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The antistructural bridge mechanism has recently been proposed as a major 
contributor to diffusion at compositions away from stoichiometry in B2 ordered 
alloysjintermetallic compounds. In the present study the connectivity of the 
mobile atom distribution on the sublattices is first analysed using the authors’ 
adaptation to ordered structures of Manning’s formalism for diffusion in the 
random alloy. For percolation to occur, the analytical formalism predicts that the 
threshold concentration of antistructural (with respect to the sublattice) atoms 
must be greater than 0.273 at all levels of order. Computer simulation of the same 
model shows that for percolation to occur, the threshold concentration of anti- 
structural atoms must be greater than O-245 (for complete disorder) but this 
decrea.ses to 0.13 (for complete order). This means that at the typically high levels 
of order observed in many ordered alloys and intermetallic compounds, the ASB 
mechanism cannot be a contributor to diffusion unless the overall composition is 
greater than 0.565. This composition is outside the stability range of most of 
these materials. 0 1997 Elsevier Science Limited 
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1. INTRODUCTION 

The B2 structure, sometimes called the CsCZ struc- 
ture, is among the most common structures taken 
by ordered alloys and -intermetallic compounds. 
Diffusion in this structure is generally believed to 
be via the vacancy mechanism, the vacancies being 
unequally partitioned between the two sublattices c~ 
and /3 which compose the structure. The atomic 
species A mainly occupies the (Y sublattice while the 
atomic species B mainly occupies the b sublattice. 
It is generally assumed that diffusion takes place 
via nearest-neighbour jumps.’ However, next- 
nearest neighbour jumps are also possible in prin- 
ciple as they are also in b.c.c. disordered alloys or 
even pure b.c.c. metals on account of the close 
proximity of the next-nea.rest neighbour. Indeed, in 
those B2-type alloys -which permit structural 
vacancies, in the presence of triple defect disorder 
the B atom, say, may move via next-nearest neigh- 
bour jumps, i.e. #3 + b if the so-called triple defect 
mechanism is invoked.2 In the present paper we 
will focus on nearest-neighbour vacancy jumps. 

Even with the vacancy mechanism, several subsets 
of this mechanism have been proposed. There are 

the six-jump cycle (6JC) mechanism and the anti- 
structural bridge (ASB) mechanism. With respect 
to the former, it was recognized quite early that for 
tracer diffusion to occur in the highly ordered 
structure, only certain highly correlated sequences 
of jumps (the 6JC mechanism) are possible.3 The 
6JC is a special sequence of vacancy jumps (from 
the very large number possible) in which the first 
three jumps lead to local disorder but the following 
three jumps lead to the restoration of order. Com- 
puter simulations have since made it clear that the 
6JC mechanism certainly occurs but only at low 
temperatures at and near the stoichiometric com- 
position.425 

When the concentration of, say, B atoms on the 
a! sublattice (i.e. antistructural atoms) is reasonably 
high, then it can be recognized that with the B 
sublattice as well, a substructure of B atoms could 
provide continuity across the structure with 
vacancies able to migrate across it freely without 
producing disordering. This is the ASB mechan- 
ism.6,7 It presumes, then, that the vacancies 
exchange exclusively with B atoms by nearest- 
neighbour jumps irrespective of sublattice. The key 
question then is how high does the concentration 
of such antistructural B atoms need to be in order 
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to provide such a continuous substructure. Kao 
and Chang6 and Kao et al7 showed by semiquan- 
titative arguments based on a small cell that the 
concentration of such antistructure atoms required 
to form a continuous substructure could be as low 
as O-032. (‘Concentration’ here is defined as the 
number of B atoms divided by the number of sub- 
lattice sites). They then based a diffusion theory on 
the ASB mechanism and the 6JC mechanism to 
describe especially the compositional dependence 
of the tracer diffusion coefficients in a number of 
ordered alloy systems. 

The calculation of the concentration of anti- 
structure B atoms which form a continuous sub- 
structure together with the B atoms in the /J 
sublattice is a site percolation problem. Below a 
critical concentration of antistructure B atoms this 
substructure is not continuous and long-range dif- 
fusion by the pure ASB mechanism is impossible 
though local diffusion may still occur. At the criti- 
cal concentration of antistructure B atoms, the 
substructure become continuous and long range 
migration by the ASB mechanism can occur. Of 
course, at and above the critical concentration 
there will still be islands of B atoms which are not 
connected to the main (percolating) substructure. 

