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I. Introduction 

In this chapter, we deal with narrow-gap diluted magnetic semiconductors 
(DMS), known also as semimagnetic semiconductors. We focus our attention 
on their band structure in the presence of a strong, quantizing magnetic field. 
The small values of the effective masses, characteristic of narrow-gap 
semiconductors, make them particularly suitable for investigations in the 
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quantum regime. In fact, the diluted magnetic semiconductors with a narrow 
forbidden gap were probably the first to be studied experimentally (Delves, 
1963 and 1966; Morrissy, 1973). Their puzzling properties remained largely 
unexplained until the model of their band structure has been proposed 
(Jaczynski et al., 1978; Bastard et al., 1978; see also the review paper by 
Galazka and Kossut, 1980). The model, based on the k * p approximation, 
assumes that two electronic subsystems can be distinguished. The first 
contains mobile delocalized electrons from the conduction and/or upper- 
most valence band. These electrons, which can be described in terms of the 
virtual crystal approximation, are mostly responsible for electrical and 
optical properties. The second subsystem consists of electrons from the 3d 
shells of, typically, Mn ions. It is assumed that these produce localized 
magnetic moments. The degree of the localization of the magnetic ions is 
still disputed. Only recently the calculation based on the coherent potential 
approximation started to give insight into this problem (Hass and 
Ehrenreich, 1983). The latter electronic subsystem is responsible for the 
magnetic properties of DMS. The interaction between these two subsystems 
produces a spectrum of anomalies in the electrical and optical properties of 
diluted magnetic semiconductor. The reciprocal influence of mobile electrons 
is more difficult to detect, because it would require much greater electron 
concentrations than usually met in semiconductors. Such an influence has 
been recently detected in a quaternary mixed crystal Pbl -x,Sn,MnyTe 
(Story et al., 1985). We shall assume throughout this chapter that no 
spontaneous magnetization exists in the materials considered, i.e., the 
ordering of the localized moments is always induced by an external magnetic 
field. 

The plan of this chapter is the following: Part I1 discusses in detail the 
interaction between two electronic subsystems. Next, Part I11 presents 
models of the band structure in a magnetic field for narrow gap DMS with 
the zinc blende lattice structure (e.g., Hgl-,Mn,Te). Part IV deals with 
experimental results for various DMS (including those with NaCl and 
tetragonal crystal structures) obtained in the course of investigations of 
quantum transport phenomena, mostly the Shubnikov de Haas effect. In this 
chapter we shall put stress on those features that are unique for the diluted 
magnetic semiconductors and that support the proposed model of the band 
structure. The final Part V is devoted to a discussion of a preliminary 
investigation of quasi two-dimensional electronic systems in diluted magnetic 
semiconductors. 

We do not attempt to quote here the values of all important band structure 
parameters determined for the narrow-gap diluted magnetic semiconductors. 
We refer the readers to the tables of these quantities compiled by Galazka 
and Kossut (1 983). 
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11. Exchange Interaction Between Mobile s or p Carriers 
and Localized 3d or 4f Electrons in Semiconductors 

1. INTERACTION HAMILTONIAN 

The exchange interaction between mobile, s-like band electrons and 
localized electrons from partially filled 3d (or 4f) shells was first considered 
in transition (or rare-earth) metals. Early ideas of Zener (1951a-c) and 
Vonsovskii and Turov (1953) led to the development of the so-called s-d (or 
s-f) model. The case of rare-earth metals was particularly stimulating in this 
development, since magnetic properties of these materials could hardly be 
explained in terms of direct exchange interaction involving the overlap of 4f 
wave functions localized on neighboring rare-earth atoms. The localization 
of these wave functions is so strong (thus their overlap so small) that the 
estimated values of the direct exchange constants are far too small to 
account, e.g., for magnetic transition temperatures observed. Therefore 
indirect coupling between the localized magnetic moments of rare-earth ions 
via conduction electrons was invoked in order to explain the observed 
magnetic behavior. Several authors dealt with the problem of the form of this 
coupling (see, e.g., Vonsovskii and Turov, 1953; Kasuya, 1955; Abrahams, 
1955; Yosida, 1957; Mitchell, 1957). It was found that the exchange inter- 
action between the conduction electrons and 3d or 4f electrons (i.e., those 
responsible for the formation of localized magnetic moments) can be 
represented by a simple Heisenberg-like formula 

where s is the spin operator of an s-electron at position r, S, is the total spin 
operator of a 3d (or 4f) shell at  R, and J(r - R,) is an appropriate exchange 
constant (a constant term has been omitted in Eq. (1)). It was argued that 
the function J(r - R,) is strongly peaked around Rn and quickly vanishes 
away from this point, reflecting the localized nature of the 3d (or 4f) 
electrons. The form given by Eq. (1) is not the most general one, since several 
assumptions have been made during its derivation. First, a constant number 
of electrons in the 3d (4f) shell associated with a given ion was assumed. In 
other words the magnitude of the localized spin was taken to be constant. 
It is possible to generalize the Hamiltonian and avoid this limitation (e.g., 
Vonsovskii and Svirskii, 1964; Irkhin, 1966). 

However we shall restrict our attention to the simpler case, assuming a 
constant value of the localized spin, as experimental data obtained on diluted 
magnetic semiconductors seem to suggest. 
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The second assumption made when deriving Eq. (1) concerns the validity 
of the description of the localized moments in terms of the spin eigenvalues. 
Such description often requires the use of a total angular momentum J, 
instead of the spin only. It was shown by Liu (1961) that even in such a 
case a simple form involving the scalar product can be retained if S, in 
Eq. (1) is replaced by J, and the coupling coefficient J(r - R,) is slightly 
redefined: 

Conversely, when mobile band electrons are subject to a strong spin-orbit 
interaction (as is commonly the case in semiconductors, e.g., in the valence 
band p-like states in zinc blende III-V and II-VI compounds), it is more 
proper to label their states using eigenvalues of total angular momentum j. 
Then, the coupling Hamiltonian (that in this case corresponds to p-d 
coupling) can be conveniently expressed as: 

All expressions quoted so far are isotropic. It can be shown that this is only 
an approximation, valid if spatial extensions of 3d (4f) wave functions are 
small compared to the de Brolie wavelength of mobile s- or p-electrons. Only 
then the mobile carriers do not “feel” an anisotropic character of 3d (40 
functions. This condition is sometimes not easy to meet in metals. Therefore, 
a generalization of Eq. (1) was found by Kaplan and Lyons (1963) that is 
explicitly anisotropic. In semiconductors, however, the mobile carriers which 
usually play a role, are characterized by much smaller values of momenta k 
than in metals; that is, they have longer de Brolie wavelengths. This fact 
justifies the use of the isotropic expression (1) in our further considerations 
of diluted magnetic semiconductors. 

2. EXCHANGE CONSTANTS 

We shall now turn our attention to the nonlocal “potential” J(r - Rn) 
appearing in Eq. (1). All papers quoted in the preceding section defined 
rather the Fourier transform of J(r - Rn) than this function itself. This 
transform can be written as 

J(k, k’) = - 2 q&(r)+;(r’)V(r - rr)~,lk’(r’)+d(r)d3rrd3r (4) .r 
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where Wnk denotes the spin-independent part of the wave function of a mobile 
band electron in the n-th band with a wave vector k, 6 d  is an appropriate wave 
function of 3d (or 4f) electrons (possibly integrated over all spatial variables 
but one) and V(r - r’) is the electrostatic interaction between the electrons. 
One may interpret Eq. (4) as a direct exchange interaction between the 
particles in question. A problem arises concerning the actual dependence of 
J(k, k’) on the mobile electron momenta k and k‘. This dependence is 
difficult to extract from Eq. (4) in a general case. In metals, one often argues 
that, since only the electrons from the Fermi surface are important in the 
majority of physical situations, it is possible to replace k and k’ in Eq. (4) 
by their values at this surface; that is, for a spherical Fermi surface they can 
be replaced by a single parameter k~ . Thus, one is left with only one exchange 
constant. Its value has been estimated theoretically on the basis of Eq. (4) 
by several authors (e.g., Izyumov and Noskova, 1962; Kasuya, 1966; Kasuya 
and Lyons, 1966; Watson and Freeman, 1966 and 1969). These estimations 
give values in the range 10-3-10-’ eV. 

Slightly different reasoning has to be invoked in the case of semicon- 
ductors, which is of interest to us here. A most widely used description of 
band electrons in semiconductors is in terms of the k * p perturbation 
approach (Luttinger and Kohn, 1955). Usually, one is interested only in 
electrons that are in the vicinity of band extrema. Therefore, the wave 
function W n k  is sought as a combination of the wave functions at various 
band edges un (n is the band index; for the sake of simplicity let us assume 
now that the band extrema occur at k = 0), 

where an(k) are coefficients of the combination. The sum in Eq. (5) can often 
be restricted to only a few terms. This is particularly true in the case of 
narrow-gap semiconductors. Then the coefficients an(k) can be found exactly 
together with their explicit dependence on the wave vector k. Inserting wave 
functions ( 5 )  into (4), we obtain 

As we can see a part of the k, k’ dependence is already taken out from 
integral. The remaining k-dependence is of lesser importance. As 

(6) 

the 
we 



188 J .  KOSSUT 

mentioned above, the wave vectors of band electrons usually encountered in 
semiconductors are rather small in magnitude. Because of the strongly 
localized character of the f$d functions, the main contribution to the integral 
in Eq. (6) comes from the region of small r and r’. In this region the 
exponential factors in the integrand can be approximated by 1 .  So, the whole 
dependence of J(k, k’) on k, k’ is now given by the factors an*(k) and a,,(k’).  
One may now define a set of basic exchange constants, all of them indepen- 
dent of k,  k’ (Kossut, 1976) 

Jnn, = - 2 uE(r)f$2(r’)V(r - rf)un,(r‘)f$d(r)d3rd3r‘. (7) 

Moreover, when symmetry arguments are invoked, only the “diagonal” 
elements J,, can be shown to be nonvanishing. We shall denote them by J,  . 
Two of these basic exchange constants are very commonly encountered in 
diluted magnetic semiconductors. They involve s-like electrons from what 
usually is a conduction band of rs symmetry in semiconductors with the zinc 
blende lattice, and p-like electrons from the Tg symmetry band. Traditionally 
they are denoted, respectively, by a and p in the literature dealing with diluted 
magnetic semiconductors: 

where ur6 = S&’/’S(r) and tirs = Qo’/’X(r) while SZO stands for the volume 
of a unit cell. The elements as ( S I J I S ) ,  etc., commonly used in the literature, 
represent symbolically the integration indicated by Eq. (7) with appropriate 
wave functions un of the electron at the band edge. 

