
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE MODEL. SIMUL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 197–213

A MULTISCALE MODEL OF FIRST AND SECOND ORDER PHASE
TRANSFORMATIONS WITH APPLICATION TO SMA SINGLE

CRYSTALS∗

VESSELIN STOILOV†

Abstract. This work aims to connect an atomistic model with continuum theory of phase trans-
formations in shape memory alloys (SMAs). A formulation of the Helmholtz free energy potential
based on Einstein potential has been developed. The atomic potential was used to describe the
interatomic interactions in a biatomic crystal of NiTi. The microscopic expressions of the instanta-
neous mechanical (continuum) variables of mass, momentum, internal energy, and temperature have
been derived in terms of the atomic variables. The developed Helmholtz thermodynamic potential
is used in the context of the sharp phase front-based continuum framework proposed by Stoilov and
Bhattacharyya [Acta Mater., 50 (2002), pp. 4939–4952] to study the micro-macro transition during
the thermomechanical response of NiTi crystals. The developed model has been successfully used to
predict the response of a one-dimensional single crystal system.
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1. Introduction. The ability to design materials with predetermined properties
starting from their atomic structure has recently received significant attention. To
design advanced materials from the bottom up not only requires full understanding
of the individual building blocks (atom, molecules) but also deep knowledge of the
simple construction units (clusters, grains etc.). These units span nano-meso-macro
length scales, and bridging these scales is one of the main obstacles in the development
of effective theoretical tools in the “bottom up” materials design.

There are two conceptually different approaches that have been taken to address
multiscale modeling problems. The first approach involves the passing of critical in-
formation obtained from atomic-scale models to mesoscales. At the simplest level
these could be elastic constants, thermal expansion coefficients, and other properties
of materials that can be extracted from atomistic models and then used as consti-
tutive material properties input for continuum models. For instance, information
about dislocation slip systems and other dislocation properties have been used in
the formulation of crystal plasticity models. More recently, atomistic or quantum
level calculations of material separation have been performed [11, 8] to supply cohe-
sive zone parameters for continuum models of fracture nucleation and propagation.
The approach of “passing” information from smaller- to larger-scale models is rather
powerful because no direct coupling of computational methods at different scales is
needed. The applicability of such approaches is limited because the small-scale phe-
nomena are generalized via studies of (usually) simple defect-free geometries that may
not capture the full complexity of deformation and transformation that would emerge
from a hypothetical, fully atomistic treatment.
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198 VESSELIN STOILOV

The second major concept for multiscale modeling is the explicitly coupled mod-
els. These types of models retain the full atomistic detail in one or a few critical
regions of the material, whereas the rest of the material is modeled by implementing
a higher-scale approach. Explicitly coupled models are appropriate and useful when
important atomic-scale phenomena are relatively localized in space, such as phase
transformation fronts, crack propagation, grain boundaries, etc. In such multiscale
models, atomistic phenomena are properly described where necessary while contin-
uum mechanics approaches are used in surrounding regions. An example for such an
approach is the macroscopic, atomistic, and ab initio dynamics (MAAD) method de-
veloped by Abraham, Broughton, and coworkers [5, 20]. In this method, three different
computational methods, namely tight-binding (TB), molecular dynamics (MD), and
finite element (FE), are concurrently linked together to simulate crack propagation in
a brittle solid. TB is used to simulate the atomic bond breaking right at the crack-tip;
MD is used to simulate the breaking at the region around the crack-tip; FEs are used
in the region far from the crack-tip where the deformation field is generally smooth.
The dynamics of the entire system is governed by a total Hamiltonian function that
combines the separate Hamiltonians of the three different regions. While MAAD has
been successfully applied to brittle fracture in Si, some major issues still remain. The
most significant of these issues lies in the coupling of the different levels of simulations.
In MAAD, the coupling is accomplished by assuming that each simulation contributes
an equal amount of energy to the total energy in the transition region. However, no
rigorous studies have been performed to quantify the effectiveness of this method in
eliminating spurious wave reflection at the simulation boundaries. Another concurrent
method developed recently is the quasi-continuum (QC) method [3, 4, 25, 22, 17]. In
this method, the continuum framework and continuum particle concept are retained,
while the macroscopic constitutive law is replaced by that from direct atomistic sim-
ulations. Each continuum particle is regarded as a small crystallite surrounding a
representative atom. The strain energy associated with the representative atom can
be computed by summing up the interatomic potential of the crystallite following
the Cauchy–Born rule. In overcoming the requirement of grading FE mesh down to
the lattice size, as in the QC and MAAD methods, a concurrent coupling method,
called the “bridging scale method,” has been recently developed by Liu and coworkers
[7, 19, 26]. A unique characteristic of this method is that it is assumed that the FE
and MD solutions exist simultaneously in the entire computational domain and MD
calculations are performed only in the regions that are necessary.

