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The effects of structure nonuniformity and thermal perturbation on properties of proton
conductivity in hydrogen-bonded systems with damping exposed in an externally applied
electric-field have been numerically studied by fourth order Runge–Kutta method in our
soliton model. The results obtained show that the proton-soliton is very robust against
the structure disorder including the fluctuation of the force constant and disorder in
the sequence of masses and thermal perturbation and damping effect of medium, its
velocity of conductivity increases with increasing externally applied electric-field and
with decreasing damping coefficient of medium, but the proton-soliton disperses at quite
great fluctuations of force constant and damping coefficient. In the meantime, the proton-

soliton in ice crystals is thermally stable in the region of temperature of T ≤ 273 K.
From the numerical simulation, we find out that the mobility (or velocity) of proton
conduction in ice is a nonmonotonic function of temperature in the temperature region of
170–273 K, i.e., it increases initially, reaches a maximum at about 191.4 K, subsequently
decreases to a minimum at about 211.6 K, and then increases again. This changed rule of
mobility obtained consists qualitatively with its experimental datum in ice in the same
temperature region. Thus these results provide an evidence for the soliton excited in the
hydrogen-bonded systems.

Keywords: Hydrogen bond; proton transfer; structure nonuniformity; thermal perturba-
tion; mobility; Runge–Kutta method.
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1. Introduction

It is well-known that ice, lithium hydrazinium sulfate, imidazole, crystalline hydro-

gen halides and proteins are some typically hydrogen-bonded molecular systems.

The prototype of the systems can be represented by a series of hydrogen bonds as

· · ·X−H · · ·X. −H · · ·X−H · · · , where X is a heavy ion or OH in ice or N C O
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in proteins.1–8 It is a well-established fact that the hydrogen ions or protons are the

dominant charge carriers and the hydrogen-bonded chains provide a channel for

the proton transport. Experimental investigations of conductivity show that the

proton conductivity along the direction of the channel is 1000 times larger than

that in the perpendicular directions. Its mobility is comparable to the electronic

mobility in some semiconductors. For this reason, these materials have been termed

“protonic semiconductors”. Ice crystal is a convenient type of proton transfer in the

hydrogen-bonded molecular systems. Eigen and Maeyer4 reported an observation

of high-mobility (∼ 0.05 − 0.1 m2/Vs) of proton transfer in ice. However, lower

protonic mobility was found later by Nagle5,6 in ice which supports the belief that

earlier reported mobility might have been the result of surface conduction. Recently

reported values are on the order of ∼ (5− 10)× 10−3 cm2/Vs. These, however, are

still many orders of magnitude larger than the mobilities of other ions such as Li+

and F− in ice.4

Obviously, the high efficiency of proton transport in the hydrogen-bonded sys-

tems is associated with possible coherence features in the proton motions. The

cooperative proton dynamics in these networks can be directly attributed to the

proton-proton interaction and the nonlinear nature of the hydrogen bond chains.

Because of the symmetry of an isolated oxygen-proton-oxygen complex in ice, thus

the effective potential of protons has the form of a double well. Two symmetric

equilibrium positions of hydrogen ions are separated by a potential barrier and

the height of the barrier depends strongly on the distance between the adjacent X

atoms. The properties of the proton potential and proton-proton interaction lead

naturally to the association of possible coherence in proton motions with the concept

of topological solitons in the systems.9–34 The soliton model of proton transfer in ice

was first proposed by Ankonchenko et al. (ADZ model).9 In this model the protons

in the hydrogen bonds of the chain become a soliton through the double-well poten-

tial, and the coupling between the proton and X atoms provide a barrier-lowering

mechanism that allows an proton transfer between the two equilibrium positions.