In the course of various investigations of DMS it was established (see other 
chapters in this volume) that the constants a and p differed in sign: j? turns 
out to be positive (“antiferromagnetic”) while a is negative (“ferro- 
magnetic”). Usually the absolute value of p is greater than a. On the basis 
of Eq. (7), on the other hand, one could expect a single sign (“ferro- 
magnetic”) for both constants, 

Recently, two attempts to solve this puzzling fact have been published 
(Semenov and Shanina, 1981 and Bhattacharjee et al., 1983). The first of 
these two papers notes that, apart from the term given by Eq. (4), there is 
also a contribution arising from the overlap integral of the 3d wavefunction 
and wavefunctions of the band electron (this contribution also leads to a 



5. QUANTUM TRANSPORT IN DMS 189 

general form of the interaction Hamiltonian (3)). This contribution is 
opposite in sign to that given by the direct exchange mechanism represented 
by Eq. (4). This is of particular importance for p-like electrons, which usually 
form the valence band in semiconductors, while for s-like conduction band 
electrons it can be practically neglected. Therefore, it can explain the 
difference in sign of a and p. The importance of the overlap term in the case 
of p-like electrons follows from the fact that these electrons originate mainly 
from the anions (e.g., Te ions in Cdl-xMnxTe). Therefore, the corre- 
sponding wave functions are peaked at the anion lattice sites (say, in a tight 
binding scheme), which are the nearest neighbors of a given Mn ion. Thus, 
the overlap of these functions and 3d wave functions of Mn may be 
appreciable. 

On the other hand, the s-like electrons originate mainly from cation 
sublattice atoms, i.e., either from Mn atoms themselves or from more distant 
Cd or Mn ions. In the former case their wave functions are orthogonal to 
the 3d functions (same ion). In the latter situation the overlap produced must 
be smaller because of a greater distance between the ions. It is then concluded 
that in the case of the constant a the direct (ferromagnetic) exchange 
mechanism dominates, while the overlap contribution determines the value 
of p. Indeed, estimates by Semenov and Shanina (1981) give an order of 
magnitude for IayI = p = 0.1 + 1 eV and a < 0. Note that our definition (1) 
differs in sign from the definition used by Semenov and Shanina. 

A different approach to the problem of sign of a and p is taken in the paper 
by Bhattacharjee et al. (1983). It stresses the importance of hybridization of 
the localized d and the valence-band p electrons. On the basis of the virtual 
bound state approach (Anderson, 1961; Friedel, 1958), it is shown that the 
Anderson Hamiltonian (which by the Schrieffer and Wolff (1 966) trans- 
formation is equivalent to the s-d model) for reasonable model parameters 
leads to a positive (“antiferromagnetic”) exchange constant p for the p-like 
valence electrons. The hybridization is not effective in the case of a. This is 
partly because the virtual bound state due to d electrons falls into the valence 
band and is energetically quite distant from the conduction band. The energy 
denominators appearing in the theory reduce then quite strongly the 
contribution to a due to the hybridization. Also, the relevant hybridization 
matrix elements are smaller for s-like than for p-like electrons. Thus the 
normal direct exchange mechanism is mainly responsible for the value and 
sign of a,  while an interplay between direct exchange and hybridization 
determines /3. 

It is difficult to decide at the present stage, which of the two approaches 
describes better the physical reality. None of the experiments (e.g., experi- 
ments on samples under hydrostatic pressure, which would affect the overlap 
integrals discussed by Semenov and Shanina, 1981) could distinguish 
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between the models. One is, then, still in a situation in which the relevant 
exchange constants have to be treated as phenomenological quantities, with 
values treated as adjustable parameters of the given model of a diluted 
magnetic semiconductor. 

111. Band Structure of Narrow-Gap Diluted Magnetic Semiconductors 
in Quantizing Magnetic Fields 

The majority of papers dealing with narrow-gap diluted magnetic semi- 
conductors is devoted to alloys based on 11-VI mercury compounds, e.g., 
Hgl-,Mn,Te or Hgl-,Mn,Se. They were also the first studied experimentally 
in an extensive manner. Therefore, we describe here the band structure of 
these materials. We shall discuss briefly the band structure of tetragonal 
(Cdl-,Mn,)3Asz and DMS based on lead chalcogenides (or rather only the 
modifications of the general model associated with their different crystal- 
lographic symmetries), when we describe in the following sections the 
experimental results obtained for these materials. 

Early investigations (Morrissy, 1973; Delves, 1963 and 1966) indicated that 
semiconducting properties of Hgl -,Mn,Te cannot be entirely understood in 
terms of existing theoretical models that could be successfully applied to such 
semiconducting mixed crystals as Hgl -,Cd,Te. The unexplained features of 
Hgl -,Mn,Te were a non-monotonic temperature behavior of the Shubnikov- 
de Haas oscillation amplitude (Morrissy, 1973) and the value of the spin- 
splitting of electrons and its temperature dependence observed in magneto- 
optical study of Bastard et al. (1978) (see also Rigaux, this volume). On the 
other hand, when no strong magnetic field was applied, the band structure 
of Hgl-,MnxTe appeared to be qualitatively the same as in Hgl-,Cd,Te, as 
indicated in the study of Stankiewicz et al. (1975). As in other narrow-gap 
materials with the zinc blende lattice symmetry, the minimum of the con- 
duction band and the maximum of the valence band occur at the central point 
r of the Brillouin zone. There are three bands with similar energies (see 
Fig. 1): a fourfold degenerate band of TS symmetry, and doubly degenerate 
r6 and r7 symmetry bands. The sequence of these bands varies with the crystal 
composition. For low values of Mn mole fractionx, we deal with the so-called 
inverted band ordering (or symmetry-induced zero-gap configuration) 
depicted in Fig. la. For increasing values of x, r6 valence band shifts 
upwards, and at x = 0.065 (at 4.2 K), it coincides with the position of the TS 
band (Fig. 1 b). Above this semimetal-semiconductor transition point, r6 
band starts to form the conduction band (Fig. lc) while the TS band becomes 
the light and heavy hole band. The energy gap Eg defined as the energy 
difference between TS and r6 levels is then positive, and we are dealing with 
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FIG. 1 .  The energy level scheme in the vicinity of the conduction and valence band edges in 
narrow-gap semiconducting mixed crystals with zinc blende structure: (a) inverted (zero-gap) 
band structure; (b) semimetal-semiconductor transition point; (c) open-gap structure. 

the standard semiconducting band ordering. The variation of the energy gap 
with the crystal composition in Hgl-,Mn,Te is shown in Fig. 2. The r7 
symmetry band (or spin-orbit split-off band) remains a deeper valence 
band. 

It is well known from the work of Kane (1957) that the proper description 
of a narrow-gap semiconductor requires that at least the three bands r6, r7 

and l-8 , because of their energetic proximity, are considered at the same level 
of accuracy in a k - p treatment of the band structure. The remaining more 
remote bands, often referred to as “higher bands”, may be treated in an 
approximative way. Their influence on the shape of the conduction and 
valence bands is usually evaluated with accuracy to terms proportional to k2, 
where k is the electronic wave vector. Only in the case of HgSe, and of mixed 
crystals similar in composition to HgSe, does one have to include in the set 
of closely spaced (quasi-degenerate) bands also the nearest higher band of 
r15 (no spin notation) symmetry, as found by Mycielski et al. (1982). This 
fact is connected with the relation EE = 2/3A, where A is the spin-orbit 
splitting (or the distance between TS and r7 bands), that is fulfilled in HgSe. 
However, a very steep slope of the Eg vs. x relationship in Hgl-xMn,Se 
(Dobrowolska et al., 1981) limits this “anomalous” region to x s 0.0005. 
Also, the modifications due to such enlargement of the quasi-degenerate 
set of bands concern mainly the r6 band (light holes) and therefore are 
possibly important in an analysis of the interband magnetoabsorption 
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FIG. 2. Variation of the energy gap with composition of Hg,-,Mn,Te. [After Galazka and 
Kossut (1983).] 

experiments. In this chapter, which is focused mainly on the magneto- 
transport phenomena in n-type DMS, we shall neglect this complication in 
further considerations. 