In this paper we shall focus on the development of a multiscale model of first
and second order phase transformations. In the second half of the paper the model
is used to study the phase transformations in shape memory alloys (SMAs). The
phase transformation in SMAs is a first order transition, accompanied by the release
or absorption of energy when the phase changes occur. The proposed multiscale
model consists of two models: meso- and nanoscale models. These models are linked
through the quantum mechanics definition of the Helmholtz free energy function [15].
The mesoscale model is based on the theoretical framework suggested by Stoilov
and Bhattacharyya [23]. This model accommodates any formulation of the Helm-
holtz free energy function and renders a complete solution to the continuum phase
transformation problem. The continuum description of the phase changes in SMAs
includes balance laws (of mass, linear momentum, and energy), the material’s consti-
tutive equations, and the constitutive equation at the phase boundary [23, 24]. The
nanoscale model is based on the calculation of the total potential energy of interaction
between the atoms/molecules of the system. This involves an explicit definition of in-
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teratomic potential. In this study an example of the implementation of Einstein-type
potential is used to account for the nanolevel phase transformation in a NiTi alloy.

The paper is organized into seven sections. Section 2 outlines the essence of the
adopted multiscale approach, section 3 discusses the general formulation of the Helm-
holtz free energy in terms of interatomic potentials, section 4 gives a brief description
of the continuum (mesoscale) model, and section 5 discusses the implementation of
the Einstein potential to predict the phase transformation NiTi single nanocrystal.
Section 6 is devoted to the numerical results of the proposed approach, and all findings
are summarized in section 7.

2. Bridging the scales-model formulation. In the “macroscopic world,” we
study the bulk properties of matter, which means that we study samples containing
on the order of 1023 atoms/molecules. The main theoretical framework for the study
of bulk properties is thermodynamics and continuum mechanics. On the other hand,
we also study the “microscopic world,” where we are concerned with the properties
of individual atoms/molecules. The usual theoretical framework of the microscopic
world is quantum mechanics (or sometimes classical mechanics), and the fundamen-
tal equations are Schrödinger equations. However, the properties of bulk matter are
predetermined by the properties of the particles of which it is composed. So in order
to bridge the different scales, an explicit relationship between the atomic presenta-
tion and the constitutive law for the material should be found. The constitutive law
of a material can be represented as one of the four thermodynamics potentials: in-
ternal energy, Helmhotz free energy, Gibbs free energy, and the enthalpy. For the
purposes of the model developed in this study, the constitutive laws of the materi-
als are represented by the Helmholtz free energy. From the atomistic point of view,
the Helmholtz free energy is explicitly defined by the atomic structure and its total
energy through the statistical partition function. On the other hand, the Helmholtz
free energy uniquely defines almost all macroscopic (mesoscale) thermomechanical
constitutive laws (stress-strain, entropy-temperature, etc.) governing the material’s
behavior (see Figure 2.1). Thus, the Helmholtz free energy serves as a natural bridge
between the atomistic and macroscopic phenomena, and it will be utilized in the
proposed multiscale model.

The atomistic definition of the Helmholtz free energy is related to the partition
function for a canonical ensemble, Z, as

(2.1) Ψ = −kθ lnZ,

where Ψ denotes the Helmholtz free energy, k is the Boltzmann constant, and θ is the
absolute temperature. The quantum mechanical presentation of the partition function
Z (for a canonical ensemble) is [18]

(2.2) Z =
∑
Er

g(Er)e
−Er

kθ ,

where g(Er) is the number of particles possessing Er energy.
Equations (2.1) and (2.2) are remarkable in that the partition function depends on

atomic/molecular properties through the quantum mechanical energies Ej , whereas
the left-hand side of (2.1) is a macroscopic, classical thermodynamic quantity. There-
fore, these equations allow thermodynamic properties to be interpreted and calculated
in terms of atomic/molecular properties.

In classical mechanics of continuum the system does not have discrete energy
levels. The energy, like the other variables characterizing the state of the system, is
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Fig. 2.1. Schematic of the multiscale approach.

a continuous variable. In quasi-classical form, for the atomic system the partition
function is [18]

(2.3) Z =
1

N !