Thus the coupling between a vibrational proton in a double-well potential and an

optical mode of the heavy ionic sublattice is included in this model. An ionic defect

appears as a solitary wave in the proton sublattice which propagates together with

a contraction of the relative distance between neighboring heavy ions. This model

is further pursued in a number of works11–41,44,45 in which a variety of theoretical

extensions have been derived, some involve the one-component protonic chain with

two parameters proposed by Pnevmatikos et al.
13,14,17,20,22 However, this model

is only effective for explaining the transfer of ionic defects, and fails for the Bjer-

rum (or bonded) defect in the systems. Meanwhile, the dynamical equations in this

model are also very difficult to solve, so that an exact analytical solution cannot

also be obtained. If realistic values for the parameters of the systems are consid-

ered, the continuum approximation fails due to the narrowing of the domains of

validity of the solutions with respect to the lattice spacing. The one-component



March 29, 2011 9:19 WSPC/140-IJMPB S0217979211056275

The Properties of Proton Conductivity 57

model20–22 is not accepted because the influence of heavy ionic sublattice on the

protons is not considered in detail in this model. Therefore, the proton transfer in

the hydrogen-bonded systems is still an open problem.

Recently we proposed a model for the study of dynamic properties of proton

transfer in hydrogen-bonded systems. In this model, the proton motion crossing the

potential barrier between a pair of heavy ions is introduced. It resulted in changes

of relative positions between the protons and neighboring heavy ions and occur-

rence of ionic defect. The interaction between the proton and heavy ion, which is

weaker due to larger separation between them, reduce only the height of the barrier

that the proton has to overcome to pass from one well to the other. However, when

the protons approach the neighboring heavy ions, the above interaction is greatly

enhanced and can be so much stronger than the double-well potential that the pro-

tons can cross over the barrier and move from one side to the other due to this

nonlinear interaction. The transfer of protons takes place via a quasi-self-trapping

mechanism-deformation of heavy ionic sublattice arising from its stretching and

compression. Thus, the directions of covalent bonds between the protons and heavy

ions are exchanged. In other words, a rotation of bond takes place or a Bjerrum

defect appears in such a case. Therefore, the interbond proton motion or rotation

of the bond (Bjerrum defect), is mainly determined by the nonlinear interaction

between the protons and heavy ions. Then, two types of defects, ionic and bonded,

can occur through the competition of the two kinds of nonlinear interaction, the

double-well potential and the nonlinear interaction. The properties of proton trans-

fer were thus well-described in our new model.

However, the above results are obtained by analytic method in which the

hydrogen-bonded system is thought to be periodic, all physical parameters of the

system are used to be their average values, and some approximate methods, con-

taining long-wave approximation and continuum approximation, and so on, are

used in the calculation. In practice, the hydrogen-bonded system consists of differ-

ent atomic groups with molecular weights, thus they are not periodic, but aperi-

odic and nonuniform. This is just so-called structure nonuniformity or disorder of

hydrogen-bonded systems. The structure aperiodicity or nonuniformity is caused

by the differences of particle numbers involved in the heavy ion groups in these

hydrogen bonds or some impurities importing. The phenomenon occurs also in ice

crystal, the structure nonuniformity here arises from the differences of numbers of

water molecules which are linked with OH groups in the hydrogen bonds. Thus it

is necessary to result in the fluctuations of physical parameters in the new model

due to the structure nonuniformity. Hence corresponding states of soliton will be

affected in the new model because the properties and states of the soliton are just

determined by these physical parameters of the hydrogen bonded systems. Thus

these practical problems should be studied, but have not been studied up to now.

On the other hand, thanks to the hydrogen-bonded systems always working at a

finite temperature, then the influences of the thermal perturbation on the proton
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conductivity in the systems is also of interest. In such a case it is very necessary to

study the influences of structure nonuniformity on the solitons at different temper-

ature. However, how do we determine the effects of nonuniformity on the solitons?