There exist in the literature on narrow-gap semiconductors the simplified 
models of their band structure in a presence of a strong magnetic field. In 
particular, the so-called quasi-Ge model of Luttinger (1 956) includes into the 
quasi-degenerate set of states only the Tg band. The three-band model 
(e.g., Kacman and Zawadzki, 1971) although considering in detail all 
closely positioned r6, l-7 and TS bands, neglects totally the influence of the 
higher bands. The advantage of these models lies in the fact that they can 
be solved analytically. However, their applicability is only of limited range. 
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In particular, the spin-splitting of electronic states, a quantity of primary 
importance in the case of diluted magnetic semiconductors, is only approxi- 
mately rendered by these models. Moreover, when the exchange interaction 
between electrons from the r6, G ,  T8 bands and 3d electrons forming 
magnetic moments localized on Mn ions is taken into account, even these 
simpler models cannot, in general, be solved in an analytic way without 
further simplifications. Therefore, we shall base our further calculations on 
the model of Pidgeon and Brown (1966) that, although only numerically 
soluble for standard narrow-gap semiconductors, takes fully into account all 
the important bands. 

The Pidgeon-Brown model treats within the k p approximation the 
bands r6, r7, Ts as quasi-degenerate and accounts for the higher bands in a 
perturbative way by means of several parameters. As is usually the case when 
starting a k * p calculation, one has to define the set of basis functions at the 
band extrema (often called the Luttinger-Kohn amplitudes). We choose this 
set in a standard form for the crystals of zinc blende symmetry. 

where the Luttinger-Kohn amplitude S transforms under the operations 
from the rd group as an atomic s-like function and the amplitudes X ,  Y,  and 
Z as atomic px ,  p y ,  p,-like functions, respectively. The symbols t and 1 
denote the Pauli spinors. The matrix elements of the k - p Hamiltonian in the 
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presence of the external magnetic field form an 8 x 8 matrix. Rearranging 
the sequence of the basis functions to u1, u3, u5, u7, u2, u4, US, Us we can 
write this matrix (Leung and Liu, 1973) as 

where the matrices Da, Db, and Dc are defined by Eqs. (14), (15), and (16) 
with the following notation 

h2 

mo 
c = - ,  

eH 
hc ' 

s = -  

with mo being the free electron mass. 

Eg + 2CsF(N + 9) 
iP&a + 

+ Cs(N + 1) + (F + +)ck: I 
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D, = 

i 
- - Pk, - C a y 3  k,a - 3 N y 3  kza+ 43 I 0 

The operators a and a+ in Eqs. (14)-(16) are the harmonic oscillator lowering 
and raising operators, respectively, defined as 
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and 

N = a’a. 

P is the interband momentum matrix element 

and the parameters y 1 ,  y 2 ,  y3,  K, and F describe the coupling to the higher 
bands. The eigenvectors of the matrix (11) can be sought in the form 

Fn = (LyLz)-”2exp[i(kyy + k,z)] 

where 4 n ( c )  is the harmonic oscillator eigenfunction of the variable 

Acting with the matrix (1 1) on the eigenvector given by Eq. (21) we obtain 
the matrix which can be diagonalized numerically in order to find the 
eigenvalues for a given magnetic field and harmonic oscillator quantum 
number n and k,. Let us note further that if we put k, = 0 (i.e., we are 
interested in the energy positions of the Landau subband minima), the whole 
matrix D can be partially decomposed into two noninteracting matrices Da 
and Db. The matrix D, , Eq. (16), is then equal to zero. We are then left with 
two independent eigenproblems, each 4 x 4 dimensional, the solution of 
which gives us in general two sets (a- and b-set) of eigenenergies. Note that, 
in the case of the Landau quantum number n = - 1  one has to put all 
coefficients aj in Eq. (21) equal to zero except for a4. The single energy level 
obtained in such case, which is very easy to find, corresponds to the upper- 
most heavy hole valence band Landau level. Similarly, when n = 0 one has 
to put a1 = a3 = a6 = as = 0 and for n = 1: a3 = 0. 

Having described in detail the model of the band structure of a narrow-gap 
semiconductor, let us return to the problem of a diluted magnetic semi- 
conductor. As mentioned before one could not hope to describe the band 
structure in this case simply by an appropriate choice of a set of parameters 

[ = x - ky/S. 
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defined previously in this section. This fact is probably best illustrated by a 
simultaneous analysis of the effective mass and spin splitting of the con- 
duction electron. The model described above predicts that the effective mass 
at the bottom of the conduction band is determined mainly by the ratio 
Eg/P2, the dependence on other parameters being less significant. Similarly, 
the electronic g-factor, that describes the spin splitting, is roughly determined 
by mo/m* (where we assumed A = 00). Thus, for a given crystal com- 
position, i.e., for a given Eg and P (Pbeing only slightly sensitive to the actual 
value of Mn mole fraction x),  both the effective mass and the g-factor should 
be interrelated. The measured values of the effective masses in HgI-,Mn,Te 
were indeed in accordance with these predictions (Bastard et al., 1978; 
Jaczynski et al., 1978). However, the g-factors, as determined experi- 
mentally, turned out to be much greater (easily by a factor of 2) than these 
expectations and, moreover, they depend rather strongly on the temperature. 
Clearly, the band structure model was inadequate to account for these 
observations. 

The fact that only the spin properties seemed to be anomalous immediately 
suggested that the interaction with localized moments of Mn ions involving 
conduction electron spin is the source of the problem. As mentioned in Part 
I1 of this chapter, it is possible to represent this interaction by the Heisenberg- 
like Hamiltonian H s d  = C j  J(r - Rj)S - S j ,  with S j  and s standing for spin 
operators of thej-th Mn ion and the band electron, respectively. Calculating 
the matrix elements of H s d  with the basis functions, Eq. (lo), one obtains an 
additional matrix which must be added to Eq. (1 1) before the eigenvalues of 
our problem are found: 

where 

DL = 
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DL = 

0 

where ST = SJ? f iSj’ and, as in Part 11, the only nonvanishing and 
independent exchange constants are defined as 

Here QO is the unit cell volume, and NO = V / Q ,  is the number of cation 
sublattice sites. 

The matrix (22) is of rather complex form. The problem is further 
complicated by the fact that after addition of (22) to (1 l), its solutions can 
no longer be sought as a simple vector-column of harmonic oscillator 
eigenfunctions. The matrix (22) can be, however, considerably simplified 
when an approximation analogous to the mean field approximation from the 
physics of magnetism is invoked. Namely, the wave functions of conduction 
and valence band electrons are spread over the whole volume of the crystal. 
Therefore, one may say that these electrons interact with all magnetic 
moments present in a sample, thus “feeling” in effect the average value of 
the localized moments. One may thus say that the band electrons are subject 
to a certain average or resultant field of the localized moments. It is therefore 
permissible to carry out an averaging procedure over all possible states of Mn 
moments already at the level of the Hamiltonian matrix. For a paramagnetic 
system only the S,  component of the localized spin does not vanish after the 
averaging procedure. This very major approximation was confirmed 
a posteriori by Gaj et af. (1979) who determined experimentally a direct 
proportionality between spin splittings and magnetization that is propor- 
tional to (Sz>x (note that C,(S~>/NO = x(S,>). 

After this averaging procedure the entire off-diagonal blocks DL in Eq. (22) 
vanish and one is left with two nearly diagonal 4 x 4 blocks DL and Di, . The 
matrix resulting from the addition of Eq. (1 1) and Eq. (22), with DL blocks 
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omitted, may then be solved in terms of the harmonic oscillator wave- 
functions. 

The new parameters a and p are treated as adjustable parameters (their 
fitted values are discussed further in this chapter). The values of ( S z )  which 
depend on the crystal composition and also on the temperature and magnetic 
field strength are either calculated assuming some simple model (see, e.g., 
Galazka and Kossut, 1980) or taken from an independent experiment 
measuring the magnetization of the samples. 

An example of the diagonalization is shown in Fig. 3, where a series of the 
conduction and heavy hole Landau levels is shown for zero-gap Hgl-,Mn,Te 
at two temperatures. The strong temperature dependence of the band 
structure occurs via the terms involving ( S z ) .  While the band structure at 
T = 30 K (Fig. 3b) resembles that of nonmagnetic Hgl-,Cd,Te with corre- 
sponding energy gap, the situation at low temperatures T = 1.4 K in Fig. 3a 
is qualitatively different. We shall enumerate the most important of these 
differences below. 

Ordering of the Landau Levels 

The first thing to be noted in Fig. 3 is an enhancement of the low tem- 
perature spin splitting (marked by thick solid arrows), which was achieved 
by putting a positive value of p. As we pointed out earlier, such an enhance- 
ment was indeed observed experimentally. Note also that the higher of the 
spin-split Landau levels (b-set levels) are shifted so strongly upwards in low 
temperature that they cross the Landau levels from the m e t  of solutions with 
a greater harmonic oscillator quantum number n.  

This feature constitutes a unique attribute of narrow-gap DMS: the spin 
splitting, being ruled mainly by the exchange interaction of the band carriers 
with the localized magnetic moments, may easily exceed the cyclotron 
splitting that is due to the effect of the external magnetic field on the orbital 
degrees of freedom of an electron or a hole. This is particularly true in the 
case of the heavy holes for which the cyclotron splitting is rather small 
because of the large value of their effective mass. Therefore, DMS may be 
viewed as systems where “amplification of the spin properties’’ takes place. 
The degree of this amplification is, furthermore, tunable by the temperature. 

