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In the framework of random-phase approximation theory and applying the self-consistent
field method, we study the properties of collective charge density excitations in single
quantum well in consideration of dielectric mismatch. We analytically give the general
solution of the image potential to the one dimensional Green’s function. Our numerical
results demonstrate that the dielectric mismatch between the barrier and well materials
significantly changes the frequency of the intra- and inter-subband plasmon modes in
contrast with dielectric match. We reasonably conclude that the image potential affects
the intra- and inter-subband plasmon modes in a different way.
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1. Introduction

For many years a large amount of works have been done on the properties of

the elementary collective excitations (plasmons) in two-dimensional electron gas

(2DEG) system such as quantum wells and superlattices in both theory and ex-

periment. That is due, not only to the technological importance in microelectronic

and optoelectronic devices but also the fact that the study of quasi-2DEG has re-

vealed remarkable phenomena associated with electron–electron interactions under

reduced dimensions. For the collective transitions of quasi-2DEG, the intrasubband

plasmon goes as q1/2 in the long wavelength limit in two dimensions, and its dis-

persion is influenced by the finite thickness and by coupling to higher subbands.1

The intersubband transitions of electrons correspond to charge-density oscillations

perpendicular to the plane, and there exists a collective mode associated with them

called the intersubband plasmon.2,3 The intra- and inter-subband plasmon modes
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in single quantum well (SQW) systems have been extensively studied in the case

of dielectric match, which is based on the argument that the dielectric mismatch

effect brings only little influence on the electronic ground-state properties of the

system4,5 because of the small difference of the dielectric constant in materials con-

stituting the actual heterostructure. However, some authors have investigated the

image potential in semiconductor interfaces and heterostructrues, and find that the

image potential is important.6–10 Theoretically, the question that how much effect

the image potential will bring on the collective excitations of quasi-2DEG is left

unknown and it is worthy to be confirmed. Moreover, if the dielectric constants of

two materials constituting heterostructure are quite different, what results can be

expected when taking into account of the dielectric mismatch? This is just the issue

of this paper.

In this paper, we survey the properties of the plasmons in SQW in consid-

eration of the image potential due to dielectric mismatch inside and outside the

quantum well. In random-phase approximation (RPA) and applying self-consistent

field (SCF) theory, we present the response function of quasi-2DEG. Also, we derive

the general solution of the image potential from the Green’s function. Such general

solution is much more convenient than the series expression shown by Eq. (10) in

Ref. 10, where the authors ignored the dependence of the image potential on the

transverse coordinate (x, y). We carry out numerical calculations of the dispersion

spectrum of the collective excitation modes for different structural parameters. We

find that the dispersion spectrum of the plasmon modes strongly depends on the

mismatch degree of the dielectric constants inside and outside the quantum well. It

is concluded that the image potential plays an important role in determining the

behaviors of intra- and inter-subband plasmon modes of 2DEG when considering

dielectric mismatch.

The rest parts of the paper are organized as follows. In Section 2, we present the

basic formulae for the calculations of the density response function and the detailed

expressions of the image potential arising from dielectric mismatch between adja-

cent layers. In Section 3, we report the numerical results with discussion. Finally,

a brief summary of our main findings is given in Section 4.

2. Model and Formulas

For a quasi-2DEG system, the wave function of single particle, Ψl,k(ρ, z), can be

factorized into an in-plane part exp(ikρ) and a subband function ψl(z), which is

independent of the in-plane wavevector k. Here z denotes the direction perpendic-

ular to the QW and ρ = (x, y) represents the in-plane position. According to the

effective mass theory, the 1D Schrödinger equation governing the single electron

motion can be written as

[

−
~

2

2

d

dz

1

m(z)

d

dz
+ Veff(z)

]

ψl(z) = Elψl(z) , (1)
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where m(z) is the effective mass of elections and it depends on the spatial position.