Since the above solitons excited in the periodic and uniform hydrogen-bonded sys-

tems are stable, then its stable states will be changed due to the fluctuations of

physical parameters and thermal perturbations arising from the structure nonuni-

formities and temperature of the systems. Thus we can determine and judge their

influences and efforts on the behaviors of the solitons in virtue of the variations

of stability of the solitons in such a case relative to that in the case of periodic

and uniform systems. This is just our instructive idea in this investigation. In this

paper we study mainly the states and features of soliton in the nonuniform and

aperiodic hydrogen-bond systems and calculate the temperature-dependences of

mobility of proton conductivity by numerical simulation and fourth order Runge-

Kutta method in the new model, in which we here consider not the influences of

quantum effects of protons, a lightest nucleus, on the states of the solitons, which

complicates our studied problem. We will see from this investigation that not only

the soliton is still thermally stable at different temperatures and very robust against

these structure nonuniformities of the systems, but also its mobility has some novel

features. In Sec. 2, we introduce the Hamiltonian of the systems and give corre-

sponding dynamic equations in the new model; the properties of motion of the

solitons in the nonuniform hydrogen-bonded systems at different temperatures are

described in Sec. 3. In Sec. 4 we state the conclusion of this paper.

2. The Hamiltonian of Systems and Corresponding Dynamic

Equations

In the new model we have included a double-well potential of proton represented by

U(Rn) = U0[1− (Rn/R0)
2]2, the elastic interaction caused by the covalent interac-

tion, the coupled interaction between the protons and heavy ions, the resonant or

dipole-dipole interaction between neighboring protons and changes of relative posi-

tions of neighboring heavy ions resulting from the resonant interaction. If assuming

again the harmonic model for acoustic vibrations of the heavy ionic sublattice, the

Hamiltonian of the systems can be written as

H = Hp +Hion +Hint

=
∑

n


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]
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where the proton displacement and momentum are Rn and pn = mRn, respec-

tively, the first being the displacement of hydrogen atom from the middle of the

bond between the nth and the n+1th heavy ions in the static case. R0 is the dis-

tance between the central maximum and one of minima of double-well potential,

U0 is the height of barrier of double-well potential. Similarly, un and Pn = Mun

are the displacement of heavy ion from its equilibrium position and its conjugate

momentum, respectively. χ1 = ∂ω2
0/∂un and χ2 = ∂ω2

1/∂un are coupling constants

between the proton and heavy ion sublattices, and represent the changes of energy

of vibration of protons and of coupled energy between neighboring protons due to

an unit extension of heavy ionic sublattice, respectively. (1/2)mω2
1RnRn+1 shows

the correlation interaction between neighboring protons caused by the dipole-dipole

interactions. ω0 and ω1 are diagonal and nondiagonal elements of dynamic matrix

for the proton, respectively. ω0 is also the Einstein resonant frequency of protonic

sublattice. W is the elastic constant of heavy ionic sublattice. m and M are the

masses of proton and heavy ion, respectively. The part HP of H is the Hamilto-

nian of protonic sublattice with an on-site double-well potential U(Rn), Hion is the

Hamiltonian of heavy ionic sublattice with low-frequency harmonic vibration, and

Hint is the interaction Hamiltonian between the protonic and heavy ionic sublat-

tices. Obviously, the new model is significantly different from the ADZ model7 and

Pnevmatikos et al.’s models.11,12,15,18,19 (1) Since the total mass of the heavy ion,

which contains the large number of atoms or atomic groups, is large, then its mo-

tion is represented by a harmonic oscillator with low-frequency acoustic-vibration

in the new model, but there are both acoustic and optical vibrations for the heavy

ions in ADZ model. (2) For the motion of the proton lain in the double-well poten-

tial, we adopt the harmonic oscillator model with optical vibration that includes

an off-diagonal factor arising from the interaction between neighboring protons and

the interaction of proton with heavy ions. That is, its vibrational frequencies are

related to displacements of heavy ions which are given by

ω2
0(un) ≈ ω2

0 +
∂ω2

0

∂Rn

(un − un−1)

= ω2
0 + χ1(un − un−1), ω

2
1(un) ≈ ω2

1 + χ2(un − un−1) .