Conduction and Valence Band Overlap 

A second striking feature to be noted in Fig. 3 is the existence of the band 
overlap at low temperature. The presence of strong magnetic field lifts the 
degeneracy of the conduction and heavy hole bands in zero-gap semi- 
conductors. In diluted magnetic semiconductors, the uppermost heavy hole 
subband (indicated by an arrow in Fig. 3) is shifted upwards, contrary to the 
case of, e.g., Hgl-,Cd,Te where this shift is directed downwards so that a 
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FIG. 3 .  The Landau subband energies in Hg,-,Mn,Te, x = 0.025 calculated at a constant 
magnetic field and at (a) T = 1.4 K and (b) T = 30 K as a function of the wave vector k~ along 
the magnetic field direction. The field is applied along the ( 100) crystallographic axis. Thick 
vertical arrows indicate spin splitting of the lowest conduction-band Landau level. The valence 
band Landau level bu(- 1) is indicated by thin arrow. [After Dobrowolska et al. (1979); reprinted 
with permission of Pergamon Press, Ltd.] 
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real energy gap opens. Therefore, it may happen that the band gap in DMS 
opens only at elevated temperatures. 

The magnitude of the band overlap is a result of an interplay between this 
exchange interaction-induced shift and the movement of the lowest conduc- 
tion band that occurs also in the upward direction on the energetic scale. For 
very small values of Eg (close to the semimetal-semiconductor transition), the 
conduction band levels (due to the smallness of their effective mass) move 
up faster than the top of the valence band, and the overlap may not occur 
even at  very low temperature. Also, for sufficiently high magnetic fields the 
shift of the top of the valence band reverses its sign and the level beings to 
move downwards, as it does in standard narrow-gap semiconductors. Then 
the energy gap induced by the field starts to open. 

This strange behavior of the top of the valence band may be qualitatively 
understood when one bears in mind how ( S , )  depends on the temperature 
and magnetic field. Let us assume for a moment that we are dealing with a 
perfect paramagnet where the magnetic moments do not interact with each 
other. Then ( S , )  varies as 1/T, so that at higher temperatures the additional 
terms proportional to (S,) may become negligible compared to “normal” 
terms brought by Eq. (11). The magnetic field tends to align the magnetic 
moments along its direction. When all the moments are already aligned a 
saturation is reached and ( S , )  = - 512. The “normal” terms in Eq. ( l l ) ,  on 
the other hand, are directly proportional to the field. A value of the magnetic 
field may thus be reached when the contribution of these normal terms wins 
over the exchange induced contribution. For the top of the valence band such 
a return to “normalcy” occurs if the following condition is met: 

The above general remarks remain true even if the interaction between the 
localized moments becomes appreciable and ( S , )  cannot be described by a 
simple Brillouin function applicable to non-interacting spin systems. 

Shape of the Heavy Hole Landau Levels 

Another feature in which diluted magnetic semiconductors differ from 
their nonmagnetic counterparts, is existence of very pronounced “camel 
backs” in the heavy hole Landau levels with large quantum number n. Such 
a “camel back” shape of the heavy hole Landau subbands is characteristic 
also for ordinary narrow-gap semiconductors. However, in diluted magnetic 
semiconductors it is particularly large at low temperatures. Since this shape 
is enhanced by the ( S , )  terms, the magnitude of the “camel backs” decreases 
with the temperature, as can be seen in Fig. 3. 
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Reduction of the g-Factor above the 
Semimetal-to-Semiconductor Transition 

Finally, let us turn our attention to the region “open-gap” of diluted 
magnetic semiconductors, i.e., to compositions above the semimetal- 
semiconductor transition (that occurs, e.g., at x = 0.065 in Hgl-,Mn,Te at 
4.2 K). The conduction band is then of r6 symmetry and the electronic wave 
functions are mainly of s-like character. Therefore, one may expect that the 
modifications of the band structure due to the s-d interaction will be mainly 
described by the constant a. The sign of a (determined experimentally) is in 
our notation negative, i.e., opposite to the sign of p .  Therefore, the exchange 
contribution to the electronic g-factor in the open-gap DMS is also opposite 
in sign to that contribution in zero-gap DMS. Since the exchange induced 
contributions in both zero-gap and open-gap narrow gap DMS constitute 
a sizable part of the total spin splitting of the conduction electrons, one 
can, consequently, expect a reduction of the electronic spin splitting at 
very low temperature in the latter. The absolute value of a is found to be 
smaller than that of /3, thus this reduction is expected to be less pronounced 
than the enhancement observed in the case of zero-gap materials. Figure 4 
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FIG. 4. The energies of the minima of the conduction subbands ( k ~  = 0) in Hg,-,Mn,Te 
(x  = 0.1). calculated at (a) T = 5 K,  (b) T = 15 K and (c) without the contribution of the 
exchange interaction (i.e., for 01 = p = 0) as a function of an external magnetic field. 
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presents results of numerical diagonalization of matrices (1 1) and (22) for 
Hgl-,Mn,Te with x = 0.1. Only the minima of the conduction band Landau 
levels (k, = 0) are shown. For the sake of comparison, the Landau levels in 
the “nonmagnetic” counterpart (the same band parameters, but for 
a = /? = 0) are given in Fig. 4c. 

One may observe that the spin splitting is indeed greatly reduced. For 
T = 5 K, even the level ordering is opposite, which corresponds to a very 
small but positive value of the g-factor. So, there is again a qualitative 
difference with non-magnetic narrow-gap semiconductors where the 
g-factors determined mainly by the spin-orbit interaction are generally 
negative. The positive g-factors-and their sign reversal with increasing 
temperature- have been, in fact, observed experimentally in the magneto- 
optical experiments (see Rigaux, this volume). 

IV. Transport Measurements in the Quantum Regime: 
Confirmation of the Band Structure Model 

The study of transport phenomena in strong quantizing magnetic fields (in 
particular, the Shubnikov-de Haas effect) is a useful tool of investigating the 
band structure. Since the Landau quantization is strong in semiconductors 
with small effective masses, the method is particularly well suited for narrow- 
gap semiconductors. In the present section, we shall describe the experi- 
mental data on the quantum transport phenomena, stressing these aspects 
that reflect the unique band structure character of diluted magnetic 
semiconductors. The sequence of the sections will be the following: first we 
shall focus our attention on the zinc blende materials Hgl-,Mn,Te and 
Hgl-,MnxSe, for which the greatest amount of data is available. Next we 
proceed to  tetragonal DMS and lead salts containing manganese (e.g., 
(Cdl-,MnX)3As2 and Pbl-,Mn,Te), which are only at the initial stages of 
investigation. Our attention throughout this section will be limited to n-type 
samples. We will thus, not discuss in this chapter the experiments on the 
quantum transport phenomena in p-type samples of zero-gap Hgl -,Mn,Te 
(see, e.g., Sawicki et a l . ,  1982 and Ponikarov et af., 1981). The peculiarities 
observed in these samples are mainly associated with the pinning of the Fermi 
level by the acceptor states degenerate with the conduction band. 

3. HgI-,MnxTe AND Hgl-,MnxSe 
The quantum transport study of Hgl-,Mn,Te by Morrissy (1973) was the 

first t o  reveal anomalies, characteristic for what later become known as 
semimagnetic or diluted magnetic semiconductors. However, the anomalies 
remained largely unexplained until the band structure model as described in 
Section I11 was developed by Bastard et al. (1978) and Jaczynski et al. (1978). 
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Further in this section we shall try to  describe the most striking differences 
between the quantum transport phenomena observed in diluted magnetic and 
nonmagnetic semiconductors, and we shall discuss how the anomalies 
occurring in DMS can be understood. 

a. Temperature Dependence on the Shubnikov-de Haas Peak Positions 

The magnetic field positions of the maxima (or minima) observed in the 
Shubnikov-de Haas (SdH) effect are mainly determined by the crossing of 
the Fermi level with consecutive Landau levels. Their temperature depend- 
enCe is, in usual materials, only very slight. It was, therefore, quite surprising 
to  observe a very strong temperature shift of the maxima of the SdH effect 
in Hg,-,Mn,Te (Jaczynski et al., 1978). The shift was particularly pro- 
nounced in the case of the spin split peaks. The small temperature variation 
of the effective mass of conduction electrons could not possibly account for 
the observed shifts. 

These shifts are quite naturally explained in terms of the band structure 
model incorporating the s-d exchange terms presented in Section I11 of this 
chapter. They are due to a strong temperature dependence of the terms 
proportional to ( S , ) ,  that govern the spin splittings of the Landau levels, and 
also, but to a much lesser degree modify the positions of the unsplit Landau 
levels. Similar strong temperature dependence was also observed in later 
Shubnikov-de Haas effect studies both in Hgl-,Mn,Te by Byszewski et af .  
(1979) and Hgl-,Mn,Se by Takeyama and Galazka (1979), Byszewski et af .  
(1980) and Lyapilin et al. (1983). 

It should be mentioned that in the case of the very last oscillation, i.e., that 
occurring at the highest magnetic field (often labeled 0-) ,  the Shubnikov-de 
Haas peak exhibits a relatively strong dependence on the temperature also 
in nonmagnetic semiconductors. This has its source in the partial lifting of 
a strong degeneracy of the electron gas. However, in diluted magnetic 
semiconductors, as noted in Hgl-,MnxSe by Lyapilin et al. (1983), the 0- 
peak observed in intense magnetic fields may shift towards smaller fields 
when the temperature is increased. This is exactly the opposite direction of 
the temperature shift of the 0- peak to that observed in nonmagnetic 
semiconductors. Hence, the usual explanation may again not be applied to 
the case of diluted magnetic semiconductors. On the other hand, both the 
direction of the 0- shift and its magnitude can be readily explained by the 
variation of the Landau level (n = 0, set b) with temperature due to  the 
exchange terms proportional to (&). 

