof
zero-frequency modes, while mathematicians mayrefer to the samethingas the dimension of the moduli
space.

2. Explicit solutions for the most general self-dual connections. The (5k + 4)-parameterJackiw—Nohi—
Rebbisolutionsfor SU(2) instantonsdo not exhaustthe (8k — 3)-dimensional parameter space for k � 3.
The problem of finding the mostgeneralsolutions(e.g.,with 8k — 3 parametersfor SU(2))was attacked
usingtwistor theory (Ward [19771;Atiyah andWard [19771),and the methodof universalconnections
andalgebraicgeometry(Atiyah, Hitchin, Drinfeld and Manin [1978]).It was shownthat the problem of
determiningthe mostgeneralself-dualconnectionfor virtually anyprincipalbundleover S

4 is reducible
to a problem in algebraicgeometryconcerning holomorphicvectorbundlesover P

3(C).
In fact, the wholeprocedurecan be reducedto ordinary linearalgebra.For example,to calculatethe

self-dual SU(2) connectionfor the bundle with Chern class C2 = —k one starts with a (k + 1) X k



358 Eguchi, Gilkey and Hanson. Gravitation, gauge theories and differential geometry

dimensionalquarternion-valuedmatrix

4 = a + bx.

(Physicistsmayprefer to think of a~1. b,~ andx as havingvalues in SU(2), so x = x°— i A ‘x etc., where
{A} are the Pauli matrices.)

Thenonedeterminesthe universalconnectionw = Vt dV by solvingthe equations

V~4=0

V
5V= 1

(9.5)

1 = ~

4 = a real number

for V. The numberof free parametersin Vt d V which arenot gaugedegreesof freedomturns out to be
exactlythe requirednumber.Thereare deepreasons,basedon algebraicgeometry,for the successof
this construction(seee.g. Hartshorne[1978]).Propagatorsin theseinstantonfields were obtainedby
Christ, Weinberg and Stanton [1978]and Corrigan,Fairlie, Templeton and Goddard [1978]which
generalizedthe result of Brown, Carlitz, Creamerand Lee [1977]for propagatorsin the ‘t Hooft,
Jackiw—NohI—Rebbisolution. We refer the readerto the original literaturefor furtherdetails.

3. Universal connections (Narasimhanand Ramanan[1961,1963]; Dubois-Violetteand Georgelin
[1979]).In the derivationof the mostgeneralself-dualconnections,the methodof universalconnections
playedan essentialrole. The theoremof NarasimhanandRamananshowsthat all fiber bundleswith a
given set of characteristicclassesareviewableas particularprojectionsof a moregeneralbundlecalled
a “universal classifyingspace”.Typical classifyingspacesare Grassmannianmanifolds Gr(m, k), the
spaceof all k-manifoldsembeddedin rn-space,with musuallytakento approachinfinity. Both the base
manifold and the fiber of a given fiber bundle are included in the classifying space;complicated
projectionsmustbe takento describebundleswith complicatedbasemanifolds.

Onecan write any connectionon a fiber bundle in terms of a projectiondown from a universal
connectionon the classifyingspace.In particular,for sufficiently large m, the connectionon a U(k)
principal bundlecan alwaysbe written in termsof an m x k complexmatrix V as

w Vt dV

where

VtV = 1k, VV~= P(x)= (m x mprojection).

Choosinga local cross-sectionV(x) of the classifyingspacegives the Yang—Mills potential in a certain
gauge,

A(x)= Vt(x)dV(x).
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A(x) is not a puregaugeherebecauseV is not a k x k matrix. The curvature

F=dA+A AA

=dV5(1 —P(x))dV

is, in general,non-trivial. Gaugetransformationsareobviouslyeffectedby multiplying V on the right by
a k x k matrix A(x),

V(x)-~’V(x)A(x)

so that

A’=(AtVt)d(VA)=At(VtdV)A +At(VtV)dA

=AtAA +Atlk di!.

The covariantderivativehasa straightforwardinterpretationin terms of the actionof the projection
P(x)= VVton the rn-dimensionalextensionof the k-dimensionalwave function !1’,

~= vip.

When one projectsthe exteriorderivativeof ~P,onefinds the extensionof the covariantderivativeof
the ordinarywave function !P:

PdV~’=PdVip+PVdip=V(VtdV1P+dip)nsVDip.

4. Compactifiability offinite-action Yang—Millsconnections(Uhlenbeck[1978]).SupposeA(x) is a
sectionof a connectionone-formon a manifold Mwhich is a compactmanifold M lacking the origin,
i.e.,

M=M—{0}.

Supposealso that F = dA + A A A is harmonicandthat the Yang—Mills action is finite.
Thenthereexist gaugetransformationsnear{0} which extendA to all M. In fact, it hasbeenshown

that all Euclideanfinite-actionYang—Mills solutionsover M — {0} aresmoothlyextendedto the compact
manifold M.

This theoremtells us that anyself-dualfinite-action solutionto the EuclideanYang—Mills equations
mustdescribea bundlewith a compactifiedspacetimebasemanifold.

5. Stability of all self-dual solutions (Bourguignon,Lawson and Simons [1979]).The stability of
Yang—Mills solutionshasalso beenstudied.Onecan show that if the basemanifold M is 54, all stable
Yang—Mills solutionsare self-dual.Combinedwith Uhlenbeck’stheorem given above, this theorem
allows us to concludethat all finite-action stable Yang—Mills solutions (connectionswith harmonic
curvatures)areself-dual.

6. Indextheoremsin open spaces(Callias [1978];Bott andSeeley[1978]).An extensionof the index
theorem to Yang—Mills theoriesin open Euclidean spacesof odd-dimensiond has been given by
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Callias.This result hasinterestingapplicationsto the Dirac equationin (d + 1)-dimensionalMinkowski
spacetime.

7. Meron solutions. Besides the instantons, which are non-singular solutions to the Euclidean
Yang—Mills field equations.there is a class of singular solutions called merons(Callan, Dashenand
Gross [1977])which were first discoveredby De Alfaro, Fubini and Furlan [19761.As comparedwith
instantonswhosetopologicalchargedensityç~~,,F~1,(x)F0~,(t)is a smoothfunction of x, the topological
chargedensityof meronsvanisheseverywhereexceptat the singular points.

For instance, the SU(2) 2-meron solution is given by

I —,A=~g, dg~+~g2dg2.

where

— (t—t1)—iA ‘(x—x,)
g — [(t — t)

2 + (x —

The topologicalchargedensityof this solution is a sum of two (5-functionscenteredat x, andx
2, eachof

which gives ~unit of the quantizedtopological charge. Therefore,in somesense,the meron is a split
instanton.

Glimm andJaffee [1978]consideredanaxially-symmetricmultimeronconfigurationandtheexistence
of a solutionfor this configurationwas provedby Jonsson,McBryan, Zirilli andHubbard[19791.

8. Absence of global gauge conditions in functional space of connections(Singer [1978a1).The
Feynmanpath-integral approachto the quantizationof field theories is based on the use of the
functional spaceof the field variables.In the caseof Yang—Mills theories,the fields in questionarethe
connectionson the principal bundle,which are definedonly up to gauge transformations.Hence the
functional spaceof connections is a complicatedinfinite-dimensional fiber bundle whose projection
carriesall gauge-equivalentconnectionsinto the samepoint in the basespaceor moduli space of the
bundle.

Physical quantitiesare calculatedby integrating over the moduli spaceto avoid the meaningless
infinities which would result from integratingover gauge-equivalentconnections.Gribov [1977,1978]
discoveredthat there exist gauge-equivalentconnectionswhich obey the Coulombgaugecondition, so
that defining functional integrationover the moduli spacecould be potentially troublesome.