If inserting them into the above protonic Hamiltonian, and again taking into

account the effects of neighboring heavy ions in left-and right-hand sides of protons,

it is natural to obtain Eq. (1). Therefore there are high corresponding relations for

these interactions in the above Hamiltonian. However, in the ADZ’s Hamiltonian,

the vibration of proton is acoustic. This is undesirable for the protonic model be-

cause the vibrational frequency of proton is very high relative to heavy ion due to

its light mass. Moreover, there are not the above correspondent relation between

the protonic and interactional Hamiltonians in the ADZ model. These problems

result in some difficulties for the ADZ model. In the new model, the Hamiltonian

includes not only the optical vibration of protons, but also the resonant interaction

and the changes of the relative displacement of neighboring heavy ions. Therefore



March 29, 2011 9:19 WSPC/140-IJMPB S0217979211056275

60 X.-F. Pang, J.-F. Yu & H.-J. Zeng

the new model gives a more reasonable description of the dynamic features of the

systems than the ADZ model.

Utilizing the new model we suggest that motion of proton between a pair of

heavy ions crossed over the barrier in the intrabond, which results in a change of

relative position between the proton and neighboring heavy ions and the occurrence

of ionic defect, is mainly determined by the double-well potential. The coupled

interaction between the proton and heavy ion, which is weaker due to larger spacing

between them, can only reduce the height of barrier of double-well potential that

the proton has to overcome to pass from one well to another. However, when the

protons approach the neighboring heavy ions, the above coupled interaction will

be greatly enhanced and can be so much larger than the double-well potential that

the proton can shift over the barriers in the interbonds at the heavy ions from one

side to another by this nonlinear coupling interaction in virtue of the mechanism of

deformation of heavy ionic sublattice, arising from its stretching and compression

(this is just so-called quasi-self-trapping mechanism). Thus, the direction of covalent

bond between the proton and heavy ion is changed and a rotation of bond or

Bjerrum defect appears. In such a case, the motion of protons crossed over the

barriers in interbonds at the heavy ions, or speaking, the rotation of bond (Bjerrum

defect), is mainly caused by the coupled interaction between the protons and heavy

ions. Therefore, both kinds of defects, ionic and bonded, can occur through the

competition of the above two kinds of nonlinear interaction, double-well potential

and nonlinear coupled interaction, in the new model. Thus the properties of proton

transfer via the ionic and bonded defects were well-described by the new model. At

the same time, the mobility and conductivity of proton transfer obtained from this

theory is also consistent with experimental results in ice crystal. Therefore, we can

use the new model to study the states and features of soliton in the nonuniform

and aperiodic hydrogen-bond systems and calculate the temperature-dependences

of mobility of proton conductivity by numerical simulation and fourth order Runge–

Kutta method.

Based on the Hamilton equations:

∂

∂t
pn = − ∂H

∂un

, and
∂

∂t
Pn = − ∂

∂Rn

H ,

we can get the equations of motion of proton and heavy from Eq. (1) as follows

−mR̈n = mω2
0Rn − mω2

1

2
(Rn+1 +Rn−1) +m

[

χ1(un+1 − un−1)−
4U0

mR2
0

]

Rn

+mχ2[(un+1 − un)Rn+1 + (un − un−1)Rn−1] +
4U0

R4
0

|Rn|2Rn (2)

and

Mün(t) = W (un+1 + un−1 − 2un) +mχ1/2(|Rn+1|2 − |Rn−1|2)

+mχ2(Rn+1Rn −RnRn−1) . (3)
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Equations (2)–(3) can be represented as the following forms

Ṙn,t = yn,t/m (4)

ẏn,t = −mω2
0Rn,t +mω2

1(Rn+1,t +Rn−1,t)/2 + 4U0R
−2
0 (1− (Rn,t/R0)

2)Rn,t

−mχ1(un+1,t − un−1,t)Rn,t −mχ2[(un+1,t − un,t)Rn+1,t

+(un,t − un−1,t)Rn−1,t] (5)

u̇n,t =
zn,t
M

(6)

żn,t = W (un+1,t + un−1,t − 2un,t) +mχ1(R
2
n+1,t −R2

n−1,t)

+mχ2(Rn,tRn+1,t −Rn,tRn−1,t) . (7)

The above equations (4)–(7) can determine the states and behaviors of the new

soliton. There are four equations for one atomic group. Hence for the hydrogen

bonded system constructed by N atomic groups, there are 4N associated equations.