Probably the most striking feature in the SdH behavior of DMS was the 
evolution the temperature of a well resolved doublet structure of Shubnikov- 
de Haas peaks that remained unsplit at lower temperatures. This can be 
clearly seen in Fig. 5 in the case of the oscillation maxima associated with 
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FIG. 5 .  The Landau levels at k~ = 0 in Hg,-,Mn,Te (x = 0.02) calculated at (a) T = 4 K and 
(b) T = 36 K using the value of /3 = 0.6 eV and a = - 0.4 eV. Open circles show the positions 
of the maxima of the Shubnikov-de Haas oscillations observed by Byszewski et al. (1979). 
Arrows indicate the peak which splits at elevated temperatures. Note that at the lower 
temperature the energy gap opens only above 8T. 
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a, (2) and b, (1) Landau levels-sometimes labeled as 2' and 1- levels-in 
Hgl-,Mn,Te (x = 0.02). This is contrary to the case of nonmagnetic semi- 
conductors where the increase of the temperature leads usually to a smearing 
out of the observed maxima. Again, this anomalous feature is naturally 
accounted for by the exchange-induced modifications of the band structure. 
The spin-splitting at the lower temperature is so big that the b, (1) spin-split 
Landau level nearly coincides with the a, (2) level. Thus, a single Shubnikov- 
de Haas maximum is observed. When the temperature is raised, the value of 
( S , )  and, thus the spin splitting is reduced. Consequently, the be (1) sublevel 
is sufficiently separated from the a, (2) sublevel for thz doublet structure to 
appear. Similar behavior was also observed in the case of Hgl-,Mn,Se 
crystals by Lyapilin et al. (1983). 

The temperature dependence of the Shubnikov-de Haas maxima provides 
an abundance of information that, in principle, enables a precise deter- 
mination of the band structure parameters. The analysis aimed at such 
determination requires, however, a detailed knowledge of the (S,), par- 
ticularly of its dependence on the temperature, composition x and magnetic 
field. This can be obtained independently from the measurements of the 
magnetization. Lack of reliable measurements of this quantity made the 
interpretation of SdH data rather difficult, and led to inaccuracies of the 
values of the band structure parameters determined at the initial stages of 
research on Hgl-,MnxTe and Hgl-,Mn,Se. We shall return to this problem 
later in this section. 

b. Them 0- Oscillations 

The strong temperature dependence of the energies at which the Landau 
levels occur suggests that at a constant magnetic field (that provides the 
Landau quantization), the temperature sweep will cause the crossing of 
various Landau levels with the Fermi energy, if the carrier concentration in 
a sample is properly chosen. These crossings will then lead to successive peaks 
in the magneto-resistivity of the sample observed as a function of tempera- 
ture, similar to those observed by sweeping the magnetic field at a constant 
temperature in the usual Shubnikov-de Haas experiment. Such peaks in the 
resistivity were observed in Hgl-,Mn,Te by Dobrowolska et al. (1979) as 
shown in Fig. 6 .  The phenomenon was named the thermo-oscillation of 
magnetoresistance. An experiment similar in nature but involving the 
oscillations of the absorption of sound was suggested theoretically by 
Lyapilin and Karyagin (1980). 

Although the thermo-oscillations are difficult to interpret quantitatively, 
they serve to illustrate rather dramatically the unique temperature depend- 
ence of the Landau quantization of DMS owing to the contributions 
associated with the magnetization in these materials. 
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FIG. 6.  Resistivity in Hgl-,Mn,Te (x = 0.009) versus temperature showing thermo- 
oscillation maxima. The arrows indicate the theoretically expected positions of the maxima. 
[After Dobrowolska et al. (1979).] 

c. The Amplitude of the Shubnikov-de Haas Oscillations 

The temperature dependence of the amplitude of the magnetoresistance 
oscillations is an important feature of the Shubnikov-de Haas effect, since 
it provides a source of information concerning the electron effective mass at 
the Fermi level. Usually, in nonmagnetic semiconductors, the amplitude of 
a given magnetoresistance maximum decreases monotonically when the 
temperature is increased. It was therefore quite surprising to observe 
(Jaczynski et al.,  1978) that in Hgl-,MnxTe, the amplitude behaved in a 
drastically non-monotonic manner (see Fig. 7). It dropped quickly with 
increasing temperature, passed a region of very small values where the 
oscillations were hardly detectable, and became appreciable once again at 
even higher temperatures. Then, after passing through a maximum, it started 
to decrease again. Only the last portion of this behavior, in the highest 
temperature range, could be consistently understood in terms of the theory 
usually applicable to nonmagnetic semiconductors. A very similar tem- 
perature dependence of the Shubnikov-de Haas amplitude was observed in 
Hgl-xMnxSe (Takeyama and Galazka, 1979; Lyapilin et al., 1983). 

The theory of the Shubnikov-de Haas effect (see, e.g., Roth and Argyres, 
1966) gives the following expression, conveniently expressed in the form of 
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FIG. 7. The amplitude of the Shubnikov-de Haas oscillation in Hgl-,Mn,Te (x  = 0.02) as 

a function of temperature. The solid line is calculated using the temperature-dependent g-factor. 
[After Jaczynski et al. (1978).] 

a harmonic series, for the amplitude behavior of the SdH oscillations: 

h p  f i X r  exp( - arTD/H) - -  ‘ GsinhX, cos(mr) cos[ 2 n r e  - y )  f :] (29) 
PO r = l  

where a = 2n2m*kdeA, TD is the Dingle temperature describing phe- 
nomenologically the broadening of the Landau levels, X,  = arT/H, v is the 
spin splitting factor defined as 

1 m* v = -g*- 
2 mo’ 

with m* and mo standing for, respectively, the effective mass and the free 
electron mass. The oscillatory character of the magnetoresistance is given by 
the last cosine factor in Eq. (29) with the fundamental period PSH. For 
spherical Ferrni surfaces, this can be related to the electron concentration N 
by 

Often only the first few terms of the expansion (29) are of importance, 
because of the exponential damping factor involving TD . The temperature 
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behavior of the amplitude is given by the factor XJsinhX, in Eq. (29), 
provided that there is no implicit temperature dependence of the remaining 
coefficients in Eq. (29). Now, in a diluted magnetic semiconductor, as we 
have pointed out in the previous sections, the temperature dependence of the 
g-factor can be quite remarkable, and thus the cos(nvr) term in Eq. (29) can 
influence the temperature behavior of the amplitude quite significantly. 
When the argument of the cosine is equal to i d 2 ,  where i is an odd integer, 
the amplitude may vanish. For the first harmonic in Eq. (29), i.e., for r = 1 ,  
the condition for the zeros can be written explicitly as 

m0 

m* 
g* = - i ;  i = * l ,  *3. 

When theg-factors given by the band structure calculation for Hgl -,Mn,Te 
were calculated, it turned out that, indeed, it is possible to meet condition 
(30) in the temperature range where the Shubnikov-de Haas effect was 
studied. A superposition of the factors Xl/sinh XI and cos(nv) gave a good 
description of the amplitude vs. temperature curve (see the solid line in Fig. 
7). The condition (30) suggests, further, that more than one zero of the 
amplitude can be expected as a function of the temperature. In fact, two zeros 
were detected in Hgl-,Mn,Se by Lyapilin et al. (1983). The temperatures at 
which both amplitude zeros occurred could be well accounted for by the 
simple explanation presented above. 

Let us note that condition (30) corresponds to the situation where the 
Landau spin-split sublevels are equally spaced in energy. This is an easy 
situation for the collision broadening of the levels to smear out the quantum 
oscillations, i.e., to produce a zero of the amplitude. So, one expects an 
occurrence of a clear zero in relatively impure samples with rather high values 
of the Dingle temperature TD . Such values enable one to neglect all higher 
terms in the harmonic series, Eq. (29). For purer samples, when more terms 
in the harmonic expansion are important, only a minimum of the amplitude 
vs. temperature relationship can be expected (Kossut, 1978). 

The analysis of the positions of the zeros of the amplitude as a function 
of temperature can serve as a rather precise method for determining the g- 
factor, as well as the exchange constants a and fl. This method was actually 
employed in the case of (Cdl-,Mn,)sAst mixed crystals (see further in this 
part). 

Recently, Reifenberger and Schwarzkopf (1983) have suggested a different 
explanation for the beating of the amplitude of the Shubnikov-de Haas 
effect observed by them in Hgl-,MnxSe with small x and also in HgSe at 
weak magnetic fields. They suggest that the beating effect, which can be 
interpreted as a zero of the amplitude at a certain magnetic field, is due to 

5.28 
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the magnetic breakdown between the closed-orbits in the spin-split con- 
duction band. The splitting results from the lack of inversion symmetry 
characteristic for the zinc blende lattice structure. Actually, the fact that the 
beating effect is also found by Reifenberger and Schwarzkopf (1983) in HgSe 
leads them to reject the explanation in terms of the cos(nv) factor described 
above. In order to account for the temperature shift of the beat fields 
observed in Hgl-,Mn,Se samples, Reifenberger and Schwarzkopf (1983) 
conclude that substitution of Mn for Hg atoms makes the linear k terms in 
the k * p Hamiltonian also sensitive to the temperature in this material. 

d.  Conduction and Valence Band Overlap 

The degeneracy of the conduction and heavy hole valence band edges in 
zero-gap HgTe and Hgl-,Cd,Te is lifted when the magnetic field is applied 
and a real energy gap, induced by the field, opens. As we have seen in 
Part I11 of this chapter, the situation in semimagnetic Hgl-,Mn,Te and 
Hgl-,Mn,Se is quite different. The degeneracy of the Ts level is, of 
course, also lifted, but in these DMS a strong upward shift of the uppermost 
Landau level of the heavy hole band may result in an overlap of the bands 
(see Fig. 5a). The extent of the overlap can be calculated analytically and is 
given by, 