The mathematicalnatureof the problem of defining the moduli spaceof the functional spaceof
connectionswas examinedby Singerusingtechniquesof global analysis.He hasshownthat for compact
simply-connectedspacetimesthe infinite-dimensionalbundlein question is nontrivial; hencea single
global gauge condition could never be used to define a global section, and thus could not unam-
biguouslydefinethe moduli space.He showedthat the manifolddescribedby any given gaugecondition
eventuallyturnedbackon itself to intersecta given fiber of the functional bundlean infinite numberof
times.Thus the moduli spaceover which thepath integrationfor gaugetheoriesmustbe performedcan
be definedonly in local patches.

9. Natural metric on thefunctionalspaceof connectionsand the Faddeev—Popovdeterminant(Singer
[1978b];BabelonandViallet [1979]).Before onecan integrateover a functional space,onemustknow
the measure of the integrationelement.To get the proper transformationpropertiesof the functional
measure,physicistsmultiply the integrandby a factorcalled the Faddeev—Popovdeterminant.It is now
known that this measure follows from a natural metric on the moduli spaceof the functional spaceof



Eguchi. Gilkey and Hanson. Gravitation, gauge theories and differential geometry 361

connections.The Faddeev—Popovdeterminantarisesnaturally asthe standardg”2 Jacobianmultiplying
the naivemeasure.

10. Ray—Singertorsion and thefunctional integral (Singer [l978c]~Schwarz[1978.1979a.bi). Func-
tional determinantsobtainedby calculatingthe quadraticfluctuations aroundinstantonsare essential
elements of the quantizedYang—Mills theory. Thus it is interesting to note that these functional
determinantsare intimately related to a mathematicalconstructionby Ray and Singer [1971,1973]
introducedmanyyearsago. Additional insightsinto the functionalintegral in Yang—Mills theory might
be gainedby the explorationof the Ray—Singeranalytictorsion.

10. Differential geometryand Einstein’stheory of gravitation

The intimate relationshipbetweenEinstein’s theoryof gravity and Riemanniangeometryhasbeen
thoroughly exploredover the years.Here we will attempt to outline someof the more recentideas
concerningthe physics of gravitationandthe relevanceof moderndifferential geometryto gravitation.
We begin with an introduction to current work on quantumgravity and gravitationalinstantons.We
then presenta list of mathematicalresultswhich are of specific interestto the studyof gravity.

10.1. Path integral approachto quantumgravity

Quantizationof the theory of gravitation is one of the most outstandingproblemsin theoretical
physics.Dueto the non-polynomialcharacterof the theory the standardmethodsof quantizationdo not
work for gravity. At present.Feynman’spath integralapproachappearsto be the mostviableprocedure
for quantizinggravity. Pathintegrationhasthe advantageof beingable to take into accountthe global
topology of the space-timemanifold as opposedto other quantizationschemes.However, since the
theory of gravity is not renormalizablein the usual sense,we always encounterthe difficulties of
non-renormalizabledivergencesin practicalcalculations.

As in the Yang—Mills case,we work with the Euclideanversion of the theory and the Euclidean
(imaginary time) path integral. Our field variables g,

4,. are metrics having a Riemanniansignature
(+, +. +, +), andthe (imaginarytime) gravitationalactionis given by

S - ~ “
2d~ 1 Kd3~+C (101)

g — l6irGJ g x 8rrG

where G is Newton’s constant,~ is the Ricci scalar curvature and K is the trace of the second
fundamentalform of the boundaryin the metric g. The secondterm is a surfacecorrection required
when 3M is nonempty(York [1972];Gibbonsand Hawking [1977]).C is a (possibly infinite) constant
chosenso that S[g] = 0 whenthe metric g~.is the flat spacemetric. Einstein’s field equationsin empty
spacearegiven by

— ~ = 0. (10.2)

As in the Yang—Mills theory, thereexist finite action solutionsto the EuclideanEinsteinequations
which possessinteresting global topological properties.We describe these solutions in the next
subsection.
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Non-positive-definiteness of the Einstein action: Unlike the Yang—Mills case,the gravitationalaction is
linear in the curvature and not necessarilypositive. In particular, by introducing a rapidly varying
conformal factor into a metric, one can makeits action negativeand arbitrarily large. This causesa
divergencein the path integration over the conformal factor. To get around this difficulty, Gibbons,
Hawking andPerry[1978]proposedthe following procedurefor the evaluationof the pathintegral:

— separatethe functional spaceof metricsinto conformalequivalenceclasses;
in eachclass,choosethe metric g for which the Ricci scalar~ = 0;

— rotatethe contourof integrationof theconformalfactor A to be parallelto the pureimaginaryaxis
in order to achievethe convergenceof the integration. Namely, we put A = I + i~and integrate
over real ~

— integrate over all conformal equivalence classes.

Positive action conjecture: For the metric in a given conformal equivalenceclass with ~ = 0, the
gravitational action consistsentirely of the surfaceterm. Since the physically reasonableboundary
conditionfor the metric is asymptoticflatness,one would hope that the action is positive in this case.
This leadsto the positiveaction conjecture (Gibbons,Hawking andPerry [19781):

S� 0 for all asymptoticallyEuclideanpositivedefinite metricswith ~ = 0.

AsymptoticallyEuclideanmetricsare thosewhich approachthe flat metric in all spacetimedirectionsat
~ andwhoseglobal topology is the sameasR4 at ~. It can beshown that S = 0 only for the flat metric
on R4 (Gibbonsand Pope[19791).The positive actionconjecturehasrecentlybeenprovenby Schoen
andYau [1979a].

A naturalmodificationof thepositiveactionconjecturewassuggestedby the discoveryof a new type
of metric (EguchiandHanson[1978])which is locally flat at ~, but hasaglobal topology different from
that of R4 at ~ (Belinskii, Gibbons,PageandPope [1978]).This classof metricsis called asymptotically
locally Euclidean(ALE). The generalizedpositive action conjecture (Gibbonsand Pope [19791)states
that

S � 0 for anycompletenon-singularpositivedefinite asymptoticallylocally Euclideanmetricwith
= 0; S = 0 if andonly if the curvatureis self-dual.

Spacetimefoam (Hawking [19781;Perry[1979];Hawking, Pageand Pope [19791):Since the theory of
gravity is not renormalizable,oneexpectsstrongquantumfluctuationsat short distances,i.e.,at the size
of the Plancklength. These fluctuationsmight be viewed as a “spacetimefoam” which is the basic
buildingblock of the universe.Thus the spacetimein quantizedgravity theory is expectedto be highly
curvedat smalldistances,while at largedistancesthe curvatureis expectedto cancelandgivean almost
flat spacetime.Spacetimefoam is an importantsubjectfor future researchin quantizedgravity.

10.2. Gravitational instantons

As in the Yang—Mills theory,therealso exist finite actionsolutionsto the classicalfield equationsin
the theoryof gravitation.Suchsolutionsarecalled gravitationalinstantonsbecauseof the closeanalogy
to the Yang—Mills instantons. A variety of solutions of Einstein’s equationswith instanton-like
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propertieshavebeendiscovered.Thosewith self-dual curvatureare especiallyappealingbecausethey
haveinterestingmathematicalpropertiesand bearthe strongestsimilarity to the self-dual Yang—Mills
instantons.For a review,seeEguchi and Hanson[1979].

1. Themetric ofEguchiandHanson [1978][seeexample3.3.3]. This is the metricwhich mostclosely
resemblesthe Yang—Mills instantonof Belavin et al. [1975].It has a self-dual Riemanniancurvature
which falls off rapidly in all spacetimedirections and has x = 2, r = —1. The boundary at ~ is
P3(R)= S

3/Z
2 (Belinskii et al. [1978]),and thus it is the simplestexample of an asymptoticallylocally

Euclideanmetric. The global manifold is T*(Pi(C)).
2. Multi-center self-dual metrics (Hawking [19771;Gibbons and Hawking [1978]).This class of

metricsis given by

ds
2=V~(x)(dr+o,‘dx)2+ V(x)dx ‘dx,

where

VV=±Vxw

V=e+2m ~iIx—x,i’

The connectionand the curvatureare both self-dual in this coordinatesystem.The case� = 1, k= I is
the self-dual Taub—NUT metric discussedin example 3.3.2, but in a different coordinateframe. When

= 1 for generalk, we find the multi-Taub—NUT metric. Thesemetrics approacha flat metric in the
spatialdirection x~-÷~,but areperiodic in the variable r.