When the fourth-order Runge–Kutta method is used to numerically calculate the

solutions of the above equations, we should discretize them. Thus the site of atomic

group is denoted by n, the time is denoted by t. The system of units eV for energy,

Å for length, and ps for time proved to be suitable for the numerical solutions of

Eqs. (4)–(7). In the numerical simulation by fourth-order Runge–Kutta way, we

also require that the following conditions must be satisfied, the total energy E

must be a constant (up to 0.0012%); the norm is conserved up to 0.3 pp (parts

per million). An initial excitation is required in this calculation, it is chosen as

Rn(t = 0) = A tanh[(n−n0)~(χ1+χ2)
2/4ω0ω

2
1W ] for the proton at nth site, where

A is normalization constant, and un(0) = 0 for the heavy ion. In the meanwhile,

the molecular chain in the systems is fixed, in which contained number of particle,

N , is chosen to be N = 100, a time step size of 0.0195 is used in the simulation.

Total numerical simulation is performed by data parallel algorithm and MATLAB

language.

3. Numerical Calculation Results and Discussion

3.1. Calculated results for the uniform and periodic hydrogen-bond

chains

As ice is a typically hydrogen-bonded molecular system, we always choose the ice as

a model system to study the properties of proton transfer in the hydrogen-bonded

Table 1. The average values of physical parameters in ice crystal.

W M R0 U0 ω0 ω1 χ1 χ2

(N/m) (kg) (10−10 m) (10−20 J) (10+14 s−1) (1014 s−1) (10+38/ms2) (10+37/ms2)

0.015 17 mp 1 3.52 1.2− 1.5 1.1− 1.4 0.5214 3.0057
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Fig. 1. The numerical solution of Eqs. (4)–(7) in ice.

Fig. 2. The collision behavior of two solitons of Eqs. (4)–(7) in ice.

(a) (b)

Fig. 3. The states of the new soliton resulting from the fluctuations of force constant W for
(a) ∆W = ±20%W̄ , (b) ±30%W̄ , (c) ±40%W̄ , (d) ±50%W̄ at (−1.1 ≤ αk ≤ +1.1).

systems. Utilizing the average values of parameter, M̄ , Ū0, $0, $1, W̄ , J̄ , χ̄1 and

χ̄2, shown in Table 1 for the ice, herem = mP , we calculate numerically the solution

of Eqs. (4)–(7) by fourth-order Runge–Kutta method in an uniform and periodic

hydrogen bonded systems. This result is shown in Fig. 1. This figure shows that the

amplitudes of solutions of Eqs. (4)–(7) can always retain a constancy. In Fig. 2 we

show the collision property of two solutions. From these figures, we see that the two

solitons can cross with each other after the collision. These results show that the

equations in Eqs. (2)–(3) have exact soliton solution in the uniform and periodic

systems in the new model, the soliton is a kink and quite stable. This result is

consistent with that in analytic case.
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3.2. Influences of fluctuation of force constant and disorder in the

sequence of mass on the new soliton

We now use the fourth-order Runge–Kutta method to study numerically the in-

fluences of fluctuation of force constant W and variation of mass of heavy ion or

atomic group, M , arising from the structure nonuniformity or impurity importing,

on the stability of the soliton in the hydrogen bonded systems in the new model.

In fact, the fluctuation of W is caused by the nonuniformity of distribution of

masses of heavy ion groups in hydrogen bonded systems as mentioned above. To

test the stability of the new soliton against the nonuniformity, we should first use

a random number generator to produce or represent the random sequences of dif-

ferent parameters in the structure nonuniform systems. In the sequence of masses

we here introduce a random number generator, αk, to create random sequences of

masses of heavy ion, thus there is a random series of masses for the whole chain,

Mk = αkM̄ , where the αk were determined using a random-number generators

with equal probability within a prescribed interval. The fluctuation of W , arising

from the structure nonuniformity, is designated by ∆W = ±βW̄ , β < 1. When the

effects of structure nonuniformity are taken into account, the states and features of

the new soliton will be changed. The results of simulations are shown in Fig. 3 for

four cases of fluctuation of W at −1.1 ≤ αk ≤ +1.1. From this figure, we see that

up to a random variation of ±30%W̄ we find no change in the dynamics for the

new soliton. For ±40%W̄ the soliton begins to disperse, its velocity is diminished

as compared with the case of W̄ in Fig. 1. Finally, for ±50%W̄ it disperses and the

propagation is irregular. Therefore we conclude that in the case of W < ±40%W̄

at −1.1 ≤ αk ≤ +1.1, virtually no change for the stability of new soliton can be

obtained. Therefore the ability of the new soliton against the fluctuations of force

constant and the disorder in the sequence of masses is robust.