1

h3N

∫
e−

H
kθ drdp,

where r, p are the coordinates and momenta of the particles in [r, r+dr]∪ [p,p+dp],
h is the Planck constant, and H is the Hamiltonian of the system. The Hamiltonian
can be presented as a sum of the kinetic and the potential energy of the system

(2.4) H = K + P.

Since the kinetic energy is only momenta dependent, whereas the potential energy
function is position dependent, the partition function factorizes into a product of
kinetic (ideal gas) and potential (excess) parts:

(2.5) Z =
1

N !

1

h3N

(∫
e−

K
kθ dp

)(∫
e−

P
kθ dr

)
= ZidZex.

For a system of atoms with mass, m, the kinetic part has a standard (as ideal gas)
presentation

(2.6) Zid =
V N

N !Λ3N
,

where Λ is the thermal de Broglie wavelength

(2.7) Λ =

(
h2

2πmkθ

) 1
2

.

The excess part of the partition function reads

(2.8) Zex =
1

V N

(∫
e−

P
kθ dr

)
,

where V is the volume of the system. By combining (2.1) with (2.5)–(2.8), an explicit
form of the Helmholtz energy can be derived if the interaction potential, P(r), is
known.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A MULTISCALE MODEL 201

3. Helmholtz free energy function based on interatomic potential.

3.1. Thermodynamics of the one-dimensional system. We shall consider
an equilibrium isothermal system of N particles possessing only one degree of freedom
each and distributed on a segment of axis Ox of length L. The partition function for
such a system is given by

(3.1) Z = ZidZex =
V N

N !

(
2πmkθ

h2

)N
2

Zex.

The constitutive law for the specified material can be derived using one of the Maxwell
relationships [15] along with (2.1):

(3.2) σ =
1

V

(
∂Ψ

∂ε

)
θ

= −kθ

V

∂ lnZex

∂ε
,

where we used the notation
(
∂ζ
∂χ

)
κ

to denote a partial derivative at constant variable
κ. Furthermore we assume that the total interactions in the system are composed of
the interactions of individual pairs of particles described by the potential ui. If we
then assume in addition that the potential ui is a short range in which each particle
interacts only with the two closest neighbors (one from each side), we obtain

(3.3) P =
∑

1≤i≤N−1

ui(xi+1 − xi).

For the derivation of the following relation a formalism similar to the one developed
by Gursey (see Fisher [6]) is used (see Appendix A). When N is a large number, the
asymptotic form of the excess partition function follows from [6] as

(3.4) Zex =
N !

V N
e−

σεV
kθ (φ(σ, θ))

N+1
,

where

(3.5) φ(σ, θ) =

∫ ∞

0

e

(
−ui(x)+σAx

kθ

)
dx,

where A is the cross-sectional area of the one-dimensional system. Using (2.1), (3.4),
and (3.1), the Helmholtz free energy per unit volume, ψ (ψ = Ψ

V ), is obtained:

ψ = σε− 1

2V
Nkθ ln

(
2πmkθ

h2

)

− (N + 1)

V
kθ ln(φ(σ, θ)).(3.6)

Each of the terms in (3.6) can be attributed to different types of energy. The first
term represents the mechanical energy of the system, whereas the second and the
third terms are the chemical and thermomechanical contributions to the total energy.
In the next section we illustrate the application of the developed theory to the one-
dimensional phase transformation problem in SMAs.

4. Mesoscale model of the phase transformation in single crystal SMAs.
In this section we shall focus on theoretical framework for the phase transformations
in a spatially one-dimensional SMA system. For complete derivation of the theoretical
framework we refer the reader to Stoilov and Bhattacharyya [23]. In this section will
briefly outline the basics of the approach.
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4.1. Constitutive equations. We consider a class of materials for which the
stress, σ, the specific entropy, η, and the specific internal energy, u, are dependent on
the Lagrangian strain, ε, and the temperature, θ, while the heat flux, q, is given by
the Fourier law of heat conduction. These relations are respectively stated as

σ ≡ σ(ε, θ), η ≡ η(ε, θ), u ≡ u(ε, θ),

q = −KT
∂θ

∂X
,(4.1)

where the Lagrangian strain follows from the deformation gradient, F , as

(4.2) ε =
1

2

(
F 2 − 1

)
,

and the parameter, KT , in (4.1) is the thermal conductivity. In particular, the stress
σ, entropy η, and internal energy u may be derived from the Helmholtz free energy
function, ψ ≡ ψ(ε, θ) (see (3.6)), as [15]

(4.3) σ =

(
∂ψ

∂ε

)
θ

, η = −
(
∂ψ

∂θ

)
ε

, u = ψ + θη.