Here, Veff (z) = V0(z) +VH(z) is an effective potential, which is composed of a bare

potential V0(z) arising from the discontinuity of the conduction band of electrons

between the barrier and well materials, and a Hartree potential VH(z) due to the

electrostatic potential of the mobile electrons of quasi-2DEG along with the spatial

fixed ionized donors. Here we choose the growth direction of heterostructure to

be along the z-axis. The Hartree potential VH(z) is determined by the Poission

equation

d

dz
ε(z)

d

dz
VH(z) = −

e2

ε0
[n(z) −Nd(z)] . (2)

Here, ε0 is the permittivity in vacuum, ε(z) represents the dielectric constant de-

pendent on the spatial position, and Nd(z) is the donor density. The electronic

density along the z direction is given by

n(z) =
∑

l

|ψl(z)|
2nl (3)

with an areal density in the lth electronic subband as

nl =
m∗

w

π~2
(EF −El)Θ(EF −El) , (4)

where m∗
w represents the effective electron mass in the quantum well and Θ(x) the

Heaviside unit step function. It is noted that the exchange-correlation potential can

be neglected now owing to its small influence on the electron collective excitations

under usual electron density.

We employ an iteration technique to solve the above Schrödinger equation with

the effective potential self-consistently. Applying the “turning point” technique to

the Numerov algorithm,11,12 the Schrödinger equation can be solved by using the

boundary conditions ψl(±∞) = 0. The total areal density nT , the electronic density

in the z direction n(z), the depletion lengths d1 and d2, and the Hartree potential

VH(z) are obtained, not given as an initial conditions.13 With these obtained func-

tions and parameters, we repeat the above to solve the Schrödinger equation and

obtain the further solutions in the next loop till the precision of the convergent so-

lution is satisfied. Finally, the SCF wavefunctions of the single particles, |α〉, |β〉 . . . ,

can be obtained.

We now focus on the density response of a quasi-2DEG for an external, harmonic

longitudinal electric field using SCF method and linear response theory. In the RPA,

the induced potential has the form

V in(r) =

∫

U(r, r′)δn(r′)dr′ , (5)

where δn(r) denotes the fluctuation of the density of electrons and it can be eval-

uated according to the standard linear response theory as

δn(r) =
∑

αβ

Ψ∗
α(r)Ψβ(r)Παβ〈β

∣

∣V T (r)
∣

∣α〉 (6)
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with the generalized polarizability

Παβ =
fα − fβ

Eα −Eβ + (~ω + iη)
.

We expand the matrix element of Eq. (5) as

V in
αβ(r) = 〈α|V in(r)|β〉

=
∑

µν

Uαβ,µν(r, r′)ΠµνV
T
νµ(r) , (7)

where the Coulomb matrix element is

Uαβ,µν(r, r′) =
∑

µν

∫∫

drdr′Ψ∗
α(r)Ψ∗

β(r′)U(r, r′)Ψ∗
µ(r′)Ψ∗

ν(r) . (8)

By using the relation V ex
αβ(r) = V T

αβ −V in
αβ , we can express the external potential in

terms of the screened one as

V ex
αβ(r) =

∑

µν

[δανδβµ − Uαβ,µν(r, r′)Πµν ]V T
νµ(r) , (9)

which defines the response function
↔
εαβδµν

= δανδβµ − Uαβ,µν(r, r′)Πµν . (10)

The condition for plasmon modes is the vanishing of the determinant of the dielec-

tric tensor,

det[
↔
εαβ,µν ] = 0 .

Considering the above-addressed forms of the wavefunctions in the QW, we have

|α〉 = |l,q〉 = ψl(z)e
iq·ρ ,

|β〉 = |l′,q′〉 = ψl′(z)e
iq′·ρ ,

|µ〉 = |n,k〉 = ψn(z)eik·ρ ,

|ν〉 = |n′,k′〉 = ψn′(z)eik′·ρ .

(11)

Substituting the above expressions into Eq. (10), the dielectric function in the

plane-wave Fourier representation can be expressed as13

εll′,nn′(q, ω) = δln′δl′n − Πnn′(q, ω)Ull′,nn′(q, z, z′) (12)

with the polarizability function

Πnn′(q, ω) = 2
∑

k

fn(k) − fn′(k + q)

En(k) −En′(k + q) + hω

and

Ull′,nn′(q, z, z′) =

∫∫

dzdz′ψ∗
l (z)ψl′(z)U(q, z, z′)ψ∗

n(z′)ψn′(z′) .
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Here, ψl(z) is the wavefunction of the single electron for the lth subband due to

the quantum confinement along the z axis. Here El(k) = El(0) + ~
2k2/2m∗

w (k =

|k|) is the single-electron energy in the lth subband. fn(k) is the Fermi–Dirac

occupation probability of electrons at the state |n,k〉, with the value of unity or

zero at zero temperature. U(q, z, z′) is the plane-wave Fourier transform spectrum

of the Coulomb interaction term U(r, r′). The dispersion relation of the collective

excitations is determined by the zero of the determinant of the dielectric function

given by Eq. (12): det[εll′,nn′(q)] = 0.