Also, from the numerical simulations using the fourth-order Runge–Kutta

method, we find that the influences of fluctuations of other physical parameters, for

example, Ū0, $0, $1, J̄ , χ̄1 and χ̄2, on the properties of the new soliton are small

in the new model, thus we here list not these results.

3.3. Influences of temperature and damping of medium on the

new soliton exposed in an externally applied electric-field

Since the hydrogen-bonded systems always work in an environment (or heat bath)

with finite temperature, thus it is very necessary to further study the influences

of the thermal perturbation on the state and properties of the new soliton in the

systems with damping. In this case we can safely assume that the heat bath pri-

marily affects the soliton motion via the heavy ion sublattice in accordance with

general rule.36–43 According to the thermodynamic theory, a decay term MΓq̇n
and a random thermal-noise term, Fn(t), resulting from the interaction of the heat

bath with temperature T with the hydrogen-bonded systems, must be added in

the displacement equation of heavy ion.36–43 If considering again the influence of
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externally applied electric-field (its strength is E) on the soliton, then Eqs. (2)–(3)

become

mR̈n = −mω2
0Rn +mω2

1(Rn+1 +Rn−1)/2 + 4U0R
−2
0 (1− (Rn/R0)

2)Rn

−mχ1(un+1 − un−1)Rn −mχ2[(un+1 − un)Rn+1

+(un − un−1)Rn−1] + qE (8)

Mün = W (un+1 + un−1 − 2un) +mχ1(R
2
n+1 −R2

n−1)

+mχ2(RnRn+1 −RnRn−1)−MΓu̇n + Fn(t) (9)

where Γ is the damping coefficient of medium, and is about 109 s−1 for the ice,

q is the charge of proton. In this case we must give the explicit expression of

random noise force Fn(t). From statistical physics we know that Fn(t) is related

to the temperature of the systems, the average value of it is correlation function

can be represented as 〈F (x, t)F (0, 0)〉 = 2MKBJδ(x)δ(t)/r0, where r0 is the lattice

constant.36–43 Since time discretization effects the properties of the Langevin forces

in the numerical simulations, we here use an ensemble of Gaussian forces Fn with

variance equal to σ = 2MKBTΓ/τ1, where τ1 is a time constant. This choice of

Gaussian width is compatible with the fluctuation-dissipation theorem and time

discretization.36–43 Thus we can determine that the criterion deviation of Fn(t) is√
σ, then its expected value is zero in this case. Thus, the size of random noise force

has the following relation, |Fn(t)| ≤ 6
√
σ. Hence, Fn(t) is Gaussian distribution at

L → ∞.

Utilizing Eqs. (8)–(9) we can study the influences of damping and random

thermal-noise forces of medium exposed in an externally applied electric-field, E,

on the states of the soliton in ice by the above fourth-order Runge–Kutta method

in the new model. We here first study the effect of electric-field on the soliton at

T = Γ = 0. In this case, the states of the soliton at E = 100 kV/cm and 200 kV/cm

are shown in Fig. 4. From this figure we see that the soliton is stable, but its veloc-

ity is changed. This electric-field dependence of velocity of the soliton is shown in

