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Abstract-A direct mathematical procedure is presented for obtaining the volt-ampere characteristic 
in an insulating crystal having spatially homogeneous trapping centers under the condition of space- 
charge-limited emission into the crystal. The procedure is demonstrated in three cases. (1) The 
entire voltage range for a crystal with a discrete level is considered. (2) The characteristic is obtained 
for a crystal with traps distributed exponentially in energy. (3) The behavior with traps distributed 
uniformly in energy is derived as a special case of the exponentially varying distribution. 

R&sum&-On prCsente une mCthode mathkmatique directe pour obtenir la caractbristique Volt- 
Ampere dans un cristal isolant ayant des centres de trappe homoghnes dans l’espace sous des 
conditions d’Cmission de charge d’espace 1imitCe dans ce cristal. La mCthode est demontree dans les 
trois cas suivants: (1) La gamme entibre de tension pour un cristal ayant un niveau discret est 
obtenue. (2) La caracteristique est obtenue pour un cristal ayant des trappes dont l’tnergie est 
distribuee exponentiellement. (3) Le comportement SOUS des conditions de trappes ayant une 
distribution d’&.ergie uniforme est derivC comme cas spCcia1 de la distribution g variation exponen- 
tielle. 

Zwammenfassung-Die Volt-Ampere-Kennlinie eines isolierenden Kristalls, in dem sich 
Einfangszentren mit raumlich gleichfijrmiger Verteilung befinden, wird durch ein direktes 
mathematisches Verfahren dargestellt unter der Bedingung einer durch die Raumladung begrenzten 
Elektronenemission in den Kristall. Das Verfahren wird fiir drei Fllle durchgefiihrt: (1) Der 
gesamte Spannungsbereich fi_ir einen Kristall mit einem diskreten Energieniveauwird in &&a&t 
gezoeen. (2) Die Kennlinie wird fiir einen Kristall hergestellt, bei dem die Dichte der Fallen mit der 
Energie exponentiell ansteigt. (3) Als Sonderfall der exponentiell variierenden Verteilung wird der 
Fall einer gleichf&migen Verteilung der Fallen erijrtert. 

INTRODUCTION 

THIS paper provides a unified theoretical basis 
for obtaining the properties of space-charge- 
limited current flow in an insulator having an 
arbitrary distribution of traps in energy. Its aim 
is not a mathematically rigorous treatment, 
because rigor in this case leads to implicit equa- 
tions between voltage and current and to a loss of 
the physical picture which underlies the observed 
phenomena. Instead, the current-voltage relation- 
ships are obtained by extending an approach 
suggested by LAMPERT and used by him to 
handle the discrete-energy trapping level at low 
voltages. Analysis of energetically distributed traps 
is appropriate because of the correspondence 
observed between the theory developed and 
experiments(z) involving insulating crystals, 

principally CdS. This experimental evidence has 
prompted the choice of the various trapping 
distributions which are treated mathematically in 
this paper. Space-charge-limited currents in 
crystals having traps distributed in energy were 
first treated in an heuristic fashion by ROSE.@) 
The results, obtained by the method presented 
here, agree with ROSE’S conclusions. The usefulness 
of the approach in this paper lies chiefly in the 
unity of concept it brings to the general case of 

. . 
space-charge-hmlted currents in crystals con- 
taining traps. 

The problem considered is the determination of 
the volt-ampere characteristic for space-charge- 
limited currents in an insulating crystal with traps. 
The analysis is one-dimensional, with x denoting 
distance. The only free-charge carriers considered 
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to be present are electrons, and recombination is 
taken to be negligible. The crystal is assumed to 
have an electron-injecting contact called the 
cathode, which exists at the plane x = 0. The 
collecting electrode is called the anode and is 
situated at the plane x = a. Positive bias is 
defined by making the anode positive with respect 
to the cathode. The cathode provides charge at a 
sufficient rate to maintain space-charge-limited 
flow in the crystal. Thus, the boundary condition 
at this contact is always a zero value for the 
electric field. By “insulating” is meant that the 
free-electron density remote from the injecting 
contact at zero applied voltage is negligible when 
compared with the free-electron density under 
applied positive bias. 