When � = 0 the asymptoticbehaviorof the metric changescompletelyandthe metric g,~. approaches
the flat metric at 4-dimensional~ modulo the identificationof pointsof spacetimeunderthe action of a
discretegroup. Thecasee = 0, k = I turns out to bejust a coordinatetransformationof the flat space
metric. When � = 0, k = 2 the metric is a coordinatetransformationof the Eguchi—Hansonmetric
discussedabove(Prasad[1979]).For generalk, the metric representsa (k — 1)-instantonconfiguration
whoseboundaryat ~ is the lens spaceL(k, 1) of S~.(L(k, m) is definedby identifying the points of
S3= [boundaryof C2] relatedby the map

2,,’i/k ‘irimlk(z~,z
2)-’*(e zi,e z2).)

The � = 0 general-kmetric hasx = k, r~= k — 1. The possibility of self-dual metrics on manifolds
whoseboundariesaregiven by S

3 modulootherdiscretegroupshasbeenconsideredby Hitchin [1979]
andCalabi[1979]andwill be discussedbelow.

3. Fubini—Studymetric on P
2(C)(EguchiandFreund[1976];GibbonsandPope[1978])[seeexample

3.4.3]. The manifoldP2(C) is closedandcompactwithoutboundaryandhasx = 3. r = 1. Except for the
fact that P2(C) fails to admit well-definedDiracspinors,the Fubini—Studymetric on P2(C)wouldbe an
appealinggravitationalinstanton; this metric satisfies Einstein’sequationswith nonzerocosmological
constantandhasa self-dualWeyl tensor,ratherthana self-dualcurvature.

4. K3 surface. The K3 surface is the only compact regular simply-connectedmanifold without
boundarywhich admitsa nontrivial metricwith self-dualcurvature(Yau [1977]).While the explicit form
of the metric is not known, it mustexist; sinceits curvatureis self-dualit will solve Einstein’sequations
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with zero cosmological constant.For the K3 surface, ~‘ = 24 and r = —16. (Remark: The natural
structure on the K3 surface is, precisely speaking,anti-self-dual (see Atiyah, Hitchin and Singer
[1978]).)

5. Miscellaneous solutions. Among other interestingsolutions are the Euclidean de Sitter space
metric (i.e., the standardmetric on S4), the non-self-dualTaub—NUT metric with horizon and the
compact rotating metric on P

2(C)~P2(C)found by Page[1978a,bl,and the rotatingTaub—NUT-like
metric of GibbonsandPerry [19791.

10.3. Nuts and bolts

The gravitational instantonslisted above can be described in terms of interestingmathematical
structurescalled “nuts” and“bolts” by GibbonsandHawking [1979].Let us examinea generalBianchi
type IX metric of the following form

ds = dr + a(r)o~+ h
2(r)o’~+ c2(r)o~.

The manifold describedby this metric is regular provided the functions a, b and c are finite and
nonsingularat finite properdistancer. However, the manifold can be regular even in the presenceof
apparentsingularities.

Let us, for simplicity, consider singularitiesoccurring at r = 0. A metric has a removable nut
singularity providedthat nearr = 0,

a2 = b2 = c2 =

Thenthis apparentsingularity is nothingbut a coordinatesingularity of the polar coordinatesystemin
R4 centeredat r = 0. The singularity is removedby changingto alocal Cartesiancoordinatesystemnear
r = 0 and addingthe point r = 0 to the manifold. Nut singularitiesmay also be understoodfrom the
viewpoint of global topology as fixed points of the Killing vector field; by the Lefschetzfixed point
theorem(seesection7), eachsuchfixed point (or nut) adds one unit to the Eulercharacteristicof the
manifold.

A metrichasa removablebolt singularity if nearr = 0,

a2 = b2 = finite

c2 = n2r2. n = integer.

Here a2 = b2 implies the canonical S2 metric ~(dO2 + sin2 0 d~2)for the (a2u~2+ b2u~2)part of the

metric, while at constant(0, 43), the (dr2 + c2o’~2)part of the metric looks like
dr2+ n2r2~d4i2.

Providedthe rangeof ~fris adjustedso n~’i/2runsfrom 0 to 2ir, the apparentsingularityat r = 0 is just a
coordinatesingularity of the polar coordinatesystemin R2 at the origin. This singularity can againbe
removedusingCartesiancoordinates.The topology of the manifold is locally R2 x S2 andthe R2 shrinks
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to a point on 52 as r—~0.This S2 is a fixed surfaceof the Killing vector field. Accordingto the G-index
theorem (seesection 7), each such fixed submanifoldcontributesits own Euler characteristicto the
Eulercharacteristicof the entire manifold; thus eachbolt contributestwo units to the Eulercharac-
teristic.

The self-dualTaub—NUT metric (example3.3.2)

ds2 = ,‘+ “~dr2+~(r2_m2)(d02+sin20 d432)+m2(T— ~)(d43 +cos0 di/i)2

behavesat r = m + � as

ds2 dr2+ r2(u~2+ 0.2 + 0.2)

where r = (2m�)L’S.Thus the apparentsingularity at r = m is a removablenut singularity. In contrast,

the Eguchi—Hansonmetric (example3.3.3),

ds2 = —(air)4 + r2(0.~2 + u2 + (1 — (a/r)4)u~2),

behavesnear r = a, with fixed 0 and 43, as

ds2 ~(du2+ u2 d~i2),

where u2 = r2[l — (air)4]. Therefore, the apparentsingularity at r = a is a removablebolt singularity

provided that the rangeof ~ti is chosento be that of the usualpolar coordinateson

0�~i<2ir.

This explainswhy the boundaryof the manifold of this metric is P
3(R)= S

3/Z-~,ratherthan 53, which
would have0~ ~j’<4ir. Next, we examinethe P

2(C)metric (example3.4.3)

d 2 — dr
2+ r2o-

2
2 + r2(o’~2+ cr~,2)~ (1+Ar2/6)~ 1+Ar216

Near r = 0, we obviouslyhavea nut.On the otherhand,at large r andfixed 0 and43, the metricbehaves
as

ds2 (fl16Y2 (du2+ ~u2d4r2),

where u = I Ir. Thus the singularityat u = 0 (r —* cc) is a removablebolt singularity if

O~Sç1i<4ir.

Finally, we note that the Gibbons—Hawkingk-centermetrics can be shown to have k nut singular-
ities.
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10.4. Mathematicalresultspertinentto gravitation

Becauseof the closerelationshipbetweenEinstein’s theory of gravitationanddifferentialgeometry,
any distinction betweenphysical knowledgeaboutgravitationand mathematicalknowledgeis neces-
sarily somewhatarbitrary. In this section we collect a variety of useful facts pertinent to gravitation
which seemto us primarily mathematicalin flavor.

1. Restrictionsonfour-dimensionalEinsteinmanifolds. A numberof mathematicalresultsare known
which restrictthe typesof four-dimensionalEuclidean-signatureEinsteinmanifolds;theseare precisely
the manifoldswhich might be expectedto be importantin the Euclideanpath integralfor gravity.

We first restrict our attentionto compactsimply-connectedfour-dimensionalspin manifoldsM, and
notethat the Eulercharacteristicx andthe signaturer nearly characterizethe manifold uniquely(recall
that ri is a multiple of 8 for a spin manifold):

CaseA: ri � x —2 ~ M determinedup to homotopy

CaseB: ri = x —2 ~ unknownwhetherM is determinedup to homotopy.