For two phases to coexist in thermodynamic equilibrium, the stress (σ), the tempera-
ture (θ), and the chemical potential (μ) have to be continuous at their interface [15].
For irreversible processes not too far away from thermodynamic equilibrium, the lat-
ter two quantities remain continuous at the phase boundary, or equivalently, their
jumps vanish. Thus

(4.4) [θ] = 0, [μ (σ, θ)] = 0 at x = xs(t).

Denoting θ(xs(t)) = θs,

(4.5)

[
ε
∂σ

∂θs

]
= −[η] at x = xs(t),

(4.5) is the generalized Clausius–Clapeyron equation [23].

4.2. Conservation laws. In the absence of body forces, the conservation of
linear momentum away from the phase boundary (x = xs(t)) is given by

(4.6)
∂σ

∂X
= ρ0

dV

dt
at x �= xs(t),

where the coordinate, X, is the location of a particle in the reference configuration,
t is time, σ ≡ σ(X, t) is the uniaxial first Piola–Kirchhoff stress (also referred to
sometimes as the “nominal stress”), ρ0 ≡ ρ0(X) is the mass density in the reference
configuration, and V is the particle velocity. The conservation of energy is

(4.7)
∂q

∂X
+ σ

dF

dt
+ ρ0r =

du

dt
at x �= xs(t),

where q is the heat flux, F is the deformation gradient (defined below), r ≡ r(X, t)
is the heat source per unit mass, and u is the internal energy per unit volume of the
reference configuration. In particular, we define

(4.8) F = 1 +
∂w

∂X
, where w = x−X,
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w being the displacement of a particle from its reference configuration. The conser-
vation of mass is stated as

(4.9)
dρ

dt
+ ρ

∂V

∂x
= 0 at x �= xs(t),

where ρ is the mass density in the deformed configuration. Denoting a jump in a quan-
tity, A, at the phase boundary as [A] and defining it as [A] = lim�→0 A(xs +�, t)−
lim�→0 A(xs−�, t), where Δ > 0, the conservation of linear momentum, energy, and
mass at the phase boundary (x = xs(t)), respectively, imply the following jumps:

[σ] = −ρ0[V ]Vs, [q] = −
[
u +

1

2
ρ0V

2

]
Vs − [V σ],

[V ] = −Vs[F ],(4.10)

where Vs = ∂xs/∂t is the phase boundary velocity.

5. One-dimensional phase transformation in a NiTi nanocrystal. In this
section we apply the theory outlined in the previous section to describe the phase
transformation in a NiTi single crystal. The considered crystal is one-dimensional,
and both phases, austenite and martensite, are represented as one-dimensional arrays
of atoms, as shown in Figure 5.1. The two arrays have different lattice constants
and different energies of interactions. The different lattice constants will determine
the magnitude of the transformation strain, and the different interaction energies will
represent the release/absorption of heat during the phase transformation process. The
interatomic potential adopted here is an Einstein-type potential [18] defined as

(5.1) ui(x) =

{
γ
2 (xi+1 − xi − a0)

2
for |xi+1 − xi| ≤ a0,

∞ otherwise,

where a0 is the lattice constant, γ is the stiffness of the bond, and x (x = xi+1 − xi)
is the instantaneous value of the bond length. This potential defines the interatomic
interactions as linear elastic, which is a reasonable approximation for most solid ma-
terials, assuming small atomic displacements from the equilibrium positions [18].

5.1. Thermodynamics of the phase transformation. In order to treat a
system by statistical mechanics, one must calculate the configuration or excess parti-
tion function Zex. We shall assume that the potential energy U of the system results
from interatomic/molecular potentials between the atoms. For the one-dimensional
system with cross-section, A, the excess part of the partition function follows from
(3.4). The complete derivation of (5.2) is included in Appendix A:

(5.2) Zex =
1

V N
e−

σAL0(1+ε)
kθ [φ(σ, θ)]

N+1
.