AE = Eb,(-1) - EnC(o) 

4eH 1'2 

2 

where we assumed that A = OD. 
The overlap corresponds to a positive AE, while for an open gap the value 

of AE is negative. The value of the band overlap is a resultant of several 
factors. First there is an upward movement of the lowest conduction band 
level a,(O) with the magnetic field, determined mainly by the effective mass 
(or, more precisely, by the cyclotron frequency) characterizing the con- 
duction band. The variation of this level with the magnetic field is modified 
by exchange interaction to a lesser degree by the exchange interaction than 
that of the uppermost valence band Landau level bv(- 1). The latter level, 
whose energy in nonmagnetic semiconductor decreases with increasing 
magnetic field, may be shifted in DMS to considerably higher energies if the 
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following condition is fulfilled: 

Since ( S , )  has a tendency to  saturate in the magnetic field while the right 
hand side of Eq. (32) is linear in the field, the above condition can only be 
met in relatively small field region, if at all. Of course, the lower the 
temperature, the easier it is to satisfy the inequality (32). Because of anti- 
ferromagnetic interactions between the localized magnetic moments in 
Hgl- .Mn,Te and Hgl- ,MnxSe, the value of x(S,) at a given field and 
temperature is a decreasing function of x for samples with the Mn mole 
fraction greater than x = 0.05. At the same time, the rate at which the a,(O) 
level moves up in energy with the field increases with x in zero-gap materials, 
because the effective mass at the bottom of the conduction band becomes 
smaller. Therefore, the existence of the overlap is limited to  rather low Mn 
contents region. It is estimated that in both HgI- .Mn,Se and Hgl- .MnxTe, 
the highest value of x for which the overlap may be observable is about 

The detailed knowledge of the magnetization (i.e., of x(S , ) )  is of course, 
quite crucial for this estimate. The use of values of x(S,) taken from more 
or less substantiated theoretical models of magnetization can lead to an 
overestimation of the extent of the overlap. 

The existence of the band overlap may lead to a substantial redistribution 
of carriers between the two bands in question. This, in turn, is reflected as 
an anomaly of various transport coefficients in very pure samples. In fact, 
the analysis of the conductivity tensor components by Sandauer and 
Byszewski (1982) gave the first direct evidence for the band overlap. It was 
found that the warping asymmetry of the heavy hole band, proportional to 
y 2 - ~ 3 ,  is also observable as the anisotropy of the band overlap in 
Hgl- .Mn,Te (Sandauer et al., 1983). 

e. Spin Dependent Scattering 

0.04-0.05. 

The presence of localized magnetic moments not only modifies the band 
structure of diluted magnetic semiconductors, but also gives rise to  an 
additional scattering mechanism of the carriers. The contribution of this 
mechanism is not easy to observe experimentally, because it is quite difficult 
to separate it from the contributions of other, often more important, 
scattering mechanisms. Recently, existence of spin dependent scattering has 
been evidenced in Hgl- .Mn,Te under quantum-limit conditions by Wittlin 
et al. (1980a). In their experiment, the sample was placed in a strong magnetic 
field, such that only the lowest conduction band level was occupied. The field 
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also caused a total alignment of the localized Mn spins, i.e., the region of 
saturation ( S t )  = - $ was reached. The sample was then illuminated by a 
microwave radiation with energy chosen in such a way that it correponded 
to the condition of electron paramagnetic resonance of the Mn-subsystem. 
The resonant absorption by the Mn ions and the change of the polarization 
of the localized moments associated with it were visible as an increase of the 
resistivity of the sample. The possibility of other mechanisms (e.g., 
bolometric effect, influence of the optical excitation of the carriers between 
the Landau levels, etc.) contributing to the observed increase was ruled out 
by the authors. On the other hand, when the resistivity change connected with 
the sudden variation of the spin dependent scattering at the resonance 
condition is calculated (Wittlin et al., 1980b), the correct magnitude of the 
observed effect is obtained. 

f, Values of Exchange Constants Obtained from 
Quantum Transport Measurements 

The results of the early studies of the Shubnikov-de Haas effect in 
Hgl-.MnxTe by Jaczynski et al. (1978) led to rather high values of the 
exchange constants: /.? = 1.4 eV and a = - 0.7 eV. These values were in 
agreement with the original results of magnetooptical measurements of 
Bastard et al. (1978). However, it must be stressed that in both studies, the 
magnetization of the investigated samples was, in fact, unknown. Moreover, 
the interpretation of the Shubnikov-de Haas oscillation pattern (Jaczynski 
et al., 1978) assumed that the Fermi level remained constant in the entire 
range of magnetic fields investigated. This may be a good approximation 
when many Landau levels are below the Fermi level EF,  but becomes 
doubtful in higher fields, when only few Landau levels remain below E F .  
Unfortunately, this is exactly the region of fields where the spin splitting of 
the SdH maxima was resolved, that is, where the subsequent analysis was 
sensitive to the choice of a and p. Substantial error could therefore be present 
in the determination of a and p by Jaczynski et al. (1978). Later investi- 
gations of the Shubnikov-de Haas effect (Sandauer and Byszewski, 1982), 
free of the two above mentioned approximations, put the value of 
/3 = 0.8-0.9 eV and (Y = -0.3 eV. These values are considerably smaller 
than those originally proposed and are much closer to p = 0.6 eV, (Y = - 0.4 
as determined from intraband (Pastor et al., 1979) and interband 
(Dobrowolska and Dobrowolski, 1981) magneto-absorption. 

A similar situation is also true for Hgl- .Mn.Se. The investigation of the 
material by Takeyama and Galazka (1979) yielded values of p = 1.4 eV and 
a = - 0.9 eV for x = 0.01 and x = 0.016, while for the x = 0.066 sample, 

= 0.9 eV and a = 0.3 eV. Later, when the magnetization of the samples 
was studied as well, it was found that the observed spin splitting is described 
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byp  = 0.9 eV and a = - 0.35 eV (Byszewski et al. , 1980). Again, these later 
values are in better agreement with the magnetooptical determination of 
Dobrowolska et al. (1981) where p = 0.7 eV and a = - 0.4 eV. 

Recently, Lyapilin et al. (1983) found, by an analysis of the spin splitting 
of the n = 1 Landau level observed in the Shubnikov-de Haas experiments 
in Hg,- *Mn,Se, that the value of p is still smaller: p = 0.28 eV. However, 
in their analysis Lyapilin et al. (1983) again did not use experimental values 
of magnetization, and, moreover, they employed a simplified band structure 
model. 

Although there seems to be a trend toward reconciliation, the values of the 
exchange constants a and p in Hgl- .Mn,Te and Hgl- .MnxSe, as deter- 
mined by various authors, do show a considerable disagreement. This is a 
situation distinctly different from that of wide gap DMS, where a and p are 
known with a greater accuracy. This unsatisfactory state of our knowledge 
is, at least partially, due to the complicated nature of the band structure of 
narrow gap DMS, where both spin and orbital quantization have to be 
simultaneously considered. Undoubtedly, this situation will be improved in 
a foreseeable future. 

4. (Cdl- .Mnx)3As2 

The very complex crystal structure of semiconducting Cd3As2 (symmetry 
(2::) can be approximated fairly well by a cubic structure with an additional 
tetragonal distortion (see Kildal, 1974; Blom, 1980). Bodnar (1978) found 
that treating this distortion as a perturbation in the k - p scheme provides a 
reasonably good description of the band structure of the compounds in 
question. This model is a generalization of the three band approach to zinc 
blende semiconductors (Kacman and Zawadzki, 1971) in the sense that it 
takes similar basis functions into the quasi-degenerate set of states and 
neglects the effect of the higher bands entirely. The k p perturbation 
Hamiltonian contains, as mentioned above, an additional parameter 6 
describing the axial distortion, that lifts the degeneracy of the conduction and 
heavy hole bands characteristic for the inverted band structure of zinc blende 
compounds. There appears a real-although small-energy gap. Of course, 
the presence of the axial crystal field leads to a strong anisotropy of the band 
structure noted by Wallace (1979). 

The calculation of the Landau level in the presence of exchange interaction 
proceeds quite analogously to the method described in detail for zinc blende 
compounds in Section I11 of this chapter (Neve et al., 1982). The main 
difference between the present case and previous calculations is that the 
tetragonal distortion introduces, instead of a single constant p describing the 
exchange interaction of p-like electrons with magnetic moments of Mn ions, 
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A 

two such constants PI and f i l l  which, in general, may have different values. 
This fact may contribute additionally to the anisotropy of the g-factor of 
(Cdl- xMnx)3Asz. 

Much less experimental information is available on this diluted magnetic 
semiconductor system than in the case of Hgl- *Mn,Te. The Shubnikov-de 
Haas effect was investigated in this material by Neve et af. (1981). Because 
of relatively high electron concentration in these crystals (of the order of 
5 x 10" ~ m - ~ ) ,  it was impossible to determine the variation with x of such 
parameters as the energy gap and the momentum matrix elements PI, PII 
(again, because of the tetragonal distortion, the model contains two 
independent momentum matrix elements). 