It is not knownif theseconditionsdetermineM up to a homeomorphismtype.
It is instructiveto studya manifold’spropertiesin termsof its Betti numbers(b(, b1, b-,, b3, b4); b2 can

be brokenup into two parts,

b2 = b2~+ b2,

whereb2~is the numberof self-dualharmonic2-formsandb2 is the numberof anti-self-dualharmonic

2-forms.We know the following results:
(1) Poincaréduality for compactorientablemanifoldsimplies b~1= b4, b~= b5
(2) ~ = b4 = numberof disjoint piecesof M
(3) b1 = b3 = 0 if M is simply connected
(4) Xbbi+b2bs+b42bo2bi+b2~+b2
(5) r—b2

t—b
2.

Thus for M compactandsimply-connected,

x =2—0+b2~+b2

b2~ ~r+~—2)

b2 = ~(—r + x —2).

An Einsteinmanifold is definedas a manifold which admitsa metric which obeys

= Ag,,,,,.

We statethefollowing theorems:
I. (Berger[1965]).x � 0 for a 4-dimensionalcompactEinsteinmanifoldM with x = 0 only if M is

flat.
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II. (Hitchin [1974bfl.

x—>~iri

for a 4-dimensionalcompactEinsteinmanifold M, with

x=~iri

only if M is flat or its universalcoveringis a K3 surface.
III. (Hitchin [1974b]).If M is a compact4-dimensionalEinstein manifold with non-negative(or

non-positive)sectionalcurvature,then

x (3)3/21ri

with equalityonly if M is flat.
IV. (Gibbonsand Pope [1979]).SupposeM is non-compact,andits non-compactnessis completely

characterizedby removing N asymptoticallyEuclideanregionsfrom a compactmanifold M.
Then,if M is an Einsteinspace,

~(M)� N + ~ir(M)l
x(M) � 2N+ ir(M)i.

Examples:

Einstein: S4,~2 x S2 P
2(C), 2P2(C),3P2(C)

not Einstein: 5’ x S
3,2T4, nP

2(C)forn � 4.

2. K3 surface. The K3 surface and the four-torus T
4, are the only closed, compact manifolds

admittingmetricswith self-dualRiemanncurvature.(Conversely,all Ricci flat manifoldsare self-dualif
theyareclosedand compact.)For T4, the self-dualmetric is the trivial flat metric.For the K3 surface,
the self-dual metric is nontrivial but unknown,althoughYau [19781has, in principle, given a way to
construct it numerically. Other approachesto finding the K3 metric have been describedby Page
[1978c]and by Gibbons and Pope [1979].Only the K3 surfaceand the Enriques surface(whose
universalcoveringis K3) or the quotient of an Enriquessurfaceby a free antiholomorphicinvolution
with ir

1 = Z2 x Z2 saturateHitchin’s bound[1974b]

x=~iri

with x� 0. We show belowthatx = 24, rI = 16 andnote thatK3 is a complexmanifold with first Betti
numberb, = 0, b2~= 19, b2 = 3, and first Chern classc, = 0.

The K3 surfaceis definableas the solution to f4(z) = 0 wheref~is a homogeneouspolynomial of
degree4 in the homogeneouscoordinatesZtj, z,, z2, z3 of P3(C). It is thus instructive to examineit in
the generalcontext of polynomialsfm(Z) = 0 of degreem in P3(C) (Back, FreundandForger [1978]).
We let V be the correspondingtwo-dimensionalcomplexsurfacein P3(C) andsplit the tangentbundle
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of P3(C)in partsnormal andtangentialto V:

T(P3(C))= T(V)~ N(V).

The Chernclassesfor Whitneysumsof bundlesandfor P,,(C) itself are given by

c(T(P3(C)))= c(T(V)) c(N(V))

c(T(P,,(C)))=(1+x)”~,

wherex is c(L*), the normalizedKähler2-form of the Fubini—Studymetric on P~(C).Finally, we note
that if V is given by f,,,(z)= 0. the Chernclassof N(V) is given by

c(N(V))= I + mx,

sincem is the numberof Riemannsheetsof f,,,(z)= 0. Letting

R = i * x = projectionof the 2-form x onto V.

we combinethe equationsto give

(1 +R)
4=c(T(V))(l +mR)

anduse the splitting principle to get (with R —* r)

1+4r+6r2+’’’I + mr

=I+(4—m)r+(m2—4m+6)r2=1+c~+c
2.

Now, since

J R A R = m= numberof Riemannsheets

and

= c1
2—2c

2= [(4—m)
2—2(m2—4m+6)]R AR = (4— m2)RAR,

we can calculateall the propertiesof K3 by settingm= 4:

(1)c,=(4—m)R=0, c
2=(m

2—4m+6)RAR=6RAR

(2) r=~P=~Jpi=~m(4_m2)=_16
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(3)x=Jc2=m(m2_4m+6)24

~irI

(4) A=_~r=_~m(4_m2)=+2

(5) I~= ),~+r)zr.’,(24—16) +2.

We thus seefrom (4) and (5) that K3 can be aspin manifold and a complexmanifold.
3. Harmonic spinors. A very useful result concerningthe Dirac equationon curved Euclidean

(positivesignature)manifolds is Lichnerowicz’stheorem (Lichnerowicz[1963]):
If the scalarcurvature~ of a compactspin manifold is positive,

then thereare no harmonicspinors on the manifold.
However, thereis no expressionfor the dimensionof the spaceof harmonicspinorsin terms of the
topological invariantsof the manifold: Hitchin [1974a]has shown that althoughthe dimensionof the
spaceof harmonicspinors is conformally invariant, it dependson the metric used to define the Dirac
operator.

4. Spinstructures.As we observedin the sectionon characteristicclasses,one can define spinors
unambiguouslyon a manifold only if its secondStiefel—Whitneyclassvanishes:sucha manifold is called
a spin-manifold.However, the spinor phaseambiguity which occursfor non-spinmanifolds can be
cancelledby introducing an additional structuresuch as an electromagneticfield (a U(1) principal
bundle).This additionalstructure,the SP~flCstructure,gives a new typeof more generalspin manifold.
For instance,althoughthe manifold P2(C)doesnot admit a spin structure,onecan still define a 5P~flc

structureby introducingmagneticmonopoleswith half the Dirac charge(Trautman[1977];Hawking
andPope[1978]).Back, FreundandForger[1978]discussinterestingphysicalapplicationsof the ideaof
the spin,,structure.

5. Deformationsof conformallyself-dualmanifolds.Singer[1978d]hasexaminedthe generalcaseof
the numberof conformally self-dual deformationsof a compact conformally self-dual manifold. This
numberis interestingto a physicist becauseit gives the numberof free parameters,or the numberof
zero-frequencymodes,of a given solutionof Einstein’sequations.By constructingan appropriateelliptic
complex,Singerapplies the index theoremandfinds the numberof conformallyself-dualdeformations
to be the index of the complex:

I = ~(29IrI— iSx)+ dim(conformalgroup)+ (correctionfor absenceof vanishingtheorem if scalar
curvature� 0).

Note that scale factorsof the metric are not included here. This is the index of the gravitational
deformations(seeGibbonsandPerry[1978])taking solutionsto solutions,but thevalueof the actionis
not necessarilypreserved.
Examples:

A. 54, Here r = 0, x = 2, the conformal group is 15-dimensionaland since P~> 0, there is no
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correction:

I=~(—30)+15+0=0.

Thus a conformallyself-dualmetric on 54 hasno zero-frequencymodesasidefrom a scale.
B. P2(C). Here r = 1, x = 3, the conformal group is 8-dimensional and ~ > 0, so there is no

correction:

I=~(29—45)+8+0=0.

Thus the Fubini—Study metric, which has self-dual Weyl tensor,allows no conformally self-dual
deformationsapartfrom a scale.

C. K3 surface. For this manifold, ri = 16, x = 24, the conformal group is empty, but there is no
vanishingtheorem becausethe manifold is self-dual; it hasself-dual Riemanntensor in addition to
self-dual Weyl tensor.Singer has shown that there are 5 covariantconstant objects in W_, which
constitutethe vanishingtheoremcorrection.Thus

I=~(29x16—15x24)+0+5=57.