After substituting (5.1) into (3.5) one can obtain the explicit form of φ,

(5.3) φ(σ, θ) =
a0

2

√
π

β
e

σ2A2a2
0

4k2θ2β

(
erf

(
−2βkθ + σAa0

2kθ
√
β

)
− erf

(
σAa0

2kθ
√
β

))
,

where β is the ratio of the energy of the bond to the thermal energy

(5.4) β =
γa2

0

2kθ
.
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Fig. 5.1. Schematic of the one-dimensional NiTi single crystal.

Since φ is in terms of σ and θ, it is more convenient to use the Gibbs free energy
instead of the first equation in (4.1) to obtain the equation of state (Hooke’s law):

(5.5) G = ψ − σε = − 1

2V
Nkθ ln

(
2πmkθ

h2

)
− (N + 1)

V
kθ ln(φ(σ, θ)).

From the definition of the Gibbs free energy (see (5.5)) the equation of state follows
as

(5.6) ε = −
(
∂G

∂σ

)
θ

=
(N + 1)

V
kθ

1

φ(σ, θ)

(
∂φ

∂σ

)
θ

.

Equation (5.6) combined with (5.3) can be expanded into series with respect to stress,
σ. Keeping only linear terms the strain can be obtained as

ε = −
(N + 1)a0A

(
e−β − 1

)
erf

(√
β
)
V
√
πβ

(5.7)

− 1

2

(N + 1)a2
0A

2
(
−π erf(

√
β)2 + 2

√
πβ erf(

√
β) e−β + 2e−2β − 4e−β + 2

)
πV βkθ erf(

√
β)2

σ.

In solids, the energy of the interatomic bonds significantly exceeds the energy of
thermal motion; therefore parameter β will have a value well above 1 (β 	 1). For
large β, (5.7) becomes

(5.8) ε =
(N + 1)a0A

V
√
πβ

+
(N + 1)a2

0A
2(π − 2)

2πV βkθ
σ.

If the Young modulus, E, and the coefficient of thermal expansion, α, are defined as

(5.9) E =
πγa2

0

Vc(π − 2)
, α =

√
k

2πγa2
0θ0

,

the strain in the system will be given by

(5.10) ε = α(θ − θ0) +
σ

E
+ εT ,

where εT is prestrain (reference strain) at θ = θ0 and σ = 0. The thermal expansion
coefficient, α, was obtained from the first term of (5.8) for small temperature deviation
from a reference temperature, θ0:

ζ(θ) =
(N + 1)a0A

V
√
πβ

≈ 1√
πβ

=

√
2kθ

πγa2
0

(5.11)

≈
√

2kθ0

πγa2
0

+

√
k

2πγa2
0θ0

(θ − θ0) = εT + α(θ − θ0).
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In the derivation of the Young modulus, E, the coefficient of thermal expansion, α
(see (5.9)), and (5.11) we used the definition of lattice cell volume, Vc:

Vc = a0A ≈ V

N + 1
.

Next we formulate the heat capacity in terms of entropy:

(5.12) Cε = θ

(
∂η

∂θ

)
ε

.

The Helmholtz free energy per unit volume, ψ, is obtained from the first two equations
in (4.3) and

(5.13) dψ =

(
∂ψ

∂ε

)
θ

dε +

(
∂ψ

∂θ

)
ε

dθ,

which yields the following definition of ψ:

(5.14) dψ = σdε− ηdθ.

By combining (5.14), (5.10), and (5.12) and integrating consecutively over the stain,
ε, and the temperature, θ, the Helmholtz free energy becomes

ψ =
1

2
E (ε− εT )

2 − Eα (ε− εT ) (θ − θ0)

+ Cεθ

(
1 − ln

θ

θ0

)
+ ψ0.(5.15)

The expressions for entropy, internal energy, and heat capacity follow from (4.1) and
(3.6) as

η =
1

2V
Nk

(
1 + ln

(
2πmkθ

h2

))
+

(N + 1)

V
k ln(φ(σ, θ))

+
(N + 1)

V
kθ

1

φ(σ, θ)

(
∂φ(σ, θ)

∂θ

)
σ

,(5.16)

u = σε +
1

2V
Nkθ +

(N + 1)

V
kθ

1

φ(σ, θ)

(
∂φ(σ, θ)

∂θ

)
σ

,(5.17)

Cε =
1

2V
Nk +

2(N + 1)

V
kθ

1

φ(σ, θ)

(
∂φ(σ, θ)

∂θ

)
σ

− (N + 1)

V
kθ2 1

φ2(σ, θ)

(
∂φ(σ, θ)

∂θ

)2

σ

+
(N + 1)

V
kθ2 1

φ(σ, θ)

(
∂2φ(σ, θ)

∂θ2

)
σ

.