However, it was noted that the pattern of the oscillations was quite distinct 
from that in pure Cd3Asz crystals. In particular, the oscillations exhibited a 
strong beating effect, with the position of the nodes sensitive to temperature. 
When the amplitude at a fixed field was plotted versus the temperature, it 
was noted that two zeros were observed (see Fig. 8) that, when interpreted 
as being due to the cos(nvr) term (see subsection IV.3c of this chapter), 
rendered the values of the exchange constants PI = = 4.9eV and 
a = -3.4eV. These values are remarkably greater than those in diluted 
magnetic semiconductors with the zinc blende lattice structure. 

x=O.Ol 8-1.53'1 I x.0.02 B=1.90T 

0 2 4 6 8 10 
T ( K )  

FIG. 8. Temperature dependence of the Shubnikov-de Haas amplitudes in (Cdl- .Mnx)3Asz 
(x = 0.01). The points represent experimental data, and the solid lines are fitted. In the insert 
the SdH amplitude vs. Tcurves are shown for two samples, both with x = 0.02 but differing 
in electron concentration: (a) n = 3.9 10" cm-3 and (b) n = 5.45 10'' cm-'. [After Neve et al. 
(1981). Reprinted with permission of Pergamon Press Ltd.] 
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The anisotropy of the conduction band was also studied in (Cdl- .Mnx)3As2 
by Blom et al. (1983) who studied the Shubnikov-de Haas effect in mono- 
crystalline samples. The angular dependence of the effective mass was found 
to be qualitatively similar to that in Cd3As2. The anistropy of the g-factor 
was found to be smaller than predicted by a simple theory of Neve et al. 
(1982), and even less pronounced than in Cd3Asz. This fact led Blom et al. 
(1983) to conclude that there must be a strong dependence of the energy gap 
Eg and the crystal field parameter 6 on the crystal composition given by the 
Mn mole fraction x. 

5. Pbl- .Mn,Te AND Pbl- .Mn,S 

In this section, we are dealing with diluted magnetic semiconductors based 
on lead chalcogenides, e.g., Pbl- .Mn,Te. These semiconductors crystalize 
in the NaCl cubic structure. 

Again the calculation of the Landau levels in the presence of the exchange 
interaction can be done (within k * p approach) along the general lines given 
in Section I11 for zinc blende compounds (see, e.g., Niewodniczanska- 
Zawadzka, 1983). The calculation is however more complicated because of 
the anisotropic nature of the band structure of the host material, e.g., PbTe 
(Adler el af., 1973). It is only for the magnetic field oriented along some 
special directions with respect to the crystallographic axes (e.g., HI( ( 1 1  1 )) 
that the problem is relatively easy to solve. 

Preliminary investigation of the Shubnikov-de Haas effect in Pbl- .Mn,Te 
by Niewodniczanska-Zawadzka et al. (1982) appeared to indicate that the 
presence of Mn ions modifies the band structure of this material in a manner 
predicted by the model outlined in Section 111. A similar conclusion, 
although much more cautiously worded, was reached in the intraband 
magnetoabsorption study of Niewodniczanska-Zawadzka et al. (1 983). The 
position of the magneto-absorption lines and of the Shubnikov-de Haas 
maxima in the recent study of Elsinger (1983) show practically no tem- 
perature dependence, contrary to strong temperature variation of the 
magnetization. In fact, these data can be interpreted in terms of the k - p 
theory disregarding the contribution of the exchange interaction. However, 
in order to explain the observed spectra, a large zero-field spin splitting of 
the valence band has to be assumed (Pascher et al., 1983). It was found that 
the value of this splitting depends on the temperature. 

A similar spin splitting at H = 0 was also discovered in the study of 
Pbl- xMn,S p-n junction lasers by Karczewski and Kowalczyk (1983). It is 
suspected that the off-diagonal terms involving the neglected components S, 
and S, of the localized moment are responsible for the zero-field splitting. 
It is still not clear why the influence of the terms proportional only to (S,), 



5.  QUANTUM TRANSPORT IN DMS 217 

so pronounced in DMS with the zinc blende structure, is not observable in 
Pbl-*Mn,Te and Pbl-.Mn,S. This may be related to the fact that the 
exchange constants for Pbl- .Mn,Te are very small, as inferred by Toth and 
Leloup (1970), from the shape of the spin paramagnetic resonance line. The 
value found in this study (0.07 eV) is by an order of magnitude smaller than 
that characteristic of, e.g., Hgl- .Mn,Te. The question arises whether the 
lack of the splittings proportional to ( S , )  is not related to the fact that the 
band edges in Pbl-,Mn,Te and Pbl-,Mn,S occur at the L point of the 
Brillouin zone. In Cdl-,Mn,Te it was found (see Gaj, this volume) that there 
is a great reduction of such splittings at the L point, while at  the zone center 
they are large and easy to observe. The solution to this problem requires 
further study. 

V. Two-Dimensional Electron Gas in Hgl-,Mn,Te 
and Hgl-x-yCd,MnyTe 

The space charge layers in semiconductors have been intensively studied 
in recent years (see, e.g., review by Ando et al., 1982). It was therefore 
natural to extend the studies of diluted magnetic semiconductors in this 
direction. So far, the inversion layers in p-Hgl- *MnxTe and a quaternary 
system Hgl - ,,Cd,Mn,Te were investigated. These preliminary studies were 
performed by the quantum transport method and concerned the quasi two- 
dimensional electrons either on the surface of the semiconductor (Grabecki 
et al., 1984a), or confined in a thin layer surrounding a grain boundary within 
the semiconductor (Grabecki et al., 1984b). Here we shall discuss-after a 
very brief description of the experiments mentioned above-a simple model 
of the two-dimensional energy subbands that allows a semiquantitative 
interpretation of the data. 

6. EXPERIMENTS 

In the first series of experiments by Grabecki et al. (1984a), the MIS 
structures were prepared by placing a thin sheet of Mylar as an insulator on 
the Hgl- .Mn,Te surface. The p-type samples were used with the Mn mole 
fraction x = 0.1, that corresponded to an open energy gap of the order of 
about 100 meV (c.f., Fig. 2). The relatively high value of x was chosen to limit 
the effects of tunneling of electrons from the surface inversion layer to the 
valence band in the bulk of the crystal. 

It was found that the conductivity at low temperatures is dominated by a 
flow of electrons within a thin quasi two-dimensional inversion layer 
produced by an attracting surface potential. This potential restricts the 
electronic motion in the direction perpendicular to the surface. The motion 
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in this direction becomes quantized: a series of surface or “electric” 
subbands is then produced. The electronic motion parallel to the surface 
remains unaffected in a first approximation. The concentration of the 
electrons in the inversion layer could be changed by means of an applied gate 
voltage. 

When a sample is placed in a strong magnetic field and energy levels of 
electrons in the layer become further quantized (Landau quantization), an 
oscillatory structure in the conductivity vs. the gate voltage V, curves can be 
recorded. Two periods of oscillation were detected, indicating that at least 
two surface subbands were populated by electrons. This observation reflects 
a small density of states of the conduction band in narrow-gap semicon- 
ductors related to the smallness of the effective mass. 

By studying the p vs. V, dependences at various temperatures, a remark- 
able shift of the resistivity maxima was noted. Two maxima that were clearly 
resolved at T = 5 K approached each other when the temperature was raised. 
At about 10K only single maximum was observed, but at still higher 
temperature, about 14 K, a doublet structure became visible again. This 
effect was interpreted as being due a temperature shift of the Landau levels 
so characteristic for diluted magnetic semiconductors (see Section IV.3a of 
this chapter). However, it was possible to draw only rather qualitative 
conclusions from these preliminary experiments on the MIS structures. This 
was because of the rather low electrons mobilities in the inversion layers, 
reflecting severe problems with the proper preparation of the surfaces. 

A more quantitative interpretation became possible quite recently when 
research began on a new quasi two-dimensional system of electrons. It was 
noted that the grain boundaries, often found in Hgl- .Mn.Te crystals grown 
by the Bridgman method, can be a source of electronic confinement 
(Grabecki et al., 1984b). Similar systems of two-dimensional electrons were 
already studied in Ge by Vul and Zavaritskaya (1979) and Uchida et at. (1983) 
(see also a review by Seager, 1982). The physical reason for the electron 
confinement is the presence of charge traps at the grain boundary. These may 
be associated with dislocations existing at the boundary, as is the case in Ge 
(Uchida et at., 1983). The samples containing a single boundary plane (often 
referred to in the literature as bicrystals) were carefully cut out of a slice of 
Hg,- .Mn.Te material with x = 0.1 where special etching techniques made 
the boundaries between monocrystalline grains visible. 

It was found by Grabecki et at. (1984b) that, although the single grain 
samples prepared from the same ingot exhibited typical p-type behavior, the 
low temperature conductivity of samples containing the grain boundary was 
due to electrons. Further, it was also observed that these electrons possessed 
features of the quasi two-dimensional gas: the Landau quantization of their 
states depended only on the component of the magnetic field normal to the 
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grain boundary. The mobility of electrons in the layer at the boundary was 
quite high (of the order of 104cm2/Vs), enabling observation of the 
Shubnikov-de Haas oscillations in magnetic fields as low as 0.2T. Two or 
three periods of the oscillations were observed, indicating again that several 
electric subbands were occupied by 2d electrons. 

The electron concentrations and effective masses at the Fermi level were 
determined for each of the subbands and are listed in Table I. They are com- 
patible with results of a calculation based on the model to be described in 
the following section. The results of this calculation are also listed in Table I .  
No spin splittings of the Landau levels were observed in the Shubnikov-de 
Haas oscillations studied in the samples of Hgl- .Mn,Te (x  = 0.1). This fact 
is due to the smallness of electronic g-factor, which at low temperatures, is 
greatly reduced by the exchange interaction in this open-gap material. This 
arises because the large and negative contribution to the g-factor due to the 
spin-orbit interaction is nearly compensated by the exchange induced terms 
proportional to the magnetization. Parenthetically, this fact enabled a 
precise determination of the effective masses from the temperature study of 
the oscillation amplitude. 