It is well known that when neglecting the difference of the static dielectric

constants inside and outside the quantum well, the Fourier expansion in Eq. (12)

has a form of

U(q, z, z′) =
e2

2εrε0q
e−q|z−z′| ,

with q = |q|. In the previous studies, this difference is omitted as a minor factor

dominating the collective excitations, assuming its contribution less than 10 per-

centage points.3 Now we are interested in calculating analytically the image po-

tential due to dielectric mismatch. Supposing an electron charge is located at

r′(ρ′, z′), the image potential is governed by the Poission equation as

∇2U(r, r′) = −
e

ε0ε(z)
δ(ρ− ρ′)δ(z − z′) (13)

with

ε(z) =



















ε1 z < −a/2 Region L (left barrier)

ε2 |z| ≤ −a/2 Region W (quantum well)

ε3 z > a/2 Region R (right barrier)

.

Substituting the Fourier expansion of U(r, r′) and δ(ρ, ρ′) into Eq. (13), we derive

the equation of Fourier component of the image potential to be satisfied

d2U(q, z, z′)

dz2
− q2U(q, z, z′) = −

e

ε(z)
δ(z − z′) . (14)

Equation (14) is a standard one dimensional Green function equation, and its gen-

eral solution may be expressed as follows:

(i) z′ > a/2 (the electron is located at the right barrier R), Eq. (14) has the

solutions as

UR(q, z, z′) =
e2

2ε0ε3q

[

(ε3+ε2)(ε2 − ε1)e
−q(z+z′)+(ε3−ε2)(ε2+ε1)e

−q(z+z′−2a)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

+ e−q|z−z′|

]

, (15)
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UW (q, z, z′) =
e2

ε0q

[

(ε2 − ε1)e
−q(z+z′) + (ε2 + ε1)e

q(z−z′+a)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

]

, (16)

and

UL(q, z, z′) =
2ε2e

2

ε0q

[

eq(z−z′+a)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

]

(17)

for regions R, W and L, respectively.

(ii) −a/2 ≤ z′ ≤ a/2 (the electron is in the well), it is straightforward from Eq. (14)

to get

UR(q, z, z′) =
e2

ε0q

[

(ε2 − ε1)e
−q(z+z′) + (ε2 + ε1)e

−q(z−z′−a)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

]

, (18)

UW (q, z, z′) =
e2

2ε0ε2q

{

(ε2 − ε1)(ε2 − ε3)[e
−q(z−z′+a) + eq(z−z′−a)]

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

+
(ε2 − ε1)(ε2 + ε3)e

−q(z+z′) + (ε2 + ε1)(ε2 − ε3)e
q(z+z′)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

+ e−q|z−z′|

}

, (19)

and

UL(q, z, z′) =
e2

ε0q

[

(ε2 + ε3)e
q(z−z′+a) + (ε2 − ε3)e

q(z+z′)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

]

(20)

for regions R, W and L, respectively.

(iii) z′ < −a/2 (the electron is in the left barrier), the image potential has the forms

as

UR(q, z, z′) =
2ε2e

2

ε0q

[

e−q(z−z′−a)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

]

,(21)

UW (q, z, z′) =
e2

ε0q

[

(ε2 − ε3)e
q(z+z′) + (ε2 + ε3)e

−q(z−z′−a)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

]

, (22)

and

UL(q, z, z′) =
e2

2ε0ε1q

[

(ε1 + ε2)(ε2 − ε3)e
q(z+z′) + (ε1 − ε2)(ε2 + ε3)e

q(z+z′+2a)

(ε1 + ε2)(ε2 + ε3)eqa + (ε1 − ε2)(ε2 − ε3)e−qa

+ e−q|z−z′|

]

(23)

for three different regions R, W and L.
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Till now, the analytical forms of the image potential are fully acquired. It is

worth pointing out that the solution of Eq. (13) is also expressed into a series sum

from a finite number of images, where each has different position and charge, as

shown by Eq. (10) in Ref. 10. The authors10 ignored the dependence of the image

potential on the transverse coordinate (x, y). Obviously for the purpose in this

paper, the general solution of Eq. (14) is much more convenient than the series

expression of Eq. (13). For the case of the symmetric SQW, we have ε1 = ε3.