(5.18)

The final equation, needed to complete the description of the system, is the generalized
Clausius–Clapeyron equation. The jump of the entropy at the phase boundary can
be derived from (5.16):

[η] =

[
1

2V
Nk ln

(
2πmkθ

h2

)
+

(N + 1)

V
k ln(φ(σ, θ))

+
(N + 1)

V
kθ

1

φ(σ, θ)

(
∂φ(σ, θ)

∂θ

)
σ

]
.(5.19)
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The right-hand side of (4.5) contains an explicit derivative of the stress with respect to
the temperature. Since the stress has been defined implicitly (see (5.6)) it is computed
using the implicit differentiation rule:

(
∂σ

∂θ

)
ε

= −
(
∂ε
∂θ

)
σ(

∂ε
∂σ

)
θ

,(5.20)

⎡
⎢⎣ ε

θ

φ
θ

(
∂φ
∂σ

)
θ
−
(

∂φ
∂σ

)
θ

(
∂φ
∂θ

)
σ

+ φ
(

∂2φ
∂σ∂θ

)
(

∂φ
∂σ

)2

θ
+ φ

(
∂2φ
∂σ2

)
θ

⎤
⎥⎦

=

[
1

2V
Nk ln

(
2πmkθ

h2

)
+

(N + 1)

V
k ln(φ(σ, θ))

+
(N + 1)

V
kθ

1

φ(σ, θ)

(
∂φ(σ, θ)

∂θ

)
σ

]
.(5.21)

The last equation completes the system of equations ((4.6)–(4.10), (5.15), and (5.21))
derived for the SMA material, in terms of the function φ. The addition of the defi-
nition of φ (see (3.5)) renders a unique solution of the mathematical problem. The
numerical method for the solution of the system of equations is described in Stoilov
and Bhattacharyya [23]. The additional function φ(σ, θ) was tabulated for the range
of the stress and temperatures and was used as an input. All necessary derivatives of
φ(σ, θ) were computed numerically.

6. Results and discussion. The theoretical values of the Young modulus, E,
and the thermal expansion coefficient, α, were obtained using (5.9). The stiffness
constant, γ, in the adopted atomic potential was estimated by assuming that an atom
would have enough energy to leave the system if it could be displaced by a distance
equivalent to one lattice constant, a0. Thus the energy of evaporation, Ev, per single
atom can be expressed as

(6.1) Ev =
1

2
γa2

0.

With (6.1), the Young modulus, E, and the thermal expansion coefficient, α, can be
determined by using that

(6.2) E =
2πEv

Vc(π − 2)
, α =

√
k

4πEvθ0
.

6.1. Experimental verification. A comparison between the computed values
of the Young modulus, E, the thermal expansion coefficient, α, and the corresponding
experimental data, for the number of metals with body center cubic (bcc), hexagonal
close-packed (hcp), and cubic close-packed (ccp) lattice structures, is shown in Fig-
ures 6.1 and 6.2. The theoretically predicted values are in good agreement with the
experiment for most of the metals. However, some deviation is observed for metals
with mainly ccp lattice structure such as Ir, Rh, etc. In these cases the theoretical
prediction significantly underestimates the experimental values, which is probably due
to the fact that in the ccp the second, third, etc., nearest neighbors make a significant
contribution to the total energy of an atom, which is not taken into account by the
adopted interatomic potential.
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Fig. 6.1. Young modulus for metals. Comparison with experiment [10, 12].

Fig. 6.2. Thermal expansion coefficient. Comparison with experimental data [16].

6.1.1. Heat capacity. The heat capacity deserves special attention. A good
test for the result is the value of the obtained heat capacity at high temperatures. In
the limit of high temperature (T → ∞), Cv reaches a limit value of Cv = 3

2k (see
(5.18) and (5.3)), which is the heat capacity of ideal gas per unit particle. This limit
value of Cv corresponds to 50% deviation from the Debye predictions of Cv = 3k for
solids. The observed discrepancy could be explained with not taking into account the
contribution of the vibration energy to the kinetic energy of the system.

6.2. Phase transformation in NiTi. As mentioned earlier the studies pre-
sented here are primarily focused on the development of a multiscale model of the
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Table 6.1

List of material and geometric input parameters for Ti-50.1%atNi.