Including a scale,we get 58 parametersfor the K3 metric, in agreementwith Hawking andPope[19781.
Thissameresultmayalso be found by observingthat for the K3 surface,b2

t = 19, b
2 = 3, so that one

mayexplicitly constructthe requireddeformationsfrom the harmonicforms. Onefinds

J=3x19=57

as before.
The basicformula given above,of course,needsmodificationwhen the manifold in questionhas a

boundary.The numberof zero-frequencymodesfor self-dual (Riemanntensor)asymptoticallylocally
Euclideanspaceswith boundaryL(k + 1, 1) hasbeendeterminateddirectly (HawkingandPope[1978]).
Theresult is

I=3(k+1)—6=3k—3

plus a scale.Thus the Eguchi—Hansonmetric [1978],which has k = 1, possessesno self-dual defor-
mationsapartfrom a scale.

6. Asymptotically locally Euclidean self-dual manifolds. The general concept of manifolds with
self-dual Riemanntensorandasymptoticregionswhich arelensspacesL(k + 1, 1) of 53 was introduced
earlier (10.2.2). Hitchin [1979]and Calabi [1979]haveexaminedthe most generalpossible regular
self-dual manifoldswith asymptoticallylocally Euclidean(ALE) infinities. The completeclassificationof
the sphericalforms of S

3 is well-known (Wolf [1967]);the possiblespaceswhich correspondto ALE
infinities are:

SeriesAk: cyclic group of orderk (=lensspacesL(k + 1, 1))
SeriesDk: dihedral group of order k

T: tetrahedralgroup
0: octahedralgroup cubic group
I: icosahedralgroup dodecahedralgroup.
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A, correspondsto the Eguchi—Hansonmetric [1978]and Ak to the multicenter generalizationof
GibbonsandHawking [1978].We notethat onemustactuallyuse thebinary or double-coveringgroups
D~,T*, 0*, J* of Dk, T, 0, I to avoid singularitiesin physicalALE spaces.

Complex algebraicmanifolds whose boundariescorrespondto each spherical form have been
identified asfollows, wherex, y and z are all complex:

Group Algebraic4-manifold

= xy
Ak ~z~~~1+x2+y2=0

Dk ~ + x2+ y2z = 0 (10.3)
T x2+y3+z4=0
0 x2+y3+yz3=0
I x2+y3+z5=0.

Theseequationsare, in fact, prominentin algebraicgeometry(Brieskorn[1968]);theyarethe unique
set of algebraicequationsof their typewhich possessresolvablesingularities.

The Atiyah—Patodi—Singer,~-invariant,the Euler characteristic,and the signaturehavebeencal-
culatedfor eachof thesecasesby Gibbons,Popeand Römer[1979].They find (our signsdiffer):

X r “~1/2 = ~flDirac

Ak k+1 —k [(k+1)2—1]/12(k+1)

D~ k+1 —k [4(k—2)2+12(k—2)—1]/48(k—2)

T* 7 —6 167/288

0* 8 —7 383/576

1* 9 —8 1079/1440

The values of the spin ~index all vanish,while the spin ~index for eachcaseis 2r.
7. Proof of positivity of the energy and the action in general relativity (Schoen and Yau

[1978,1979a, b, c]). The positivity of the gravitationalmassor energyhas‘long been conjecturedon
physicalgrounds,but until recently,mathematicalproofs existedonly for specialcases.RecentlySchoen
and Yau produceda generalproof of the positive energyconjectureusingdifferential geometryand
classicalanalysis.

By usingthe observation(Gibbons,HawkingandPerry[1978])that thepositivity of theenergyin five
dimensionsis closely related to the positivity of the action in four dimensions,Schoenand Yau then
succeededin provingthe (original) positiveactionconjecturestatedin the previoussection10.1.

The Euclideanpath integral approachto gravity, which dependsin part on the positivity of the
action, is on a muchfirmer mathematicalfooting as a consequenceof theseresults.

8. Applications of the index theorems to gravity. We have already noted that the anomalous
divergencesof axial currentsnotedby physicistsare,when integrated,closely relatedto mathematical
index theorems.(The anomalousdivergenceof the axial vectorcurrentin anexternalgravitationalfield
was first computedusing physicists’ methodsbefore the relation of the anomalyto index theory was
realized.SeeDelbourgoandSalam[1972]andEguchiandFreund[1976].)A greatdeal of attentionhas
consequentlybeenpaid to the applicationof index theory to operatorsin the presenceof Euclidean
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gravity,i.e., operatorson Riemannianmanifolds(Eguchi,Gilkey andHanson[19781;RömerandSchroer
[19771;Nielsen, Römerand Schroer [1977,19781; Pope [19781;Christensenand Duff [1978];Nielsen,
Gnsaru, Römer and Van Nieuwenhuizen [1978];Perry [1978];Critchley [19781;Hawking and Pope
[1978b];HansonandRönier[1978];ChristensenandDuff [1979];Römer[1979]).Onecan, of course,also
treatthecasewhereconnectionson principalbundlesareincluded.Wepresenthereadiscussionof someof
the major results.A tabulationof formulasandthe index propertiesof variousmanifolds is given in the
appendices.
Eulercharacteristic: The Eulercharacteristicx is the index of the Eulercomplex,which dealswith the
exteriorderivativemappingeven-dimensionalforms to odd-dimensionalforms. The Eulercharacteristic
gives the numberof zeroesof vectorfields on the manifold. If the manifold hasa boundary,the index
formula has differential geometric surfacecorrections(Chern [1945]),but no nonlocal or analytic
corrections.
Hirzebruch signature: The Hirzebruchsignaturer is the index I~of the signaturecomplex,which deals
with the exterior derivativeoperatormappingself-dual forms to anti-self dual forms. The signatureis
nonzero in dimensionswhich are multiples of 4 and gives the difference betweenthe number of
harmonicself-dual forms and anti-self-dualforms of the middle dimension.The signatureis one-third
the PontrjaginnumberP1 in 4 dimensions,

Is = r =

If the manifold hasa boundary,thereexist both a local surfacecorrectionand a non-local Atiyah’-.
Patodi—Singer(APS) n-invariant correction; the meaningof the signatureis altered to include only
(anti)-self-dual harmonicforms whichobeythe APS boundaryconditions.
A genus(Dirac, spin 1/2 index): The A genusis the index 1I/2 of the Diraccomplex,which dealswith
thespin ~Diracoperatormappingpositivechirality spinorsinto negativechirality spinors.The A genus
is an integerif the manifold is a spin manifold,andgives the differencebetweenthe numberof positive
chirality and negative chirality normalizable zero-frequencysolutions to the Dirac equation. In 4
dimensionsthe Dirac index formula is relatedto the signatureby

11/2 = A = —~r=

If the manifold hasa boundary,thereare both local boundarycorrectionsand nonlocal n-invariant
corrections;the correspondingzero-frequencysolutions to the Dirac equationmust obey the APS
boundaryconditions.
Rarita—Schwinger,spin 3/2 index: This index theoremdealswith the spin ~Rarita—Schwingeroperator
mappingpositivechirality spin~wave functionsinto negativechirality spin ~wave functions.The spin ~
wave functionsarefamiliar to physicists,but the correspondingbundlesaremathematicallysubtle; the
acceptedpracticeatpresent(Römer [1979])is to definethe Rarita—Schwinger± chirality bundlesas the
virtual bundles (seesection6.5 on K theory)

z1T~2(M)= ~l,I/2(M)e2~l/21I(M)

4i~2(M)=

where

4m/2,n/2(MY’ S”4÷(M)®S”L1_(M).
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4i±(M)are the ± chirality bundles and ~r denotes the r-fold symmetric tensor product. The
Rarita—Schwingerindex is relatedto the signatureby