The trapping states in the crystal are assumed 
to be uniformly distributed in space, but to have an 
arbitrary dependence upon energy. A quasi- 
thermal* equilibrium is postulated to exist between 
the free and trapped charge at every point in space. 

Finally, it is assumed that only drift processes 
contribute to the current flow. This assumption 
has been proved not to lead to inaccuracies in 
more complete mathematical analyses which have 
taken account both of drift and diffusion. SHOCKLEY 

and PRIM,(4) for example, considered the effect 
of diffusion in a trap-free semiconductor under 
space-charge-limited conditions, and showed that, 
for applied voltages in excess of kT;‘e, diffusion was 
relatively unimportant in determining volt- 
ampere behavior. SUITS(“) also considered the 
complete solution for a variable-width space- 
charge region including traps, and reached the 
same conclusion. 

The constraints just stated on the scope of the 
treatment are applicable in a sufficient number of 
actual cases to justify the detailed mathematical 
treatment. 

METHOD OF ANALYSIS 

The procedure in the mathematical analysis of 
space-charge-limited currents in a solid is straight- 
forward. The exact treatment stems from the 
simultaneous solution of three integro-differential 
equations: two of them express the definitions of 

* By “quasi-thermal” it is meant that, at each point 
in the crystal, the free- and trapped-charge densities 
are in the proportions specified by the state densities 
and by the Fermi-Dirac statistical function. 

potential and of drift current. The third is Poisson’s 
equation. The interdependences, however, are 
such that, in all but the simple, trap-free case 
and the case of a discrete-energy trapping level 
at low applied voltages, it is impossible to obtain 
from these an explicit relationship between 
current and voltage. 

LAMPERT treats exactly the case of discrete- 
energy traps at all applied voltages in an appendix 
to his work, the complexity of which points up the 
need for a more illustrative approach. The main 
body of LAMPERT’S paper consists of the develop- 
ment of an illustrative approach and its application 
to the derivation of the volt-ampere characteristic 
for discrete trapping centers at voltages much 
below the trap-filling value. 

The basis for the simplification proposed by 
LAMPERT lies in shifting attention from, on the 
one hand, current as a function of voltage to, 
on the other hand, anode charge as a function of 
voltage. As in the analyses of transistors and other 
semiconductor devices, this charge-oriented vieu- 
point succeeds both in providing a means for the 
derivation of manageable equations and in leading 
to a physical picture which may be readily 
grasped and understood. The postulate of a pure 
drift current at the anode (J = -spin&), 
coupled with the derivation of an easily established 
range in magnitude for the anode field &, serves 
to focus attention on anode charge as the significant 
voltage-dependent variable. It is easily demon- 
strated,(l) under the conditions specified at the 
beginning of this paper: first, that the magnitude 
of the electric field JE] increases monotonically 
from zero at the cathode to /&/ at the anode; and 
second, that: 

& = -,V/CL with 1 < Y. < 2 (1) 

where L& is the anode field, 1’is the applied voltage 
and a is the anode-to-cathode spacing. 

Therefore the actual current may always be 
computed within a factor of 2 from the relation- 
ship : 

J 21 epz,(V,h) (2) 

where J is the current density, e is the electronic 
charge, p is the electron mobility and 71,~ is the 
anode charge density. 

Equation (2) emphasizes the fact that the 
complex and varied behavior of insulators under 
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conditions of charge injection is contained in the 
dependence of the anode free-electron density 
upon the applied voltage. In fact, if na be obtained 
as an explicit function of voltage, its insertion into 
equation (2) will yield an explicit volt-ampere 
characteristic, valid within a factor of 2 at all 
voltages. 

The problem is thus to find the dependence of YZ, 
on voltage. An approximate, but very useful 
method of accomplishing this follows from the 
application of Gauss’s law to the crystal under 
conditions of charge injection from the cathode. 
Since the cathode field is defined to be zero 
(space-charge-limited injection), one may write : 

where rea is the dielectric constant, 56 is the 
average value of the injected free-charge density 

and ste is the average value of the injected trapped- 
charge density 

0 

Use of equation (1) to specify Ea incorporates 
voltage as the independent variable in equation (3) 
and leads to the form 

al/’ 
-= f++ ?5i) (4) 

a 

To convert equation (4) to a form useful for 
calculation of the current-voltage dependence, 
however, the injected charge at the anode must 
be related to the average injected charge. If this 
relationship is expressed by the following equation 

(n, + nkz) = &% + illi) (5) 

some general comments may be made concerning 
/3. An upper limit on p is established as follows. 
Since [El increases monotonically with x and the 
current density J is a constant with respect to x, n 
is monotonically decreasing from cathode to anode. 
The two assumptions of a constant trap density 
in space and a quasi-thermal equilibrium through- 

out the crystal assure that the total injected charge 
at the anode is a minimum. Hence, /3 is less than 
unity. 