Parameter Symbol NiTi single crystal
Value Ref.

No. of atoms NA 2500 -
Lattice constants aA 3.01Å [14]

aM 3.19Å -
Length L 752.5nm -
Perimeter of the cross-section P 0.157μm -
Area of the cross-section A 7.85 × 10−15m2 -
Mass density ρ0 6450kg/m3 [13]
Uniaxial phase transformation strain εph 0.06 [1]
Latent heat of phase transformation λph 0.121GJ/m3 [1]
Thermal conductivity kAustenite 14W/(mK) [1]

kMartensite 28W/(mK) [1]
Convective coefficients hL 77W/(m2K) [1]

hb 0 -

phase transformations in SMAs. In this section, we use the developed theory to pre-
dict the stress-induced phase transformation at constant deformation rate in a NiTi
single crystal under uniaxial loading. The NiTi single nanocrystal was represented as
a one-dimensional array of alternating Ni and Ti atoms. The lattice constant of the
austenitic and martensitic phases were selected to be aA = 3.01 Å [14] (see Table 6.1)
and aM = (1 + εph)aA, respectively. A list of the used material parameters and their
values are presented in Table 6.1. Since the deformation gradient in most SMAs is
small

(
∂w
∂x � 1

)
away from the phase boundary, the “small strain” approximation for

the following sample calculations will be invoked:

(6.3) ε ≈ 1 − F = 1 − Δl

l
.

The computed macroscopic pseudoelastic curves for three different ambient temper-
atures are shown in Figures 6.3–6.5. The model predictions are consistent with the
experimental observations of Hamilton et al. [21] on single crystal Ti − 50.1%atNi.
Hamilton et al. [21] observed an increase in the values of the magnitude of the stress
necessary to initiate the austenite-to-martensite phase transformation with the in-
crease of the ambient temperature. This is also in agreement with the computations
here. There are, however, some discrepancies. First, the predicted constant stress
response during unloading deviates from the experimentally observed stress trend of
decrease. Second, the experimental values of the magnitude of the stress necessary
to initiate the reverse martensite-to-austenite phase transformation are higher than
the model predictions. This in turn initiates a phase transformation at higher stress
and reaches unrecoverable strains of an order of 0.2%. A possible explanation for
these discrepancies could be the much smaller heat capacity predicted by the atom-
istic model (see section 6.1.1). In the simulations, the two times smaller heat capacity
makes characteristic time response, tch, to the latent heat flux, two times smaller

(Δθ ∼ e
− t

tch , tch = ρCvV
hAs

[9]). Therefore, the predicted phase transformation during
both, loading and unloading parts of the cycle, is virtually isothermal, which is shown
as constant stresses during the transformation simulations. In contrast, the experi-
ment showed that the loading and unloading parts of the cycle have different natures.
While the slow loading is close to isothermal conditions and practically coincides with
the simulation predictions, the quick unloading takes much less time than the real
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Fig. 6.3. Experimental and theoretical stress-strain curves for single crystal Ti-50.1at%Ni [123]
orientation θamb = 15C [21].

Fig. 6.4. Experimental and theoretical stress-strain curves for single crystal Ti-50.1at%Ni [123]
orientation θamb = 25C [21].

characteristic response time, tch, and thus significantly deviates from the virtually
isothermal predictions of the model.
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Fig. 6.5. Experimental and theoretical stress-strain curves for single crystal Ti-50.1at%Ni [123]
orientation θamb = 35C [21].

7. Conclusions. We have developed a multiscale model of phase transformation
for SMAs. Apart from the continuum formulation [23] we have proposed an atomic
level model which was coupled with the continuum model through the quantum me-
chanics definition of the Helmholtz free energy function. It is also demonstrated that
the proposed approach successfully models the one-dimensional phase transformation
in NiTi single crystal. In addition the authors believe that implementation of vibra-
tion degrees of freedom and a better interatomic potentials such as Sutton–Chen or
the modified embedded atom method [2] potentials are to improve the model perfor-
mance.

Appendix A. Excess partition function. We shall assume that the potential
energy U of the system results from interatomic/molecular potentials between the
atoms. If we denote the potential energy between atoms i and j, when the distance
rij = |ri−rj | apart, by uij ≡ u(rij), then we write the potential energy of an ensemble
of N atoms as

(A.1) P =

N∑
i=1

N∑
j=i+1

uij .