Fig. 5. Namely the velocity increases linearly with increasing electric-field. This is

very similar with the feature of motion of macroscopic charge exposed in an electric-

field. Therefore this is an interesting result. We further calculate the influence of

damping of medium on the soliton in the case of T = E = 0. The properties of the

soliton at two different damping coefficients are shown in Fig. 6. We see from this

figure that no change in the stability of new soliton is found for small damping,

but at great damping the soliton disperses, its velocity decreases with increase of

damping coefficient, which is shown in Fig. 7. When Γ 6= 0, T 6= 0 and E 6= 0, the

states of the soliton differ from the above results. In Figs. 8–9 we give the features

of the soliton for four different temperatures, T = 190 K, 210 K and 273 K at

E = 200 kV/cm and 100 kV/cm and Γ = 2× 109 s−1 in the ice, respectively. From

this result we find no variation in the dynamics for the soliton under the influences
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(a) (b)

Fig. 4. The features of the solitons at (a) E = 100 kV/cm and (b) 200 kV/cm at T = Γ = 0,
respectively.

Fig. 5. This electric-field dependence of velocity of the soliton at T = Γ = 0, here the velocity is
denoted by the lattice numbers passed in each second.

(a) (b)

Fig. 6. The properties of the new solitons, when the damping coefficients of medium are (a) Γ =
5× 109 s−1 and (b) 3× 1011 s−1 at T = E = 0, respectively.
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Fig. 7. The changes of velocity of soliton with variation of electric-field at T = Γ = 0, here the
velocity is denoted by the lattice numbers pressed in each second.

(a) (b)

(c) (d)

Fig. 8. The features of soliton at different temperatures of (a) T = 190 K, (b) 210 K and (c) 273 K
at E = 200 kV/cm and Γ = 2× 109 s−1 in the ice.

of these temperatures. This shows that the soliton is thermally stable at T < 273 K.

Thus, the model of proton transfer in the ice crystal is available and successful.

From this simulation, we find that the motions of the proton-solitons accompa-

nied by deformation of heavy ionic sublattices are initially accelerated under action
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(a) (b)

(c) (d)

Fig. 9. The states of soliton at different temperatures of (a) T = 190 K, (b) 210 K and (c) 273 K
at E = 100 kV/cm and Γ = 2× 109 s−1 in the ice.

of an externally applied field, when the temperature fluctuations of the systems pro-

duce a small random deviation. We also record the velocity of the proton-soliton

conductivity at longer times, when the heavy ionic deformation complex moving

with a constant velocity reaches a steady state. The results of numerical simulations

for the mobility (or velocity) of the proton-soliton conductivity are shown in Figs. 10

and 11, in which we plot the terminal velocities of the proton-soliton conductivity

as a function of inverse temperature for 200 kV/cm and 100 kV/cm in ice crys-

tal, respectively. We see from these figures that the mobility of the proton-soliton

conductivity increases with increasing temperature of medium, and has a peak to

occur around 191.4 K. Subsequently it decreases, reaches a minimum at approxi-

mately 211.6 K, and then increases again. This behavior is very clear and basically

the same for the two different electric-fields, although there are small differences

in the details of two curves. Therefore the nonmonotonic up-down-up tendency of

mobility of the proton-soliton in this region of temperatures seems to be a generic

feature, and can also be observed for other electric-fields. We know from this study
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(a)
(a) (b)

Fig. 10. The inverse temperature-dependence of mobility (or velocity) for the proton conductivity
at 200 kV/cm in ice, where ( a) is calculated values, (b) is experimental values (Ref. 44 and 45).

(a)
(a) (b)

Fig. 11. Changes of mobility (or velocity) of proton conductivity as a function of inverse tem-
perature at 100 kV/cm in ice, where (a) is calculated values, (b) is experimental values (Ref. 44
and 45).

that the most distinct property of mobility-temperature plots in ice is the presence

of two transition temperatures Tmax = 191.4 K and Tmin = 211.6 K, where the

velocity of the proton-soliton conductivity reaches a maximum and minimum, re-

spectively. The numerical simulation values in the new model are consistent with
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the polycrystalline ice data shown in Fig. 10(b) and Figs. 11(b). In the latter, the

same qualitative behavior also occurs, i.e., temperature-assisted mobility at lower

temperatures and high temperatures with a very obvious drop in the intermediate

range.