To avoid the compensation of the g-factor, Grabecki et al. (1985) prepared 
also samples from quaternary Hgl- ,-,Cd,Mn,Te (x = 0.23, y = 0.02) 
containing the grain boundaries. The energy gap in these samples 
(= 200 meV) is open mainly by the presence of the Cd atoms. The effects of 
the exchange interaction due to the presence of the small number of Mn 
atoms are here more pronounced than in Hgl- .Mn,Te (x = 0. I), because the 
reduction of the magnetization in the latter material is greater. This results 
from a stronger antiferromagnetic coupling between localized Mn moments 
in the less diluted case. In fact, the Shubnikov-de Haas oscillations of the 
2d electrons in Hgl- ,-,Cd,Mn,Te samples show well-resolved spin splittings 
in the available range of magnetic fields. This enabled the first determination 
of the g-factor of the 2d electrons in a diluted magnetic semiconductor. Not 
surprisingly, the g-factor observed showed a strong temperature dependence 
(see Fig. 9). It is also well accounted for by the model of the subband structure 
(see next section). The effective mass at the Fermi level and the population 
of the lowest electric subband (only one period of oscillation was observed) 
in Hgl- x-yCdxMnyTe are given in Table I. 

7. ENERGY LEVELS OF 2d ELECTRON GAS 

The model described below is based on semiclassical WKB approximation. 
It has been shown by Zawadzki (1983) that this simple approach can give a 
correct insight into the complex scheme of energy levels of a two-dimensional 
electron gas in narrow-gap semiconductors. Here we present a simplified 



TABLE I 

EXPERIMENTAL AND THEORETICAL VALUES OF 2d ELECTRON CONCENTRATION, n: AND THE EFFECTIVE MASSES AT THE FERMI LEVEL ( E F )  mf IN THE r-TH 

ELECTRIC SUBBAND IN SAMPLES CONTAINING GRAIN BOUNDARY. E ,  IS THE CALCULATED VALUE OF THE BOTTOM (n: = 0) OF THE r-m SUBBAND. THE 
FITTED VALUE OF THE POTENTIAL SLOPE uo IS GIVEN. THE SPATIAL EXTENSION OF THE r-TH STATE, W,, WAS ESTIMATED FROM Wr = E r / U o  

Hgo. s9Mn0 .11Te  110 0 15.4 f 2 5.0 f 1 12.18 3.60 57.2 163 

2 1.8 0.2 2.2 i 0.2 1.87 2.40 151.3 432 
1 6.0 + 0.5 3.3 + 0.5 5.98 3.01 111.8 319 172 7.0 lo4 

Hg0.90Mno.  loTe  85 0 5.3 + 0.3 2.6 f 0.2 5.29 2.49 52.7 192 

1 1.3 f 0.1 2.0 f 0.1 1.34 1.85 102.1 371 
122 5.5 lo4 

Hg,- .-,Cd,Mn,Te 205 0 3.2 f 0.1 2.6 f 0.4 3.2 2.4 44.2 161 80.9 5.5 lo4 
( X  = 0.23, y = 0.02) 
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T ( K )  

FIG. 9. Theg-factor of 2d electrons at agrain boundary in Hgo Kdo.z,Mno.o2Teas a function 
of the temperature. The symbols with error bars represent experimental data, based on the 
splitting of the magnetoresistance maximum at approximately H = 4.5T. Solid lines show the 
results of the calculation based on the model described in the text. [After Grabecki ef a/.  (1985).] 

version of the model, neglecting the presence of the spin-orbit split-off band 
r7, aiming at the analytic form of solutions. Actual calculations, the results 
of which are given in Table I, were done without making this approximation. 
However, the influence of the higher bands was neglected in both versions. 
We start with the Hamiltonian in the matrix form given by Eqs. (13)-(16) 
with y1 = y2 = y3 = F = K = 0. 

The presence of the confining potential at the surface or at  the grain 
boundary requires an addition of an appropriate potential U to the diagonal 
terms of these matrices. When the z-axis is chosen perpendicular to the 
surface (or to the grain boundary), the confining potential depends only on 
z. In the present model, very simple forms of this potential were assumed. 
In the case of the surface layer, the potential was taken to be a triangular well 
with infinite height on the insulator side; in the case of the grain boundary, 
it was assumed in the form of a symmetric triangular potential well. The slope 
of the potential is the only fitting parameter of the model. The other band 
structure parameters can be taken from electronic studies of bulk crystals. 
This simple form of the confining potential is probably the most severe 
approximation of the model. We assume also that the magnetic field is 
parallel to the z-axis. Finally, the exchange terms involving the constants a! 
and must be added to the Hamiltonian. The matrices obtained in this way 
represent two sets of differential equations for the envelope functions. These 
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functions can be sought in a factorized form @(x, y)$(z), with the dependence 
on x,  y variables separated from the z variable. Moreover, @(x, y )  can be 
chosen as a harmonic oscillator wave function, as in the case of Landau 
quantization. Thus we are left with a set of differential equations involving 
only d/dz, i.e., the z-component of the momentum p z .  

In the spirit of the semiclassical approximation, we may now treat p ,  as 
a classical quantity. It can be then expressed in the following form (neglecting 
small terms proportional to [U, p , ] ,  x8(Sz>Pp, /E~A and x/3<Sz)Eg): 

where 
2 P2 
3 A 2 '  

A = - -  (34) 

- P' a t  = [E  f a!' - &f - U(z)] Eg + &+ 7 + E f  - w]. [ (35) 

In Eqs. (34) and ( 3 9 ,  Pdenotes the interband momentum matrix element and 

a' = + X a ! ( S Z ) ,  (36) 

8' = +x/3<S,>, (37) 

while E denotes the eigenvalue of energy that we are looking for. Plus and 
minus indices in Eqs. (33) and (35) refer, respectively, to solutions for 
predominately spin-up and spin-down states in the conduction band. The 
parameter cf is defined by 

with 

where n = 0, 1 , . . . denotes the Landau quantum number, and s = (hc) / (eH).  
The WKB quantization condition can be written in our case as 

p Z d z  = hn(r + $), r = 0, 1 ,2 ,  ... (40) 

where za = 0 and q5 = $ for the case of the surface layer potential, while 
zo = - zo and $ = for the layer at the grain boundary. Here zo denotes the 
classical turn point of the motion in a confining potential well, i.e., it is 
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defined by 

PZ(Z0) = 0 

223 

The smallest root of Eq. (41) corresponds to solutions for the conduction 
band 

E f ayl - Ef 
20’ = uo 

where we have explicitly used the form of the potential assumed 

for the surface layer, and 

U(z) = Uolzl (44) 

for the grain boundary potential. The integration indicated by Eq. (40) can 
be carried out analytically, giving the following equations 

where 
a* = E 7 a’ - ~ f ,  

B’ 
3 

b* = Eg + E + ~f F -, 

and 
1 for the surface layer 
.2 for the grain boundary 

G =  [ 
layer 

Equation (45) has now to be solved numerically for the energies of the n-th 
Landau level with spin (+) or (-) in the r-th electric subband. 

A similar calculation can be carried out when no external magnetic field 
is applied. The result is formally very similar to that obtained for InSb, with 
the quantity ~f redefined (cf., Zawadzki 1983): 

where m3 = h2(4P2/3Eg)-’ and kll is the momentum within the 2d layer. 
Solving Eq. (45) with the definition (49) of e f ,  we may calculate the position 
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of the Fermi level ~ f .  related to the electron concentration ns in the r-th 
subband. 

1 
2n 

nd = -kl;. 

By calculating the derivative of ~ f .  with respect to kll, we may calculate the 
effective mass at the Fermi level. Theoretical values of the effective mass 
listed in Table I were calculated in this manner. By choosing a proper value 
of the potential slope Uo,  one can now fit the electron concentrations in each 
of the observed subbands and the effective masses to the experimental data, 
assuming a single Fermi level. A fair agreement can be reached indicating a 
proper choice of the shape of the potential (and its slope) at the grain 
boundary. By solving Eq. (45) with given by Eq. (38) for a fixed magnetic 
field, one can finally determine the value of the g-factor of the nth Landau 
level as 

The g-factors calculated in this way give a fairly good description of the 
values observed in Hgl- x-yCdxMnyTe. At lower temperatures, they turn out 
to be positive due to the large contribution of the exchange interaction terms. 
As T increases (and ( S , )  decreases), the value of the g-factor drops, 
becoming nearly zero at the highest temperatures at which the oscillations 
were studied. Let us mention also that the values of the g-factor for the 2d 
gas of electrons at the grain boundary are slightly different from those 
expected for bulk electrons. The above results indicate that the influence of 
the localized magnetic moments also manifest itself in the properties of 2d 
electrons in diluted magnetic semiconductors. 

8.  FUTURE POSSIBILITIES 

Other 2d electronic systems in diluted magnetic semiconductors, e.g., 
those in quantum wells produced by heterostructures and/or superlattices, 
seem to offer quite interesting possibilities. One of those, noted by von 
Ortenberg (1982), makes use of the temperature and magnetic field variation 
of the band edges. Thus, if a superlattice is grown with alternating layers of 
nonmagnetic (e.g., Hgl- .Cd,Se) and diluted magnetic (e.g., Hgl- xMnxSe) 
semiconductors, then it should in principle be possible to change the relative 
position of the band edges in adjacent layers by means of varying the field 
and/or the temperature. It is argued that the resulting minigap of a super- 
lattice could be tuned by these external factors. However, such possibilities 
are still be be explored. 
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