After substituting (A.1) into (2.8) the excess part of the partition function becomes

(A.2) Zex =
1

V N

∫
d3r1 . . . d

3rN
∏

e−
uij
kθ ,

where the product is over all pairs of atoms with i < j. The product of the multiple
integrals is transformed using the substitution:

(A.3) f(x) = exp
(
−uij

kθ

)
.
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The introduction of f(x) allows
(A.4)

Zex =
1

V N

∫ L

0

dxN

∫ xN

0

dxN−1 . . .

∫ x2

0

f(x1)f(x2−x1) . . . f(xN−xN−1)f(L−xN )dxN .

Now let us consider the sequence of functions

f1(x) ≡ f(x),

fm(x) =

∫ x

0

f(ξ)fm−1(x− ξ)dξ, m = 2, 3, . . . ,(A.5)

where fm is obtained as convolution of the preceding function fm−1 with f . According
to (A.4), we may write

(A.6) Zex =
1

V N
fN+1(L).

Let us designate by φ(s) the Laplace transformation of the function f(x):

(A.7) φ(s) =

∫ ∞

0

e−sxf(x)dx, Re(s) > 0,

so that the inverse is

(A.8) f(x) =
1

2πi

∫ c+i∞

c−i∞
esxφ(s)ds,

where the positive number c is such that the path of integration lies to the right of all
the poles of φ(s). By repeated application of the convolution theorem of the Laplace
transformation, we obtain

(A.9)

∫ ∞

0

e−sxfm(x)dx = (φ(s))
m
,

and because of (A.6) we may write

(A.10)

∫ ∞

0

e−sLZ̄ex(L)dL = (φ(s))
N+1

,

where Z̄ex = ZexV
N . Hence, by application of the Laplace transformation we obtain

(A.11) Z̄ex =
1

2πi

∫ c+i∞

c−i∞
esL (φ(s))

N+1
ds.

By proper selection of the integration contour (A.11) can be transformed into

(A.12) Z̄ex =
1

2πi

∮
c

esL (φ(s))
N+1

ds.

If l = L/(N + 1) is the length per particle, we write

(A.13) esL (φ(s))
N+1

=
(
eslφ(s)

)N+1
= e(N+1)χ,

where

(A.14) χ = sl + lnφ(s).
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Hence for the saddle point s0 we have the condition

(A.15) χ′(s0) = l +

[
d

ds
lnφ(s)

]
= 0,

so that in the vicinity of point s0 there will be

(A.16) χ(s) = s0l + lnφ(s0) +
1

2
χ′′(s0)(s− s0)

2 + · · · .

Disregarding further terms of the expansion and placing (A.16) into (A.13) and (A.12),
we obtain

(A.17) Z̄ex =
[
es0lφ(s0)

]N+1 1

2πi

∮
c

e[
1
2 (N+1)χ′′(s0)(s−s0)

2]ds.

On integrating along the chosen path which passes through point s0, the integral in
(A.17) gives the Poisson integral and, consequently, is of the order of (N + 1)1/2. For
the asymptotic evaluation of Z̄ex, when N → ∞, we use the logarithm of the factor
which stands before the integral in (A.17). More precisely,

(A.18) lim
N→∞

[Z̄ex]1/(N+1) = es0lφ(s0).

Thus we obtain, asymptotically,

(A.19) Z̄ex = es0L [φ(s0)]
N+1

= es0(1+ε)L0 [φ(s0)]
N+1

,

where L0 is the reference length of the system, and ε is the strain. By placing (A.19)
into (3.1) and taking into account the first equation in (4.3) and (2.1), we obtain for
the stress

σ = −kθ

V0

(
∂ lnZid

∂ε
+

∂ lnZex

∂ε
+

∂ lnZM

∂ε

)
= −kθ

V0

∂ lnZex

∂ε

= −kθ

V0

(
s0L0 + (N + 1)

(
l +

d

ds0
lnφ(s0)

)
∂s0

∂ε

)
.(A.20)

When the condition in (A.13) is taken into consideration the stress becomes

(A.21) σ = −kθ

V0
s0L0 = −kθ

A
s0.

Thus it appears that s0 = −σA/(kθ). By placing this into (A.19), we obtain

(A.22) Zex =
1

V N
e−

σAL0(1+ε)
kθ [φ(s0)]

N+1
,

where in accordance with (A.3) and (A.7)

(A.23) φ(s0) =

∫ ∞

0

e−
ui(x)−σAx

kθ dx.
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