21 2!
13/2 = 57 = 24Pl,

where ‘3/2 is the difference betweenthe numberof positive chirality and the negative chirality zero
frequencysolutionsof the Rarita—Schwingerequation.If the manifold has a boundary,there are both
local boundarycorrectionsand nonlocal n-invariantcorrections,andthe correspondingzero-frequency
wave functionsmustobeythe APSboundaryconditions.Thecalculationof the n-invariantcorrectionsis
nontrivial; at present,they have beencomputedonly for caseswhere the G-index theorem could be
used to reduce the calculation to an algebraic form (Hanson and Rämer [1978];Römer [19791;Gibbons,
Pope and Römer [1979]).Direct construction of spin ~zero-frequency modes can be carried out using
the methodof Hawking and Pope [1978b1,but it is difficult to show that thereare no other solutions
satisfyingthe Atiyah—Patodi—Singerboundaryconditionswithout usingthe index theorem.
General spin index theorems: Christensenand Duff [1979]and Römer [1979]have examinedthe
general-spinelliptic complexes

D,,,12~12:~i,,12~12(M)—~

where ~,,,/2.n/2 was definedaboveandD,,/2,,/2 is an appropriate elliptic operator.They find that the index
theorem takesthe form

I,~I2~I2[M]= — (m + 1)(n + l){~(~+2)(3n
2+6n—14)— m(m+2)(3m2+6rn — 14)} P~[M]. (10.4)

In particular,one recoversthe Dirac results

11/2 1112.1) = — ~P
1[Al].

If themanifold hasaboundary,surfacecorrectionsandi’-invariant correctionsmustbe applied. Römer
[1979]hascalculatedthe i~-invariantcorrectionsfor avariety of interestingcasesusing0-indextheory.
For example,for the Eguchi—Hansonmetric [1978],which has P3(R) as the boundaryand no local
surfacecorrections,the non-localboundarycorrectionto the index is

= ~s(m+ 1) (n + 1) [(—1)”— (—1 )“ 1.

Whenoneincludesthe effectof a principal 0-bundleor vectorbundleVG with structuregroupG for a
4-dimensionalmanifold with no boundarycorrections.Römer[19791finds the full index

= dim VG ‘ I,,,12 ~12[M]+ ~(m+ I) (n + 1) [m(m + 2)— n(n + 2)] ch2(VG[MI), (10.5)

wherech2 denotesthe Cherncharacteron VG integratedover its A
4 component.
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Appendix A: Miscellaneousformulas

1. Manifolds.

Tangentframebasis: E,,. = ~-; E~= E~43’2,,

Cotangentframebasis: e’2 = dx’2 e”2 = (43)’~,,e”

Transitionfunction: ~ =

Innerproduct: (3/3x’2, dx”) =

Vectorfield: V = v’2 3/3f’

Covector field: P =p~dx’2

Boundary: If dim(M) = n, then dim(3M) = n — 1.

3aM = 0 (empty).

2. Differential forms. n = dimensionof manifold. w
1, = p-form.

Wedgeproduct: dx A dy = —dy A dx, dx A dx = 0

p form: w~=f~ ,,,,, dx’2’ A ... A dx’2~

Exteriorderivative: dw0 = d(f~,, (x) dx’2 A dx”...)

=

3Af~~(x)dx’~ n dx’2 A dx”~’~= (p + 1)-form

ddw~ 0

Dual: *(dx’2’ A A ~ ~, dx’2” A A dx’2~

Generalforms: w~A = (1)”wq A

d(w
0 A Wq) = dw~A (2)q + (—l)”W0 A dw~

**(~, (—1)~”~w0

Wp A *Wq=Wq A

Coderivative: 8w~= (—1)””~”~* d * = (p — 1)-form
(for positivesignaturemetrics)

~Wp = 0
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Innerproduct: Let a,, and/3,, bep-forms,M compact,3M = 0.

(a,,, f3,,) = (J3,,, a,,)= J a,, n * /3,,

(da,,,/3,,±~)= (a,,, ô$,,+,);(a,,, d/3,,_~)= (ôa,,,/3,~_i)

Laplacian: SO.,, = (d+ ô)2w,, = (d~iö,, + ô,,+i d,,)w,,= p-form

Coordinate
Laplacian: ~43(x)= ~IgL112a~(g’2”fgI”2 8~)43(x)

Stokes’
Theorem: J dw,,_~= J w,,_

1, wheredim(M) = p.

Hodge‘s
theorem: w,,=da,,_1+t5/3,,±1+y,,, ~yp’=O

3. Homologyand cohomology.

Homology: Z,, = cycles(p-chainsa,,, with ôa,, = 0)

B,, = boundaries(p-chainsb,,, with b,, = 3a,,±1for some

H~= Z,,/B,,(homology= cyclesmoduloboundaries)

Cohomology: Z” = closedforms(p-formsw,,, with dw,, = 0)

= exactforms (p-formsw,,, with ~ = da,,_1for some

H~= Z”/B” (cohomology= closedmoduloexactforms)

deRham’stheorem: H” (deRham) H” (simplicial) H,, (simplicial)

Poincaréduality: dim H”(M; R) = dim H””(M; R), M orientable

Betti numbers: b,, = dim H” = dimH~= numberof harmonicp-formsyp, ~Yp = 0

4. Riemannianmanifolds. ~ = curvedmetricon M, flab = flat metric

Metric: ds
2= dx”g~~dx” =

Vierbeinbasisof T*(M): e°= e”~dx”

T(M): En = E
0” = n1abg””e”~~.

Connectionone-form: W°,, = w’~,.dx”

Cartanstructureequations:

torsion= Ta = dea+ Wab A eb

curvature= R°,,= dWab+ wa,. A
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Cartanidentities: dT~+ (V’h A Th = R~5A

dR”,, + w’~, A R’h — R”, A W’h = 0 (Bianchi identity)

Framechange: 77hP”J~, =

=

= (~~Pwb‘+ ~1dcP I)U

T ‘~=

R’”,. = (‘JiR~‘y’

Levi—Civita
connection: 1. T” = 0(torsionfree)

2. W,,h = ~Wh,, (covariantconstantmetric)

Theseimply the cyclic identity, R°,,A e” = 0.

5. Complexmanifolds. Zk = Xk + ~Vk, Zk = Xk — lYk

a~=-~--dz”=
1(-~-—i-~1-~dz”

~ aZ~ 2\,aXk (~ykJ

azk

Exteriorderivative: d = a + a
Hermitianmetric: ds2= g,,, dz’ d2”. ~ = hermitian

Kählerform: K = K = g
1~dz’ A d~, ~ hermitian

6. Someusefuldifferentialformsforpractical calculations.
Two dimensions:x = r cos6, y = r sin 0 0 ~ 6 <

2ir

/ dr \ / x/r y/r\ /dx\
I =1 ii i, dx Ady=rdr AdO
~rd0j \—y/r x/r,/ \dyJ

Threedimensions: x = r sin 0 cos /, y = r sin 0 sin c/i, z = r cos0

p2=x2+y2=r2sin2O 0~0<ir, 0~/<2ir

dr x/r y/r z/r /dx
rd0 = xz/rp yz/rp —p/r (dy

r sin 0 d~ —y/p x/p 0 \dz

dx A dy A dz= r2 sin 6 dr A dO A d~

r3(x dy A dz+ y dz A dx + z dx A dy) = sin6 dO A d~
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Four dimensions:

(Insteadof usingthe ordinarypolar coordinates,we exploit the relationshipbetweenS3 andSU(2))

0 izi=x+1y=rcos~exp~(~+~)

= z +it = rsin~exp~(~—~)