Substituting the derived expressions of the image potential of Eqs. (15)–(23) into

Eq. (12), the collective excitations in the case of dielectric mismatch are totally

decided theoretically.
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Fig. 1  Zhang   et al. 

Fig. 1. Dispersion spectra of the plasmon modes in a SQW structure for different ratios of the
dielectric constant ε1 of the barrier layer to that ε2 of the well layer: (a1)–(a2) for ε1/ε2 = 0.5,
(b1)–(b2) for ε1/ε2 = 1.0, and (c1)–(c2) for ε1/ε2 = 2.0. The barrier height is 300 meV and the
well width a = 5 nm. The electron density and the donor density used here are 1.6 × 1011 cm−2,
4.0 × 1017 cm−3, respectively.
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Fig. 2  Zhang  et al. 

Fig. 2. Same as Fig. 1 except for a broader well of a = 10 nm: (a1)–(a2) correspond to ε1/ε2 = 0.5,
(b1)–(b2) to ε1/ε2 = 1.0, and (c1)–(c2) to ε1/ε2 = 2.0.

3. Numerical Results and Discussion

We show the plasmon dispersion spectrum of 2DEG in a SQW with dielectric mis-

match in detail in Figs. 1 and 2 for different well widths. In the following numerical

calculations, we assume the same electron mass inside and outside the quantum

well as m∗
w = 0.067m0 with m0 being the free electron mass for simplicity. The

typical electron density and the donor density in this system are chosen to be

1.6 × 1011 cm−2 and 4.0 × 1017 cm−3, respectively.

Figure 1 displays the dispersion spectra of the single particle excitations and

the plasmons in a SQW with the barrier height of 300 meV and the well width of

a = 5 nm: (a1)–(a2) for the dielectric ratio ε1/ε2 = 0.5, (b1)–(b2) for ε1/ε2 = 1.0,

and (c1)–(c2) for ε1/ε2 = 2.0. The ratio ε1/ε2 represents the dielectric mismatch

degree between the barrier and the well materials in a SQW. Here, the relative

dielectric constant inside the quantum well ε2 remains unchanged as ε2 = 12.8.
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ω00 and ω10 branches denote the intrasubband and intersubband modes of the

collective excitations of quasi-2DEG, and the shadow areas stand for the single

particle excitation (SPE) continua. It is evident that all the (0-0) SPE continua

almost remain unchanged for different dielectric mismatches, however, for the (1-0)

SPE continuum, the larger the value of ε1/ε2 is, the upper the (1-0) SPE continuum

moves remarkably. In the long wavelength limit q → 0, the mode ω00 approaches

zero. Compared Fig. 1(a1) with (b1) and (c1), we observe that the rising speed of

the mode ω00 with q is adversely reduced for the greater value of the ratio ε1/ε2. As

for the intersubband excitation ω10, the case is quite different: The frequency of the

mode ω10 at q = 0 is enhanced upper for the larger ε1/ε2, as shown in Figs. 1(a2),

(b2), and (c2), for instance, its value at q = 0 is increased from 190.8 to 195.6,

and to 197.7 meV for ε1/ε2 = 0.5, 1.0 and 2.0, respectively. As q increases, the

mode ω10 rises up monotonically and finally merges into its corresponding (1-0)

SPE continuum. Owing to the lowering of the mode ω00 and the ascension of its

corresponding mode ω10 for the greater dielectric ratio ε1/ε2, the spacing between

the intrasubband plasmon mode and the intersubband plasmon mode is increased

substantially.