In the Appendix, an heuristic proof is given that 
p is always equal to or greater than +, and that its 
voltage dependence is slight. The value /3 = 4 
apphes both to the trap-free insulator case and to 
the case of an insulator with traps whose occupancy 
is described by Maxwell-Boltzman statistics. In 
both these cases, an exact calculation for the 
spatial configuration of the injected charge is 
possible. The treatment which follows will 
neglect the slight variation with voltage possible 
in p in all cases. The chief justification for this 
step as well as for any other simplification proposed 
is, of course, the eventual correspondence between 
theory and experiment. 

Combining equations (4) and (5) gives an 
over-all equation for the anode-charge density in 
terms of voltage : 

UV 
-= ;o(n,+%f&) (6) 

a 

The incorporation of the relationship between n, 
and nta into equation (6) permits solving for na 
in terms of V. This solution is then inserted into 

J = epn,aVJa (7) 

to obtain the volt-ampere behavior. 
The relationship between n, and nt, is derived 

from the statistical formulae specifying these 
densities. Almost all cases of interest can be 
represented through the use of Maxwell-Boltzman 
statistics to describe the free-charge population 
density, and Fermi-Dirac statistics to describe 
the trapped-charge density. Under these condi- 
tions, a general form can be written for na in 
terms of nta. If the traps are distributed in energy 
according to the function p(W) between the 
limiting energies Wtr and Wtu, this general form 
is 

“iu 
r PW)dW \ 

nt, = J 
Wtz 

1 + exp[( W- Wf)/kTT 
I 

JV,,L ‘-(8) -- 

s PPVW 
Z-Z 

wtz 
1 +(N$&xp - [(WC- W)W] 1 
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where N, is the effective density of available 
states in the crystal conduction band, Wf is the 
Fermi-level energy at the anode, We is the energy 
of the conduction-band edge, k is Boltzman’s 
constant and T is the absolute temperature. 

Using equation (6-8) one can obtain an explicit 
volt-ampere characteristic for an insulating crystal 
having a general trapping-state configuration in 
energy. For application to a specific case, one 
first uses equation (8) in the form determined 
by the applicable p(W), then integrates and 
employs equation (6) to obtain the dependence 
of n, on V. The result of that calculation is used 
in equation (7) to write the explicit volt-ampere 
characteristic. 

To proceed further, it is most advantageous 
to consider specific examples. 

THE DISCRETE TRAPPING LEVEL 

To illustrate the application of the theory that 
has been presented, the first case to be examined 
is that of the discrete-energy trapping level. For the 
discrete level, p(W) in equation (8) is given by 

p(W) = N&W- W,) (9) 

where 1L’t is the density of traps and S(W- W,) 
is the Dirac delta-function. Hence, equation (8) 
becomes __ 

Jlt 
llta = 

1+ enitjn, 

where 0 is defined by the equation 

0 = (ACjNt) exp - [(IV,-- W)/kT] (11) 

and (W c- W,) is the depth of the trapping level 
below the conduction band. 

As can be seen, 0 has a special significance: 
it is the ratio of the free-charge density to the 
trapped-charge density at the anode at applied 
voltages low enough so that Maxwell-Boltzman 
statistics may be used to describe both populations. 
In actual crystals, 0 will be much less than unity, 
and for materials such as CdS it is typically of the 
order 10-7 (2) 

Insertion of equation (11) into equation (10) 
leads to 

WO$ V 12& 
__ = 7zn+ -___ 

en2 77,+ ON 
w-9 

If one considers first the low-voltage case where 

charge injection is slight and ONt > n,, then 
equation (12) takes the special form 

with the approximation true in the case of 0 < 1. 
When the approximate form of equation (13) is 
inserted into equation (7), one obtains the familiar 
square-law solution of Lampert: 

poqa2p V’ 1 <a<2 
Jr---__ 

na 4 </3<1 
(14) 

Equation (14) becomes identical with the exact 
form derived by Lampert with the substitutions 
CY. = 5; and /3 = “,. These magnitudes may be 
established directly for this simple case by a direct 
mathematical integration of the Poisson equation. 