The purpose of the present paper is to show by 
percolation arguments, backed up by computer 
simulation, that the concentration of antistructural 
atoms in fact needs to be much higher than that 
claimed by Kao et aL7 to provide a continuous 
substructure. Our approach makes use of tracer 
diffusion as a dynamic probe of the percolating 
structure in order to determine the percolation 
threshold or critical concentration of antistructural 
B atoms. We make use of some of the arguments 
presented by Belova and Murch* and illustrated 
there for the BI structure. 

2. ANALYTICAL DEVELOPMENT 

We consider a lattice of N sites which is subdivided 
into two sublattices (Y and #l each consisting of the 
same number of sites N,(= Np). The Q sublattice is 
mainly occupied by A atoms and the p sublattice 
mainly occupied by B atoms. We assume that dif- 
fusion occurs via nearest-neighbour vacancy 
jumps. We introduce four vacancy-atom exchange 
frequencies: w:++ for A atoms jumping from the o 
sublattice to the /J sublattice, w$*” for the reverse 
jump, w$” for B atoms jumping from the #J sub- 
lattice to the Q sublattice, w:+~ for the reverse 
jump. These frequencies may be conceived as 
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average jump frequencies or they may be explicitly 
given. This describes the ordered structure as a 
combination of two sublattices, each of which is a 
random distribution of A and B atoms but of 
course at a different composition. 

The occupational variables are introduced as 

c”A = PA/N,, c; = NB,lNs, c”s = PsIN,, 
cg = N$Nb, where NOI is the number of A atoms A 

on the cx sublattice, etc. 
The vacancy concentration is vanishingly small 

and therefore cA + cs z 1, where cA and cs are the 
overall compositions of A and B atoms. In order to 
define all four values of ~5, c{, c‘& cg it is necessary 
only to introduce a single unknown variable: we let 
this be cg. We have that 

c; = 1 - c;, 4=2cA+c;-1, 4=2c,-ca, 

(1) 

At equilibrium the number of jumps of A atoms in 
a long time t from the a! sublattice to the /!l sublat- 
tice must be equal to the number of reverse jumps, 
similarly for the B atoms. This, with eqn (1) leads 
to the occupation equation: 

(1 - E2)(Ca,)” + [l - 2cg + c2(1 +2cs>]c”, - 2CsE2 = 0 

(2) 

where E is an especially 
frequencies such that 

convenient combination of 

(3) 

and OQs 1 because by definition of the B2 structure 
above we have w”‘~ /d+@sl and w~-‘“/w~~~~~. 
In other words, thAe frequency of disordering jumps 
is lower than reordering jumps for both compo- 
nents. Then, the positive root of eqn (2) is 

c”B = ,,@ - 1 + 2cB - E2(1 + 2cB) 

2(1 - 62) (4) 

where g = (1 - 2c~)~( 1 - c2)2 + 4~~. Thus given cg 
and E the occupations of the sublattices are com- 
pletely determined from eqn (4) (and eqn (1)). It is 
clear now that: (a) when E = 1 the concentration 
c$ = cs (directly from eqn (2)) and this is the 
completely disordered state; (b) when E= 0 then 
6 =O, if ~~50.5 and c$ = 2(cs - 0.5) if cg > O-5. 
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This is the completely orldered state. Now we can 
introduce the long range corder parameter S as fol- 
lows: 

s = cI - 4, 
CI 

where I = B, i = a! if B atoms are a minority com- 
ponent (cg < 0.5); I = A, i = /3 if A atoms are a 
minority component (ce :> 0.5). As was mentioned 
above, for the disordered state cs = cg, this leads 
to E = 1 and S = 0. In the completely ordered state 
c$ = 0 if ce10.5 and c$ = 2(ce - 0.5) if cg > 0.5. 
These are both equivalent to E = 0 and S = 1. 