Nylund and Tsironis35 early calculated the temperature-dependent mobility of

proton transfer in the ice by the ADZ model; however, they obtained two minima

in the changing curves of mobility (or velocity) with inverse temperature in the

case of 100 kV/cm and different values of transition temperature from the above

data, which are Tmax = 190 K and Tmin = 210 K, respectively. The results are all

different from the experimental data shown in Figs. 10(b) and 11(b).

Obviously, the above feature of temperature-dependence of velocity of proton

conductivity should directly attribute to the nonlinear interactions, the double-

well potential and nonlinear coupling interaction, and to competition between the

electric- field-induced biased proton motion and temperature effect in our model.

In the absence of an electric-field, the potential of proton is symmetric around a

central point which lies in the top of the potential barrier. When an electric-field

is applied, the potential curve for the protons is distorted, thus the protons have

a preferred direction of motion, which is just the direction of electric-field. Since

the potential for the protons is nonlinear, then the motions of protons located at

different double-well potentials in the hydrogen-bonded chains are not uniformly

accelerated. When thermal motion is considered, an entire spectrum of Gaussian

random displacements with a given temperature-dependent width is imposed upon

the heavy ion lattice, its effects on the motion of protons located at different double-

well potentials are different and are changed with variation of temperature of the

systems. At lower temperatures, the protons which lie in the top of potential barrier

have a more favorable attitude to cross over the barrier, when the electric-field is

turned on. This behavior becomes increasingly likely with increasing temperature.

In such a case the thermal fluctuations are just to push the protons towards the

barrier as they are to pull it towards the bottom of potential well. Thus the velocity

of the proton-soliton increases on the average because protons in the tops are more

likely to cross over the barrier than other protons. Then the maximum of mobility

(or velocity) of the proton-soliton can occur at the low temperatures. However,

when the temperature continues to increase, the other protons located at other

places in the double-well potentials can also cross the barrier more frequently, but

their motions are easily hindered by the thermal perturbations of the systems due

to the fact that their energies are smaller. Thus the velocity of the proton-soliton

is reduced in this case. This behavior is much more pronounced with increasing

temperature. When the temperature is so high that it can strongly hinder the

motion of the proton-soliton, then the velocity of the proton-soliton can reach a

minimum. However, its velocity increases again, once the soliton crosses over the

barrier. This effect results in a minimum value of mobility of the proton-soliton

to occur. Therefore, the nonmonotonic up-down-up tendency of mobility shown in
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Figs. 10 and 11 is due to the combination effect of nonlinear double-well potential

and thermal fluctuation and externally applied electric-field.

4. Conclusion

We here studied the dynamic properties of proton conductivity along the hydrogen-

bonded molecular systems, for example, ice crystal, under the influences of the

structure nonuniformity and thermal perturbation as well as damping of medium

exposed in an externally applied electric-field by using a numerical simulation and

fourth Runge–Kutta method in our model, where the quantum effect of proton

has not been considered. The results obtained show that the proton-soliton is very

robust against the structure nonuniformity including the fluctuation of force con-

stant and disorder in the sequence of masses and thermal perturbation and damping

of medium, the velocity of its conductivity increases by increasing the externally

applied electric-field and decreasing the damping coefficient of medium, but the

proton-soliton disperses at quite great fluctuation of the force constant and damping

coefficient. In the numerical simulation, we find that the proton-soliton is thermally

stable in the range of temperature of T ≤ 273 K or 0◦C under influences of damping

and externally applied electric-field in the new model. In the meanwhile, the feature

of nonmonotonic temperature-dependence with maximum at Tmax = 191.4 K and

minimum at Tmin = 211.6 K for the mobility (or velocity) of the proton-soliton

conductivity in the temperature region of 170–273 K is also obtained by the fourth-

order Runge–Kutta method in our model. The nonmonotonic relation of change

of mobility (or velocity) with increasing temperature and two transition tempera-

tures obtained also agree with experimental data in ice crystals. The concordance

between the experimental and theoretical data provides not only an evidence for

real existence of the proton-soliton, which is possibly a real carrier of charge con-

ductivity in ice crystal, but also demonstrate that the theoretical model of proton

transfer is correct for the systems.
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