0~O<ir, O~q~<2’ir,O~<4ir

dr x y z t dx E, Z

2 Zi z2 dz,

ro’1 — I —t —z y x dy — I iz2 —iz —i~2 i~, dz2

~ — r z —t —x y dz — 2r z2 —z, z2 —Z d2,
—y x —t z dt —iZ, —i22 iz~ iz2 dZ2

do~,.= 2o~n o-~,cyclic (Maurer—Cartanstructureequation)

dx A dy A dz A dt=r
3dr A O’~, A O’~A O’~ dz, A dz

2 A di~A d22

ds
2 = dx2+ dy2 + dz2+ dt2 = dr2 + r2(o-~2+ o’~2+ o~2)= dz~dE~+ dz

2d12

Minkowskispace: flab = diag(—1, 1, 1, 1), ~Ol23 = +1

ds
2 = —dt2 + dx dx

Hodge*: *dt=—dx1 A dx2 A dx3

A dt)= +dx2 n dx3, cyclic

A dx3)= —dx’ A dt,cyclic

Laplacian: ~ = d3 + ~d= +~— 3x3•3x

Maxwell’s equations: A = —A°dt + A dx

B ~ xA, E = F°’= —(3A’/3t+ 3A°/3x’)

F = dA = E dx A dt + ~B,E~Jkdx’~A dxk

**F=—F~ *F=±iF-*E=±j~

7. Determiningthe Levi—Civita connection.Let WaI, = Wha and dea= c~e”A e’ + c~
3e

2A e3+

c~e3A e’ + c?
2e’ A e

2= _Wnh A e”. Then

= e°[—c~]+ e’[—ch~]+ e2(~)(c?
2 — c,~2— c,

2
11)+e~(~)(—c~— c~1— c/,3)

1) 0 0 i’ 0 I 2 2 2 ~l (I 2 3
2 = e [—c,,2]+ e (~)(—c 12 C,,2 — c,~,) + e (—c02) + e (~)(c21 — c,,3— c~,2)
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= e°[—c~3] + el(~) (c~I — c~, — c~3)+ e2(~)(—c~3— c~3— c~2)+ e
3(—c~

3)

~

8. n-spheremetrics. R
2= ~‘2/ = the (constant)radiusof the sphere.

S2~ ds2= R2(d02+ sin2 0 dçb2)

e’ =(RdO,RsinOd4); w’
2=—cos6d4; RI2=~eI A e

2

S~:ds2 = R2(cr~2+ o’2 + tr
2

2)

= (Rcr~,Ro’~,Ru
2); w

2
3= o’~, = O~, = U2

R
2

3=~e
2A e3,cyclic

S~:ds2 = (dr2+ r2[cr~2 + uy2+ u2})/[1 + (r/2R)2]2

[1+ (r/2R)2]e” = (dr, rut, ru
5, ru2)

co,o = u(1 — (r/2R)
2)/(1+ (r/2R)2)

= °x, W
31 = O~, W12=

Ra~~=~~~eaA e”

S’~Cartesianmetric: r
2 = ~ (x’ )2

ds2 = dx’ dx’/[l + (r/2R)2]2

= dx’/[l + (r/2R)2]

volumeelement= e’ A e2 A e” = &x/[1 + (r/2R)2]~

V(S~)= volume = 2~0I2RPh/T(~(n + 1))

V(S°,~I , , .) = (2,2irR, 4irR2,2ir2R3,~_R4,...)

— x’dx1—x’dx’

(U — 2R2[1 + (r/2R)2]
R’

1 = e’ A e’; RIk, = (&kôJ, —

N-i ~_N(N-1) w -

— R
2 s” — R2 ijkl —
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9. P~(C)metrics.

Kählerform: K = 33 ln(1 + ~ z”r) = lrc,(L*)

Metric: ds2 = (i+z~r)2 [&,~(1+ z~Z”)—rz~]

Appendix B: Index theorem formulas

1. Indextheoremsfor Yang—Millstheory.

Characteristicclasses;dim(M) = 2, 4; bundleV with curvature F.

CI[V]=-~--J TrF

C
2[V]-k+~-~-’sJ TrF A F

Self-dualYang—Mills index:

SU(2): IYM = 8k —3

SU(3): IyM=12k—8, k�2(klis”’’SU(2))

Spin ~index for (2t + 1)-dimensionalrepresentationof SU(2):

I112(t) = ~t(t + 1) (2t + 1)k

I, /2(1/2)= k

2. Indextheoremsfor gravity.
Characteristicclasses,dim(M) = 4;

Pi[M]-~rJTrR AR

- Tr(0 n R)

0 = — (LI(J = 2nd fundamentalform, a connectionwith only normalcomponentson 3M

fl-invariant:

‘q[3M, g] = ~ sign(A~)~A1I”I~=o
(A �0}
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Topological invariants:
Signature:

r-~(P1—Q,)+~,~‘=_fl~

Eulercharacteristic:

= ~ [J�ah,.dR h A R’,1 — ,,f ~h~d (
20”h A R’~,— ~0”hA O’~.A

Spin ~index:

I
12[Al, g~= — 2’~(P1[Al] — QI[3A4]) + ~l/2

~I/2 =

h,12 = dimensionof harmonicspace

Spin ~index:

L-,,2[M, g~= +~(P,[M] — Q,[3M])+ ~3/2

Index of conformally self-dual gravitational perturbations;self-dual ALE metrics with infinity =

L(k + 1, 1):

‘6=3k —3+(scale)=3k—2.

3. CombinedYang—Millsandgravity index.
Let V be a bundleover a 4-manifold M, 3M = 0.
Spin ~index:

‘I/2 —~sdim(V)Pi[M]—C2[V]

Spin ~index:

‘3/2 = ~ dim(V) P~[M] + 3C2[ V]

If 3M�0, replaceP by P, — 0, andaddthe appropriatefl-invariant term.

Appendix C: Yang—Mills instantons

Yang—Mills potentials; A = A~~. dx’2

Yang—Mills field strengths: F = dA + A A A = F~ dx” A dx”
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Yang—Millsequations: d(*F)+A A (*F)—(*F) A A J

Bianchiidentities: dF+ A A F — F A A 0

1. Belavin, Polyakov,Schwarzand Tyupkin [1975]SU(2) solution. We take a. i, jto range from I to 3,
v to rangefrom 0 to 3, anddefine

/0 1\ /0 —i\ /1 0

Paulimatrices: A, = ~ o)’ A2 = ~i o)’ A3 = ~0 —1

‘t Hooft matrices: flap.,’ = flaij = ~ai/ a, i,j = (1,2,3)

7laiO~”’ôai a,i=(1,2.3)

fla,.L~’ =

— — “—1 \~~°~“°

flap.~ — ~ ~ flap.,’

0(4) matrices:self-dual, crp.,, = Aa’qap.,’: o~,1= ~fqkAk

=

and self-dual, ãp.,,= Aa~ap.,’: =

= —~A,

If we setg(x)=(t—iA . x)/r, r
2 = t2+x2, then

g~ dg = jAaUa = iAa~ap.,’x”dx”/r2

dgg~= ‘jAa~a= iAa~jap.,’x”dx”/r2,

where

u~=~(ydz—zdy+xdt—tdx), dcr~=+2o-~A o~, cyclicin(x,y,z)

&=-~(ydz—zdy—xdt+tdx), d&=+2&~A ~, cyclicin(x,y,z).

Then the BPST solutions are

Instanton(k = 1, F = * F).
first gauge:

A = r2 +a2 iAbtTb = dx” (—2 ~
=g~Ag+g’dg

~ 2~
~.1a,tb 12

A rcrb+sr ~ A tYd)
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secondgauge:

a2 . _Abdx’2 +2~”’””~ ‘a2~~
2 21Ab0b’~’~

r +a ( r +a2~~))
—Ab - dx”3”ln( a~

1+—f)~~flbp.~ r ,,

Anti-instanton(k = —1,F = — * F).
first gauge:

A = 2 2 iAb~b= L~. dx’2(+2 ‘1~’~2)

r +a

secondgauge:

a2 . Ab p.(’,71b~p~”~

A = + r2 + a2 iAbub 2i dx ~ r + a2

=g~Ag+g~ dg

p 2ia2A~ (—dr A rub +~r2�h(du.A Ud)
— (r2 + a2)2

2. ‘t Hooft [1976b]andJackiw—NohI--Rebbi[1977]SU(2) solutions.Let

—Aa
A1~~= ——dx” ijap.~ 3” In ~~(x)

2i

and

—Aa
A~= ——dx” flap.~ 3” In ~(x).