The tracer correlation factor f is a quantity 
which describes correlation or memory between 
atomic jumps of a tracer atom. When f equals 
unity, each jump made by a tracer atom occurs in a 
random direction, i.e. there is no correlation 
between jumps and the tracer follows a random 
walk. On the other hand, when f equals zero, each 
jump made by a tracer atom is reversed and there 
can be no long-range diffusion. Above the perco- 
lation threshold there is long-range diffusion 
(though the jumps of a tracer may still be quite 
correlated) and 0 <f’l. Below the percolation 
threshold the correlation factor will vanish because 
tracer atoms will be isolated in islands and be 
unable to undergo long-range diffusion. 

Consider now the follolwing expressions for the 
tracer correlation factors f~ and fB for A and B 
atoms proposed by Belov#a and Murch9 

fA = 
HI H2 

LJ+a HI H2 + HI ‘WA + H2w;+ 

and 

fB = 
HI H2 

HI H2 + HI l@B B+(y + H2w;+ 
(6) 

where HI is the escape frequency for vacancies on 
the B sublattice and H2 is the escape frequency for 
vacancies on the a! sublattice. In general case with 
Manning’slO random alloy approximation in mind, 
the Hs have been shown to satisfy9 

and 

1 -fo B B+a 
‘A wA 

LJ 8-+a 

- = 2~7” + AH2 

‘BwB 

2 
-+ 

2w$” + H2 

where f. is the (geometrical) tracer correlation fac- 
tor. In this structure f. = O-72722.’ 1 

Now let us describe the percolation behaviour. 
The physically accessible domain in the G/cB plane 
is shown in Fig. 1 by the bold outline triangle. It is 
formed as follows. When there is no distinction 
between sublattices, i.e. we simply have a random 
alloy (S= 0), then PB = cg. On the other hand when 
the lattice is always ordered as much as possible 
(S = 1) then 6 = 0 for 0 < cBs0’5 as all B atoms are 
on the /? lattice. When 0.5 < cg < 1.0 the cx sublattice 
then fills with B atoms. 

The percolating part of this physically accessible 
domain can be found as follows: first we assume 
that w:+~ and wz+” both are very small, such that 

1. we can put w:+~ = 0 and w;+“” = 0 in eqn (7); 
2. E can have any constant value from 0.0 to 1.0 

and therefore any level of order is possible, PB 
now is the main parameter determining the 
possibility of percolation. 

Then we have eqn (7) as follows: 

1 -fo ff+B G WB 

-=2w;++H1; 2 

1 -.fi cBgWpa 

- = 2dB-+” + H2 2 

(8) 

For the concentration c$ we will then have that 
the critical condition for percolation (from the 
restriction HI(~) > 0) is 

c; > 1 -f. (9) 

Fig. 1. The physically accessible domain of PB versus cg 
bold-outline triangle. 
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Thus, for percolation to occur and the ASB 
mechanism to operate, c$ must be greater than 
O-273 (this is shown as the horizontal solid line in 
Fig. 1) and, of course, 6 must also be in the phy- 
sically accessible domain discussed above. 

3. COMPUTER SIMULATION 

In order to assess the inequality (eqn (9)) Monte 
Carlo computer simulation was performed on the 
present model using exactly the same procedures as 
described in Ref. 4 (see also the more general 
review Ref. 12) but adapted in an obvious way to 
the case of the B2 structure. A level of order was 
specified, the configuration was frozen and a 
vacancy was inserted next to a B atom. B atoms 
were then permitted to diffuse. The (periodic) lat- 
tice size was 54000 sites (larger lattice sizes did not 
change the results), the number of jumps per B 
atom was at least 100 and runs were repeated until 
the equivalent of at least 10 000 atoms of each type 
was averaged. The results were also averaged over 
30 starting (frozen) configurations. The correlation 
factor was calculated from12 

(R;) 
fB = (nB)a* (10) 

where (Ri) is the mean square displacement, (ns) is 
the average number of jumps per B atom and a 
is the elementary jump distance. The fractional 
standard error in the correlation factor was about 
0.2%. 

