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superficially similar to convective models in some
respects (28) but nevertheless fail to explain the
origin and energy flux of this structure (4–8, 28)
as well as the present observations.
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Metallic Quantum Well States in
Artificial Structures of Strongly
Correlated Oxide
K. Yoshimatsu,1 K. Horiba,1,2 H. Kumigashira,1,2,3*† T. Yoshida,4 A. Fujimori,4 M. Oshima1,2,5

The quantum confinement of strongly correlated electrons in artificial structures provides a
platform for studying the behavior of correlated Fermi-liquid states in reduced dimensions. We
report the creation and control of two-dimensional electron-liquid states in ultrathin films of SrVO3

grown on Nb:SrTiO3 substrates, which are artificial oxide structures that can be varied in thickness
by single monolayers. Angle-resolved photoemission from the SrVO3/Nb:SrTiO3 samples shows
metallic quantum well states that are adequately described by the well-known phase-shift
quantization rule. The observed quantum well states in SrVO3 ultrathin films exhibit distinctive
features—such as orbital-selective quantization originating from the anisotropic orbital character
of the V 3d states and unusual band renormalization of the subbands near the Fermi level—that
reflect complex interactions in the quantum well.

Anelectron confined in space by a potential
well forms standing waves in the well, or
quantum well (QW) states. These states

are characterized by the quantum number n, that

is, the number of half-wavelengths that span the
well. QW states are associated with discrete quan-
tized electronic states in thin artificial structures
with tunable physical dimensions, in which elec-
tron confinement occurs only in the direction
perpendicular to the surface, giving rise to two-
dimensional (2D) QW states. Metallic QW states
are similar to those known in semiconductor struc-
tures, except that the shorter Fermi wavelength
allows spatially narrower confinement of high-
density electrons (1–6). Themetallic QW states are
realized in QW structures based on metals having
nearly free-electron–like sp states, such as Ag/Si
(5), Pb/Si (6), and noblemetals onmetal substrates
(1–4). The resultant 2D electronic structures have
been intensively studied by using angle-resolved
photoemission spectroscopy (ARPES) (1–6).

Depending on the number of conductive
layers, layered complex oxides that are both
low-dimensional and strongly interacting often
exhibit unusual physical properties, such as high-
temperature superconductivity in cuprates, triplet
superconductivity in ruthenates, and enhancement
of colossal magnetoresistance in manganites (7).
The properties originate from stacked conductive
layers, which strongly correlated electrons, sand-
wiched by block insulating layers. The lowering
of the dimensionality changes the interaction
among the spin, charge, and orbital degrees of
freedom. However, systematic control of the di-
mensionality while keeping the fundamental elec-
tronic parameters fixed has not yet been conducted,
owing to the difficulties in the synthesis of a ho-
mologous series of layered complex oxides (7).

The close structural similarities of layered
oxides to metallic QW structures have motivated
researchers to create low-dimensional systems in
a controllable fashion using artificial structures of
a strongly correlated oxide. That is, the artificial
oxide structures provide a setting in which to study
the behavior of strongly correlated electrons in
reduced dimensions and to control the extra-
ordinary physical properties of strongly correlated
oxides (8). Although the carrier confinement at
the interface of oxide semiconductors has been
reported (9, 10), the metallic QW states having the
dimensional controllability has not been achieved
yet in oxide artificial structures.

We chose SrVO3 ultrathin films epitaxially
grown on Nb-doped SrTiO3 (Nb:STO) as a pos-
sible candidate for creating QW states having
2D electron-liquid states. SrVO3 is a typical Fermi-
liquid metal with the simple 3d1 configuration
(7, 11–13), and its electronic structures can be
simulated by use of the Hubbard model without
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explicit consideration of the oxygen p orbital (14).
The metallic V 3d states located near the Fermi
level (EF) in SrVO3 ultrathin films are expected
to be highly confined in theQWstructures formed
between the vacuum (surface) and the Nb:STO
substrate (interface) because Nb:STO has a large
band gap of 3.2 eVbelowEF (15, 16). Our previous
angle-integrated PES studies on SrVO3/Nb:STO
revealed that the metallic V 3d states near EF are
located within the band gap of Nb:STO, although
strong electron correlation in the SrVO3 ultrathin
films manifests itself in the metal-insulator tran-
sition (MIT) that occurs at a critical film thickness
of 2 to 3 monolayers (ML) (15).