At voltages for which the approximation 
ONt < n, is not valid, a complete solution of the 
quadratic equation for n, in terms of V (equation 
12) is necessary. A graph, drawn to logarithmic 
scales, of the solution of equation (12) for na/Nt 
vs. applied voltage is given in Fig. 1. The value 
assumed for 0 in Fig. 1 was 10-z to simplify 
graphical presentation, although such a large 0 is 
highly unlikely in the crystals available at present. 

The steep rise in na/Nt as V approaches the 
value easNtic+ro is evident in Fig. 1. The 
absolute location of this voltage, denoted by the 
symbol I/T in Fig. 1, is uncertain owing to the 
uncertainty in the product x/3 appearing in its 
definition (i < a/3 < 2). The bounds which 
na/Nt vs. I’ can have are easily located by rc- 
producing Fig. 1 at the extreme permitted values 
for 5’~. In previous work, VT has been taken to bc 
the injecting potential which provides enough 
charge to fill all traps, and has been denoted by 
the symbol VFFL. Under the assumption of a 
uniform charge distribution residing in the traps, 
VT can be evaluated separately from consideration 
of the geometrical capacitance. This assumption 
would imply that @ = 2 if VT = VTlpt. 

The complete calculated curve in Fig. 1 shows 
that na is linear with voltage at both low and high 
positive biases. The deviation from linearity and 
high-power-law behavior is apparent over roughly 
two decades in voltage centered at I/ = 7.7~. 
The dependence on 0 for the location of the lower 
asymptote in Fig. 1 emphasizes the increase in 
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FIG. 1. The behavior of the anode free-charge den- 
sity vs. voltage in a crystal with a discrete trapping 
center in the neighborhood of the trap-filling voltage 
(I’ = VT). The plot is a solution of equation (12) under 
variation of the applied voltage V. The asymptotic 

approximations are those of LAMPERT. 

steepness in the variation of na vs. voltage with a 
decrease in 0. A quantitative measure of this 
dependence can be calculated in a fairly straight- 
forward manner.(s) 

Although the salient features of the current- 
voltage behavior near to trap-filling can almost 
be deduced by inspection of Fig. 1, for complete- 
ness, the actual solution for n, vs. V should be 
inserted into equation (7) to obtain an explicit 
characteristic. This step leads to 

_ eMWl/ V .\ 

with 
easNt l<a<2 I_ 

+J [(&-l)s+z], (15) 1 _ 

This integral is not easily evaluated exactly, but 
an approximate form will preserve the important 
ohvsical features. The approximate form is 

The asymptotic square-law forms of equation (15) 
at both low and high voltages are easily obtained. 

TRAPS VARYING IN ENERGY 

Experimental evidence exists to indicate that 
some crystals are characterized by a trap density 
which increases exponentially with energy over a 
certain range, while others exhibit an apparently 
uniform trap density with energy.(s) It is possible 
to obtain the volt-ampere characteristics for both 
of these cases in a single mathematical treatment, 
as will now be demonstrated. 

The first case to be considered is that of an 
insulating crystal having a distribution of traps 
which are exponentially varying with energy in a 
continuous band stretching between the two 
energies Wtu and Wtl. The exponential variation 
in density is defined (as by ROSE@)) through a 
“temperature” T c, which characterizes p t, the 
trap-density variation with energy, by the equation 

pt = PO exp(W- W/kTc W 

where ps is a constant density of states per unit 
increment of energy. 

Then, in an energy interval dW there are dNt 
traps given by 

dNt = PO exp[(W- wtz)/kTcl dW (17) 

The total number of traps per unit volume Nt 
is given by 

Nt = p&TJexp[( WtU - wtz)/kTJ - 11 (18) 
and, provided (Wtu- Wt) 9 jkT,j and T, is 
positive so that the trap density increases with W, 
only the first term is necessary. 