4. SIMULATION RESULTS 

In Fig. 2 we present typical results for the correla- 
tion factor of the B atoms as a function of cs at 
various levels of order. Curve 1 represents the case 
when order is entirely absent (S= 0) and the model 
then corresponds to the random alloy. We need to 
ignore the tails of the curves because they represent 
local diffusion only. The percolation threshold then 
occurs at the well-known value of cg = 0.245.13 
Incidentally, compositions below this were origin- 
ally referred as the ‘forbidden region’ of the ran- 
dom alloy. lo The result is slightly below the 
percolation threshold of 1 -f. predicted theoreti- 
cally (see Fig. 1). Curve 4 represents the case when 
S= 1. This corresponds to a completely filled /3 
lattice with the excess B atoms distributed ran- 
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Fig. 2. Tracer correlation factorfB as a function of cg. Curve 
1 corresponds to S= 0.0, curve 2 to S=O.5, curve 3 to S= 0.75 

and curve 4 to S= 1.0. 

domly on the a! sublattice. The percolation thresh- 
old here occurs at cg = 0.565 (or pB = O-13). This is 
substantially less than cg(= 1 - f,/2) = 0.6364 (i.e. 
6 = O-273) predicted analytically above. The dis- 
crepancy comes about in the following way. When 
cg > O-5 the /3 sublattice is always full for S = 1. (B 
atoms on this lattice are next nearest-neighbours.) 
Thus any additional B atoms appear on the Q sub- 
lattice and provide pathways between the next 
nearest-neighbours, thereby in effect magnifying 
the size of these B atoms in a percolation sense. 
This is not explicitly taken into account in the 
analytical formalism. Curves 2, 3 in Fig. 2 repre- 
sent intermediate levels of order and give percola- 
tion thresholds between the above extremes. The 
percolation thresholds are plotted in Fig. 1. It is 
seen that they fall roughly on a straight line (shown 
as dashed). The area above this line and within the 
bold outline triangle (the physically accessible 
domain) is the percolation region. 

Importantly, it is seen that for S= 1 percolation 
is simply not possible until cs > 0.565. Several con- 
stant S contours are shown within the domain of 
Fig. 1. They clearly indicate that lower levels of 
order (SC 1) will require even high values of c*B for 
percolation. At S= 1 the corresponding value 
taken by c$ is 0.13 and this is almost four times 
higher than that predicted by Kao et al.’ by semi- 
quantitative arguments. It is now clear that for 
high levels of order the ASB mechanism (for B 
atoms) simply cannot play a role unless cs > O-56. 
This must put this mechanism completely out of 
consideration for any of the systems discussed by 
Kao et al.’ 

For completeness we also focus on stoichiometry 
(cg=O.5) and determine what level of order is 
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required to ‘activate’ the ASB mechanism simply 
by increasing temperature. Inspecting Fig. 1 one 
sees that the (computer simulation) percolation 
threshold occurs at GwO.14 when cg ~0.5. From 
eqn (5) we see that this will occur when S = O-72. 
This is quite a low level of order and will occur 
fairly close to the order/disorder temperature if this 
exists in a given system. 1For example, in CuZn this 
level of order occurs at albout 400”C’4 (7’, occurs at 
460°C). There are limitations, of course, with this 
kind of analysis which focuses on a specialized 
mechanism such as the ASB. The ASB mechanism 
of itself does not provide a means for the order to 
actually change in an alloy. (The same can also be 
said about the 6JC mechanism.) Thus it must work 
in concert with other vacancy-based mechanisms. 
In our opinion, generalized vacancy diffusion 
mechanism formalisms,9~15P17 have a much greater 
potential for providing an understanding of the 
complexities of diffusion in ordered structures 
because they implicitly include the 6JC and ASB 
mechanisms without being limited to them. 

5. CONCLUSIONS 

In this paper we have analysed the connectivity of 
the distribution of mobile atoms on the sublattices 
of an ordered alloy of the B2 structure. First we 
used an adaptation to the ordered structure of 
Manning’s diffusion formalism in the random 
alloy. This gives a percolation threshold of 0.273 
(1 -fO) for the antistructural atom concentration 
at all levels of order. Next, computer simulation 
showed that the percolation thresholds actually 
range from 0.245 (S= 0) to 0.13 (S= 1). This means 
that for high levels of order the ASB mechanism 
cannot be a contributor to diffusion because the 
overall composition would be outside the stability 

range of most ordered alloys and intermetallic 
compounds. At low levels of order the ASB 
mechanism may be operative. For example, at the 
stoichiometric composition and with S< 0.72 the 
ASB mechanism clearly contributes to diffusion. 
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