The Fermi surface (FS) sheets of bulk SrVO3

with cubic symmetry (fig. S2) (16) are essentially
formed from three intersecting cylinders contain-
ing the V 3d dxy, dyz , and dzx states (16, 17). Each
state has a 2D character in the xy, yz, and zx
planes, respectively. The 2D nature of each state
causes the FSs in the GXM emission plane (the
kx – ky plane, with kz = 0) to consist essentially of
two parallel lines originating from dzx and dyz
states and a circular FS from the dxy state (Fig. 1A)
(16–20). The band structures along the G–X
direction (cut A) consist of three bands: two de-
generate parabolic dispersions derived from the
dxy and dzx states and a nearly nondispersive dyz
state (16–20). However, the band dispersion along
the X–M direction (cut B) is described by one par-
abolic band from the dzx state (Fig. 1B). When
the SrVO3 film becomes sufficiently thin along
the z direction to realize the quantum confinement
of V 3d electrons in the film, the bands derived

from dzx and dyz are expected to form quantized
states because these orbitals expand along the z
direction. On the other hand, the dxy state remains
unchanged because of its 2D character in the xy
plane. Thus, the quantized dyz and dzx states and
one bulk-like dxy state are expected to be observed
for cut A, whereas simple quantized states derived
from the dzx orbital are expected for cutB (Fig. 1C).

Certain aspects of 2DQWstates inmetal films
have been studied by use of ARPES (1–6). By
measuringARPES spectra, the energy position of
each quantization state and the in-plane energy
dispersion of the confined electrons were obtained
directly. Figure 1D shows the ARPES spectra for
SrVO3 ultrathin films varying in overlayer thick-
ness obtained at the (0, 0) and (0, 0.75p/a) points
in the GXM emission plane. The energy positions
of the several quasiperiodic peaks evolved as a
function of overlayer thickness: With increasing
thickness, one additional peak appears after an-
other in the ARPES spectra at EF, and their peak
positions shift to higher binding energies. The peak
shift apparently converged around 500meV,which
corresponds to the bottom of the V 3d conduction
bands (18–20). The spectral changes suggest the
formation of metallic QW states in SrVO3/Nb:STO.

In order to show the dependence of the quan-
tized electronic states on the film thickness more
clearly, we plotted the binding energies as a func-
tion of the SrVO3 film thickness (Fig. 1E). For
quantitative analysis, we invoked the usual phase-
shift quantization rule, which has been used suc-
cessfully in the interpretation of metallic QW
states in noble metal systems (1–6, 16). The

solid lines in Fig. 1E represent the calculated re-
sults for the QW states. Comparing the experi-
mental and calculated data, the experimental
binding energies are fairly well reproduced by
calculations based on the phase-shift quantiza-
tion rule. This good agreement indicates that the
metallic V 3d states located near EF in SrVO3 are
confined in the QW structures.

The orbital-selective quantization of the
QW states could be seen in the in-plane band
dispersion determined with ARPES. The band
dispersion of the subbands formed for an 8-ML
SrVO3 ultrathin film is shown in Fig. 2. As ex-
pected from the illustration in Fig. 1C, two types
of subbands were observed for the band disper-
sion along cut A (Fig. 2A); one is the parabolic
band, which approaches and eventually crosses
EF with increasing distance from the G point,
whereas the other is the nearly flat band. These
two bands are degenerate at the G point. How-
ever, only parabolic subbands were observed
along cut B (Fig. 2B). Considering the aniso-
tropic orbital nature of the 3d states, the flat
bands seen only in Fig. 2A and the parabolic
band seen in both cases originate from the quan-
tized dyz and dzx states, respectively. From the
structure plots shown in Fig. 1E, the quantum
number of each subband is n = 1, 2, and 3 from
the bottom. Because the original dzx and dxy
states are degenerate along the G–X direction
(Fig. 1B), the band dispersion of the first quan-
tized dzx state almost overlaps with that of the
bulk-like dxy state because their bottom energies
are nearly equal. The existence of the original dxy
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tization occurs, reflecting the anisotropic character of V 3d states. The resultant