From equations (8) and (17), the number of 
filled traps are 

wtu 

s PO expC(W- WdIkTd dW 

” =w,, 1 + exp[(W- IYf)/kTl 
(19) 
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derived simply by assuming the Fermi distribution 
to be unity for Wtl < W < Wf, and zero above 
this value, a procedure frequently used in analysis 
and increasingly correct as the temperature is 
lowered. This may be done correctly, however, 
only provided lTe\ > T so that the numerator 
in equation (19) is varying more slowly than the 
denominator. Whether or not this is the case in 
practice will have to be decided on the basis of 
correspondence between the conclusions implied 
by this step and experimental data. Under this 
approximation, the solution for the integral, 
valid for 1 T,j > T, is 

nt = ,wWc{exp[(Wr- Wz)/kT,]- 11 (20) 

Again, if (Wf- Wtl) 9 IkT,l and T, is positive, 
the first term is sufficient. Combining the forms of 
equations (18) and (20) which use the approxima- 
tions stated, one obtains 

nt N N exp[-(Wtu- Wf)/kT,l (21) 

To derive the dependence of ?lt on n, one first 
rewrites the statistical expression for ?za 

n, = NC exp[ - ( WC- Wf)/kT] 

in the form 

exp( Wf/kT,) = [(n,/Arc) exp( WJkT)]T’Tc 
(22) 

By use of equation (22), it is possible to eliminate 
WJ from equation (21), and to obtain thereby 

nt, = Nt(G/Nc)T,‘Tc exp[(W,- M&)/kT,] 
(23) 

Use of equation (6) once more to obtain ?za in 
terms of V under the assumption n, < nf, leads 
to the form 

*,./T 
hTc exp[- (WC- Wtu)lkTl 

(241 

Hence, from equation (7), the dependence of 
current on voltage is 

x {exp[-(WC- Wtu)/kT]}V[(TciT)‘ll 
(25) 

where the second form expresses some of the 
constants in terms of r’~,, defined in the first 
analysis. 

Equation (25) shows that a trap density in- 
creasing exponentially with energy (or, therefore, 
a trap density which decreases when moving 
downward energetically from the conduction band) 
leads to a power-law behavior that is greater than 
square law. The actual power for the voltage is 
temperature dependent. This voltage dependence 
was first derived heuristically by ROSE.(~) 

nlost of the approximations used to derive 
equation (25) will be met in practice. Perhaps the 
poorest of these is, however, the neglect of unity 
in the exact expressions for equations (1X) and 
(20). In order to derive equation (25), the only 
specification on the exponential distribution was 
that I T,I needs to be greater than T. No con- 
straints were put on the actual value for 1’, which, 
of course, depends on the crystal properties. 
An increasing I T e/ tends to invalidate the approsi- 
mate forms for equation (18) and (20), used in 
deriving equation (21). Likewise, if the trap 
density is exponentially decreasing in energy 
(T, negative), the neglect of unity with respect 
to the exponential terms in equations (18) and 
(20) is, of course, wholly unjustified. A solution is 
also possible, however, without these approxim- 
ating steps. If the exact expressions for equations 
(18) and (20) are used in a series of calculations 
directly analogous to those used to derive equations 
(21) and (23), one obtains, instead of equation 
(25) the form 

Equation (26) is then, a more general solution 
than (25), useful when the trap distribution is 
characterized either by a negative 1’, or by a 
large value for T,. Equations (25) and (26) are 
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both limited in validity to voltages less than VT 
by the specification that the Fermi level lie within 
the range of distributed traps. For T, negative, 
there are further restrictions on the validity of 
equation (26) that stem from the approximation 
that all charge is trapped. This approximation was 
used in the derivation of equation (24). Since no 
experimental observations of a behavior character- 
istic of negative T e have been reported, however, 
this case will not be considered further here. 