The above obtained results can be interpreted from a simple argument as follows:

For a charge Q placed near an interface between two different dielectrics, the image

potential is attractive for charges on the low-dielectric-constant side of the interface

and repulsive for charges on the high-dielectric-constant side of the interface.14

Thus, it can be concluded that when the dielectric constant ε1 outside the quantum

well is less than that ε2 inside the quantum well, i.e. in the case of ε1/ε2 = 0.5,

the image potential for electrons inside the well is repulsive, which leads to the

significant enhancement of the interaction between electrons inside the well. As a

result, the frequency of the intrasubband plasmon associated with the collective

oscillation of electrons should be increased. On the contrary, when the dielectric

constant ε1 of the barrier layer is greater than that ε2 of the well, i.e. in the case

of ε1/ε2 = 2.0, the attractive image potential for electrons inside the well tends to

weaken the interaction of electrons inside the well, which results in the lowering of

the frequency of the intrasubband plasmon mode. As for the higher frequency of

the mode ω10 in the case of ε1/ε2 = 2.0 in contrast with other two cases, it belongs

to the fact that, when the dielectric constant ε1 outside the quantum well is much

greater than that inside the well, the effective potential of the SQW is essentially

enhanced, so the spacing of energy levels between the ground state and the first

excited state of the electrons inside the well is broadened. As a result, the spacing

between the modes ω10 and ω00 is also increased for the greater dielectric ratio

ε1/ε2.

Figure 2 depicts the variation of the dispersion spectra of the plasmons for a

larger width of the well, a = 10 nm, with different dielectric contrasts: (a1)–(a2)

correspond to ε1/ε2 = 0.5, (b1)–(b2) to ε1/ε2 = 1.0, and (c1)–(c2) to ε1/ε2 = 2.0,

respectively. Here, other parameters are chosen the same as those in Fig. 1. Simi-

lar phenomena can be observed now for the variation of the dielectric ratio ε1/ε2.



January 16, 2004 10:39 WSPC/140-IJMPB 02354

6082 X.-L. Zhang et al.

Comparing Fig. 1 with Fig. 2, it is clearly seen that the (0-0) SPE continuum

remains almost unchanged for a broader well, while the frequency of the intrasub-

band plasmon mode ω00 is lowered a little. For the width-increased quantum well,

we find that the (1-0) SPE continuum falls down substantially, for example, its

value at q = 0 is decreased from 189.1 (193.9, 196) meV to 95.3 (97.3, 98.4) meV

for ε1/ε2 = 0.5 (1.0, 2.0), respectively, when comparing Fig. 1 with Fig. 2. More-

over, the intersubband plasmon branch ω10 is lowered accordingly, for instance,

from 190.8 (195.6, 197.7) meV to 97.9 (100, 101) meV for ε1/ε2 = 0.5 (1.0, 2.0),

respectively, at q = 0. Consequently, the separation between the modes ω10 and

ω00 is narrowed for a broader well, as expected. We also observe that the span of

the mode ω10 in wavenumber range is extended significantly for a wider quantum

well, comparing Figs. 1(a2), (b2), and (c2) with Figs. 2(a2), (b2), and (c2). When

lowering the barrier height, the effects are analogous to the broadening of the well.

4. Summary

We have investigated the properties of the plasmons in SQW in consideration of

the image potential due to the dielectric mismatch inside and outside the quantum

well. We present the analytical expressions of the image potential, which is a general

solution to the standard one dimensional Green’s function and is much more conve-

nient than the series expression of Eq. (13). We numerically display the dispersion

spectra of the collective excitation modes for various physical parameters. Our re-

sults show that the frequency of the plasmon modes and SPE continua is strongly

related to the mismatch degree of dielectric constants inside and outside the quan-

tum well. When the dielectric constant of the barrier material is less than that of

the well, the repulsive image potential of electrons inside the well strengthens the

interaction between electrons inside the well and leads to the greater rising speed

of the intrasubband plasmon modes ω00 with q, when comparing with the case of

dielectric match. Moreover, the frequency of the intersubband modes falls down,

consequently, the spacing between the intra- and inter-subband modes is narrowed

accordingly. On the contrary, when the dielectric constant of the barrier is greater

than that of the well material, the situation becomes reverse fully. The frequency

of corresponding intrasubband plasmons ω00 is lowered remarkably, which stems

from the attractive image potential of electrons inside the well now. However, the

intersubband mode rises adversely due to the expansion of the separation of the

energy levels between the ground state and the first excited state of electrons inside

the well. We reasonably attribute these results to the action of the image potential.
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