subband dispersions are illustrated for cuts A and B. (D) ARPES spectra of SrVO3
ultrathin films varying the film thickness obtained at points (0, 0) (left) and (0,
0.75p /a) (right). The peak structures derived from QW states are marked by the
colored triangles. (E) Structure plots showing the energy positions of corre-
sponding QW-state peaks (data markers) versus the film thickness for points
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QW states (with n= 1 to 4) from the phase-shift quantization model (1–6, 16).
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band irrespective of the quantization of dyz and
dzx bands was confirmed through ARPES mea-
surements by using dichroic effects along differ-
ent cuts where the degeneracy was lifted (16).

Although the quantization reflecting the an-
isotropic V 3d states itself is expected from band
structure calculation, orbital-selective quanti-
zation has important implications for thickness-
dependent MIT in SrVO3 ultrathin films (15).
SrVO3 ultrathin films underwent a thickness-
dependent phase transition from metal to insula-
tor at a film thickness of less than 4 ML. In the
structure plot (fig. S4) (16), the quantization states
did not exist in occupied states below 2 ML. This
thickness corresponds to the critical thickness at
which MIT occurs in SrVO3 thin films, suggest-
ing that the thickness-dependent MIT in SrVO3

ultrathin films is related to the orbital-selective
quantization effect.

Lastly, there is the band renormalization of
subbands located near EF. In the in-plane dis-
persion of the subbands shown in Fig. 2, the
subband dispersion becomes narrower with ap-
proaching its bottom energy to EF. For quan-
titative discussion, the band renormalization
factor (Zsub) is evaluated with a least-squares
fitting of the subband dispersion by using the
following equation

Esubðk ∥Þ ¼ ZsubE
TBðk ∥Þ þ e∗ ð1Þ

where ETB(k) is the band dispersion calculated by
using the tight-binding parameters (16, 17). Only
Zsub and e* are adjustable parameters so as to fit

the in-plane dispersion of the subbands. As can
be seen in Fig. 2, the fitted curves by using Eq. 1
adequately reproduce the in-plane dispersion of
the subbands.

The relation between the enhancement factor
(1/Zsub) and the binding energy of the quanti-
zation states is summarized in Fig. 3. As the
binding energy of quantization states approaches
EF, the effective mass of the subbands is consid-
erably enhanced. Such a mass enhancement has
not been observed in QW structures based on
metals having nearly free-electron–like states
(1–6). We conclude that the mass enhancement
in the subbands is associated with strong inter-
action among V 3d electrons confined in the QW
structures (8, 11–13). There is one feature of the
band renormalization that seems to contradict
with the Fermi-liquid picture: If each subband can
be described as a simple Fermi liquid, subbands
located at lower binding energies should have
weaker band narrowing owing to the reduction of
correlation effects with reduced band filling (21).
The unusual band renormalization may be related
to the complicated interactions induced by the re-
duction of dimensionality, such as orbital selective
Mott transition (22) and orbital and/or electronic
reconstruction at the surface and the interface, but
this issue remains to be resolved.
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Explosive Percolation Is Continuous
Oliver Riordan*† and Lutz Warnke*

“Explosive percolation” is said to occur in an evolving network when a macroscopic connected
component emerges in a number of steps that is much smaller than the system size. Recent
predictions based on simulations suggested that certain Achlioptas processes (much-studied local
modifications of the classical mean-field growth model of Erdős and Rényi) exhibit this phenomenon,
undergoing a phase transition that is discontinuous in the scaling limit. We show that, in fact, all
Achlioptas processes have continuous phase transitions, although related models in which the
number of nodes sampled may grow with the network size can indeed exhibit explosive percolation.