As mentioned already, equation (26) is also valid 
for large Tc, i.e. for a more uniform distribution 
in energy of the traps (see equation 16). Therefore, 
equation (26) can be used to obtain the volt- 
ampere behavior in the case of traps distributed 
uniformly in energy. To do this, one recognizes 
the identity 

lim l+ ” m= exp(x) 
m+oo r 1 m 

(27) 

in equation (26) after allowing T, to approach 
infinity. For a uniform charge density, ps is just 
equal to NJ(?Vt,- Wtl). Hence the over-all 
current-voltage dependence is 

J= 
epNc 
--~exp[-(~c-Wz)/~T] 

a 

(28) 

The exponential dependence of current on voltage 
for this situation of the Fermi level traversing a 
uniform density of traps checks with ROSE’S 
work. (3) 

Equations (25-28) are dependent upon Tc 
being greater than T; this fact is used to obtain a 
simplified form for the integral in equation (19). 
For Tc < T, the trap density becomes much 
more peaked in energy, provided that the total 
number of traps is limited, as is necessary from 
considerations of physical realizability. Hence the 
distribution becomes more and more like a single 
level and is therefore characterized by the 
discrete-level treatment. Thus, for T, < T, J 
tends toward a square-law behavior with voltage. 

CONCLUSIONS 
The unified mathematical approach developed 

at the beginning of this paper has been shown to 

C 

yield the current-voltage characteristics in three 
distinct cases. The results of the calculations, 
which have previously been derived by other 
techniques, check with the work presented here. 
Any distribution of traps with energy may, in 
principle, be handled by the analysis technique 
discussed in this paper. In complicated cases, 
the integral in equation (8) may, however, become 
difficult or impossible to solve. Approximate 
methods can nonetheless be used in its evaluation, 
and one can thereby obtain an explicit current- 
voltage relationship in all cases - a distinct 
advantage over the direct mathematical approach. 
All calculations are, however, subject to whatever 
degree of uncertainty may exist in a or B. 

The ease of calculation, when the simplified 
analysis presented in this paper is employed, 
becomes especially apparent if an attempt is 
made to handle the continuous trap-density 
cases by writing the exact forms of the Poisson 
equation and solving these. Besides the mathe- 
matical simplification, the conceptual value, which 
stems directly from the focus of viewpoint on the 
voltage-dependent behavior of the anode-charge 
density, also favors the calculation method 
presented here. It should, however, be realized 
that the complete mathematical treatment is 
necessary if field, potential or electron density is 
desired as a function of distance. 
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APPENDIX 
The Lower Limit in the Range of fi 

The lower limit for j3 is obtained by recognizing that 
the ratio of average charge to anode charge is a minimum 
in the case when all injected charge is free (no traps in 
the crystal). This can be seen by realizing that the 
guiding physical principle governing the ultimate 
charge configuration is the minimization of total energy. 
Thus, the charge configuration which exists when all 
electrons are free is that one which minimizes the 
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energy stored in the electric field under the constraints 
of a constant current and of the applied-voltage boundary 
conditions. If spatially uniform trapping states are 
available for free electrons, these traps will act to 
provide sites of minimum potential energy in the 
structure of the host lattice. Electrons tend to fill the 
lowest-allowed energy levels so that uniformly distributed 
traps result in a tendency to homogenize the space- 
charge configuration. A more even distribution of 
charge leads to an increased value for 8. Hence, the 
existence of homogeneous immobile energy sites at 
energies lower than those of the conduction band will 
tend to spread the charge more uniformly throughout 
the crystal, and thereby act to increase /I. 

The trap-free space-charge-limited current case is one 
that may be solved completely for the spatial distribution 
of charge. This is done in Ref. 2 and the minimum value 
(p = $) is thereby established. 

An exact statement about the voltage dependence of /3 
is difficult to make in the absence of a specific model. 
As a consequence of two facts, however, it is possible 
to argue that this dependence will be slight. First, 
the narrow range permissible in the value of fl precludes 
any large functional dependence on I’ other than some 
sort of physically unsatisfying oscillatory behavior. 
The second reason for the expected slight dependence 
on voltage stems from the way in which a voltage- 
dependent variable enters the applicable equations. 
In the exact formulation of the Poisson equation, 
voltage becomes a parameter in the solution for n(.v) 
and tit(x) upon the insertion of Fermi-Dirac statistics 
into the specification of the trapped-charge density. 
Since Fermi level and charge density are related only 
logarithmically, the over-all functional change in the 
equations will be slight for an incremental voltage 
change. 