2i

Thenif

E14./~=0,

where

3

~ (32/3x”3x”),

we find that

A’~~hasF = + * F (instantons)

A~ hasF = — * F (anti-instantons).
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The solutionsfor ~ yielding instantonnumber kl are:

= ~ (x )2: ‘tHooft

k±1
= \2: Jackiw—Nohi—Rebbi.

j=I~, jj

Note that the k = 1 ‘t Hooft solution is obviouslyequalto the BPST instantonin the secondgauge.

3. Other explicit instantonsolutions.We refer the readerto Christ, Weinbergand Stanton[1978]and
Corrigan,Fairlie, Templetonand Goddard[1978]for explicit applications of the resultsof Atiyah,
Hitchin, Drinfeld andManin [1978].

Appendix D: Gravitationalinstantons

Metric: ds2= dx” gp.~(x)dx” = e”flabe”

Vierbein: e°= e~p.dx’2, flab = flat

Levi—Civita connection: de” + W”h A e” = 0

t0ab = ‘~“Wba = ~abp. dx”

Curvature: R”,, = dw°,,+ (U~ A (UC = ~RbCde A ed

Cyclicidentity: R”b A e” = 0

Bianchi identities: dRa,,+~aA R’,, — R°,’A ~ = 0

Empty-spaceEinsteinequations: (~9ab = Ramhnfltm”, ~ = 91~a~,fl)

I — b —
~ah — 2flab~ = 0 (alternateform: R’,, A e = 0, whereR”,, = 4Eb~fR’CdeA ed).

Einsteinequationswith matterand a cosmologicalconstant

~ab — ~flab~1 = Tab — I’ flat’.

We list a variety of explicitly known metrics and give a table of the properties of the metrics and
their corresponding manifolds.

1. Metric ofEguchiand Hanson [1978].

ds2 = [1 ~~~)4] + r2(c~~2+ u
5

2+ [1— (a/r)4]u
2

2)

curvatureis self-dual.
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Table D.l
Propertiesof four.dimensionalgravitational instantons

a Denotesentrieswhich areunavailableor involve issues toocomplex lobeabbreviatedin the table — Denotesundefineditems. “No. param”givesthe
numberof parametersof themetric. (The number of actual zero.frequencv modes may be larger.)

SeIf.dual
Riemann Kähler
Weyl Yes No.

Metric M aM .1 Neither No ~ Ii 1,~ param Action

Flatspace R’ 5’ 1) R = I) Y 1 0 1) 0 0 0
Torus T

4 0 1) R = I) Y 0 0 (1 0 (1 ()
de Sitter 54 0 >0 W = (I N 2 0 0 0 I 3i~/j

Page P~+ F
2 0 >0 N N 4 (1 — — I I .8~I.1

x ~2 52 x S
1 0 >0 N Y 4 1) 0 0 1 2w/i

Schwar,schild R052 5’ x S 0 N N 2 0 0 ‘ I 4~M1
Kerr x S2 S’ x S 0 N N 1 1) 0 * 2
Eguchi—Hanson T*(P,(C)) P,(R) 0 R Y 2 —l 0 —2 I 0

distorted
Taub—NUT R4 S’ 1) R N 1 0 0 ‘ I 4irM2
Fubini—Study P~(C) 0 >0 W Y 3 I — — I

= I Gibbons—Hawking ‘ ‘ I) R N k tk 0 * 4irkM
A,,

(e = ((Gibbons—Hawking) ‘ L(k + 1. I) 0 R Y k + I —k 0 2k 3k —2 0
S~ID~ I) R Y k + I —k 0 —2k 0

* S’/T’ 0 R Y 7 —6 0 —12 *

0’ * S’/O’ 0 R Y 8 —7 0 —14 1)

I’ * S’II’ 0 R Y ~ —y o —16 0

distorted
Taub-bolt P

2(C) —(0) S’ 0 N N 2 — I — — I 4srM
RotatingTaub.bolt ‘ * (I N N 2 — I — — 2 4~rINIM
K3 (unknown) K3 0 0 R Y 24 —16 +2 —42 58 1)

2. EuclideanTaub—NUTmetric (Hawking [1977]).

ds
2 = + “~dr2 + (r2 — m2)(u

2
2+ u

5
2)+ 4m2~ + ~

curvatureis self-dual.

3. Fubini—Studymetric on P
2(C).

d 2 — dr
2 + r2cr

2
2 + r2(u~2+ a’~2)S (1+Ar2/6)2 1+Ar2/6

self-dualWeyl tensor
cosmologicalterm A.
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4. Taub—NUT—DeSittermetrics (include 1, 2, 3 in appropriatelimits).

ds2 = L2—p2dp2+ (p2 — L2)(u~2+ u~2)+p2L2~U
2

2

4 =p2_2mp+l2+Ji(14+2/2p21p4)

thesemetricsare not necessarilyregular
cosmologicalterm A.

5. Gibbons—Hawkingmulti-centermetrics [1978].

ds2= V~(x)(dr+w dx)2+ V(x)dx dx

VV=±Vxw

V=�+2m~ 1
,=~x—x,I

= 1 multi-Taub-NUT(k = 1 - Taub-NUT)

k=1—~flat

= 0 multi-asymptoticallylocally Euclideanf k = 2 —~Eguchi—Hanson

self-dualor anti-self-dualcurvature.

6. EuclideanSchwarzschildmetric. (t hasperiod8irM)

ds2 = (1— 2M/R)dt2+ 1— 2M/R dR2+ R2(d02+ sin2 0 d~2)

7. EuclideanKerr metric. (t has period 21T/K, qS hasperiod 21ra/\/M2 + a2)

ds2= (r2 — a2 cos2 0) (~2 — 2Mr — a2+d02) + r2 —a2cos20(a dt — (r2 — a2) d4i)2

+ T
2

2?
2a9(dt_ a sin

2 0 d~~)2

a JIM, Kerr parameterK = \/M2 + a2/{2M(M + \/M2 + a2)}

8. de Sittermetric on S4.

ds2 = [i + (r/2R)2]_2 (dr2+ r2u~2+ r2u~2+ r2u
2)

curvatureis not self-dual
Weyl tensorvanishes.
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9 S2 x S2 metric.

dr2

ds2= (1 — Ar2) dr2 + (1 — Ar2) + (do2+ sin2 0 d~2)

curvatureis not self-dual
cosmological term A.

10. Pagemetric [1978b]on P
2(C)~P2(C).

(1 — v
2x2) dx2

ds2= 3A -1(1+ v2)~ — — v2(1 + v2)x2] 1— x2

I — PX 2(1 x2) [3— — v2(1+ v2)x2fl
+ 4(o’~2+ u~2)3 + 6 2 4 + 4u

2 — (3 + v
2)2(1 — v2x2) I

I/—i)

curvatureis not self-dual

cosmological term A.

11. Taub-boltmetric (Page [1978a]).

— N2
2 dr2+ 16N2 r2 — 2.5Nr+ N2ds2 = r2 — 2.5Nr+ N r2 — N2 o

2
2+ 4(r2 — N2)(u~2+ u~2)

curvatureis not self-dual.

12. RotatingTaub-boltmetric (Gibbonsand Perry[1979]).

‘dr2 sin2 0ds2 = ~E(r,0) (
5~~_+d02)+ ~ (a dt+P, d4)

2

4
+ z*(rO)(dt+P9dcb)

4 = r2—2Mr+N2—a2

aN2
P

9 = —a sin
2 0 +2N cos0—N2— a2

N4P. = r2 — a2— ________N2— a2

E(r,O)=P,’_aPo=r2_(a’cosO+N)2

curvature is not self-dual.

13. K3 metric. The K3 metricwith self-dualcurvatureis not known.Fora discussionof approximations
to the K3 metric, seePage[1979c].
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