Thequintessential example of a phase tran-
sition in statistical physics is the emergence
of the giant component in the mean-field

random graph: Erdős and Rényi (1) discovered
that in a graph or network constructed in a com-
pletely (uniformly) random manner, as the ratio
between the number m of edges (also called
links) and the number n of vertices (nodes) passes
½, there is a dramatic change in the component
(connectivity) structure.More precisely, ifm ~ tn,
where t represents time, for t < ½, the number C
of nodes in the largest connected component is
logarithmic in n, whereas for t > ½, C is of order
n: A macroscopic component emerges at the
critical time tc = ½; this component is known as
the giant component, evenwhen its size is a small
constant times n. Taking the natural scaling limit,
there is a function r(t)= rER(t) given by a simple
formula such that C ~ r(t)n when m ~ tn, with
r(t) > 0 if and only if t > ½.

The Erdős-Rényi (ER) model and its phase
transition are of fundamental importance for two
main reasons. Mathematically, the properties of
this phase transition are extremely well under-
stood, including the fine details of the behavior at
and near the critical point, and the dynamics of
the transition [see, for example, (1–5)]. Thismodel
serves as the natural reference point when study-
ing a wide range of phase transitions in mathe-
matics and statistical physics: Similarities to and
differences from the mean-field model are key to
understanding more complex and perhaps less
tractable models.

Second, random graphs are the natural math-
ematicalmodels for complex or disorderednetworks
in the real world. The mean-field model is un-
likely to be appropriate itself for any particular
application, but intuition from its study is the
starting point for understanding more recent
network models, such as the scale-free models
of Barabási and Albert (6) and many others.
Studying the emergence of large-scale connect-
edness as an edge-density parameter is varied
corresponds to varying the proportion of links in
an existing network that fail, and asking whether
it remains connected on a large scale (7, 8). Alter-
natively, thinking of the links as contacts that may
spread a disease, the emergence of a giant com-
ponent corresponds to epidemic spread of a dis-
ease rather than localized outbreaks (9, 10).

For the reasons above, phase transitions in
random graph models of many types have been
widely studied [see the many references in (11)].
A key question is, how do the transitions in the
different models relate? Which features are
specific to the model, and which are universal?
In 2007, Bollobás, Janson, and Riordan (BJR)
(11) introduced a very general family of models
that includes many special cases previously stud-
ied. They showed that for each model M in this
family, there is a function rM(t) describing the re-
scaled size of the giant component; this function
is zero up to some critical value tc (which may be
0) and positive for t > tc. For all models in the
BJR family, rM(t) is continuous, but a huge range
of different behaviors near tc is possible (Fig. 1).
For any critical exponent g ≥ 1, examples are giv-
en in (11) with rM(tc + e) ~Ae

g as e→ 0, where A
is a constant. Infinite order transitions also occur
in natural models, with rM(tc + e) ≈ exp(–1/√e)
[see (12) and the references therein].

With continuity of the function r seeming to
be the only property that does not change from
one model to the next, it was extremely exciting
when Achlioptas, D'Souza, and Spencer (13) an-
nounced that a rather simple dynamical mod-
ification of the ER model seemed to undergo a
discontinuous phase transition, a phenomenon now
known as explosive percolation. Here, we show
that this is not the case. Our argument is relatively
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Fig. 1. The scaling lim-
it of the giant compo-
nent size, for various
random graph models.
The ER, power-law (PL),
and Dubins models fall
in the BJR family. The
BF rule, SR, and PR are
Achlioptas processes; the
adjacent edge (AE) rule
(23), triangle rule (TR)
(23), and dCDGM (26)
are Achlioptas-like pro-
cesses. The figure is based
on simulations with n =
109 (PL and Dubins) or
n = 1012 vertices. The
last five curves appear to
be discontinuous at the
critical point, but this is
not the case.
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