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In the framework of random-phase approximation theory and applying the self-consistent
field method, we study the properties of collective charge density excitations in single
quantum well in consideration of dielectric mismatch. We analytically give the general
solution of the image potential to the one dimensional Green’s function. Our numerical
results demonstrate that the dielectric mismatch between the barrier and well materials
significantly changes the frequency of the intra- and inter-subband plasmon modes in
contrast with dielectric match. We reasonably conclude that the image potential affects
the intra- and inter-subband plasmon modes in a different way.
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1. Introduction

For many years a large amount of works have been done on the properties of
the elementary collective excitations (plasmons) in two-dimensional electron gas
(2DEG) system such as quantum wells and superlattices in both theory and ex-
periment. That is due, not only to the technological importance in microelectronic
and optoelectronic devices but also the fact that the study of quasi-2DEG has re-
vealed remarkable phenomena associated with electron—electron interactions under
reduced dimensions. For the collective transitions of quasi-2DEG, the intrasubband
plasmon goes as ¢'/? in the long wavelength limit in two dimensions, and its dis-
persion is influenced by the finite thickness and by coupling to higher subbands.!
The intersubband transitions of electrons correspond to charge-density oscillations
perpendicular to the plane, and there exists a collective mode associated with them
called the intersubband plasmon.?? The intra- and inter-subband plasmon modes
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in single quantum well (SQW) systems have been extensively studied in the case
of dielectric match, which is based on the argument that the dielectric mismatch
effect brings only little influence on the electronic ground-state properties of the
system®?® because of the small difference of the dielectric constant in materials con-
stituting the actual heterostructure. However, some authors have investigated the
image potential in semiconductor interfaces and heterostructrues, and find that the
image potential is important.5~19 Theoretically, the question that how much effect
the image potential will bring on the collective excitations of quasi-2DEG is left
unknown and it is worthy to be confirmed. Moreover, if the dielectric constants of
two materials constituting heterostructure are quite different, what results can be
expected when taking into account of the dielectric mismatch? This is just the issue
of this paper.

In this paper, we survey the properties of the plasmons in SQW in consid-
eration of the image potential due to dielectric mismatch inside and outside the
quantum well. In random-phase approximation (RPA) and applying self-consistent
field (SCF) theory, we present the response function of quasi-2DEG. Also, we derive
the general solution of the image potential from the Green’s function. Such general
solution is much more convenient than the series expression shown by Eq. (10) in
Ref. 10, where the authors ignored the dependence of the image potential on the
transverse coordinate (x, y). We carry out numerical calculations of the dispersion
spectrum of the collective excitation modes for different structural parameters. We
find that the dispersion spectrum of the plasmon modes strongly depends on the
mismatch degree of the dielectric constants inside and outside the quantum well. It
is concluded that the image potential plays an important role in determining the
behaviors of intra- and inter-subband plasmon modes of 2DEG when considering
dielectric mismatch.

The rest parts of the paper are organized as follows. In Section 2, we present the
basic formulae for the calculations of the density response function and the detailed
expressions of the image potential arising from dielectric mismatch between adja-
cent layers. In Section 3, we report the numerical results with discussion. Finally,
a brief summary of our main findings is given in Section 4.

2. Model and Formulas

For a quasi-2DEG system, the wave function of single particle, ¥, x(p, z), can be
factorized into an in-plane part exp(ikp) and a subband function ;(z), which is
independent of the in-plane wavevector k. Here z denotes the direction perpendic-
ular to the QW and p = (z,y) represents the in-plane position. According to the
effective mass theory, the 1D Schrodinger equation governing the single electron
motion can be written as

RCR Y + Vet (2) | ¥u(2) = Evhi(2) (1)
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where m(z) is the effective mass of elections and it depends on the spatial position.
Here, Veg(2) = Vo(2) + Vi (2) is an effective potential, which is composed of a bare
potential Vj(2) arising from the discontinuity of the conduction band of electrons
between the barrier and well materials, and a Hartree potential Vi (z) due to the
electrostatic potential of the mobile electrons of quasi-2DEG along with the spatial
fixed ionized donors. Here we choose the growth direction of heterostructure to
be along the z-axis. The Hartree potential Vi (z) is determined by the Poission
equation

d d e?

e V() = ~Sln() = Na(2)] (2)

Here, € is the permittivity in vacuum, €(z) represents the dielectric constant de-
pendent on the spatial position, and Ng(z) is the donor density. The electronic
density along the z direction is given by

n(z) =Y (=) P (3)

l

with an areal density in the [th electronic subband as

*

- %(EF — E)O(Er — E)), (4)

where mJ represents the effective electron mass in the quantum well and ©(x) the
Heaviside unit step function. It is noted that the exchange-correlation potential can
be neglected now owing to its small influence on the electron collective excitations

ny

under usual electron density.

We employ an iteration technique to solve the above Schrédinger equation with
the effective potential self-consistently. Applying the “turning point” technique to
the Numerov algorithm,!+!2 the Schrédinger equation can be solved by using the
boundary conditions ¢;(£00) = 0. The total areal density nr, the electronic density
in the z direction n(z), the depletion lengths d; and ds, and the Hartree potential
Vi (2) are obtained, not given as an initial conditions.'® With these obtained func-
tions and parameters, we repeat the above to solve the Schrodinger equation and
obtain the further solutions in the next loop till the precision of the convergent so-
lution is satisfied. Finally, the SCF wavefunctions of the single particles, |a),|3) ...,
can be obtained.

We now focus on the density response of a quasi-2DEG for an external, harmonic
longitudinal electric field using SCF method and linear response theory. In the RPA,
the induced potential has the form

Vin(r) = /U(r, r')on(r)dr’, (5)

where dn(r) denotes the fluctuation of the density of electrons and it can be eval-
uated according to the standard linear response theory as

on(r) =Y W (r)Us(r)as (5 [V (r)| ) (6)
aB
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with the generalized polarizability

fa_fﬁ
Ey — Eg+ (hw +1in)

M5 =

We expand the matrix element of Eq. (5) as
ap(r) = (a[V(r)|5)
= D Uy (0,0 )L VI (1) (7)

where the Coulomb matrix element is

Uag,w(r,x') = Z// drdr’ W}, (r) Uy (" )U (r, v )W (') U5 (r) . (8)

By using the relation Vaeg(r) = VO% -V ﬂ, we can express the external potential in
terms of the screened one as

31 = [0 — Uaguw (0,1 )L [V, (x) 9)

Nz

which defines the response function
€00, = OO — Unp yu (1,1 )Ty, (10)

The condition for plasmon modes is the vanishing of the determinant of the dielec-
tric tensor,

det[gaﬂ,,“,} =0.
Considering the above-addressed forms of the wavefunctions in the QW, we have
o) = [l,a) = Yu(z)ed?,
18) = .d) =t (2)e’
1) = [, k) =t (2)e™,
V) = ', K') = g (2)e™ 0

Substituting the above expressions into Eq. (10), the dielectric function in the
plane-wave Fourier representation can be expressed as'®

e (4, W) = 0in 01, — W () Uiy s (q, 2, 27) (12)

with the polarizability function

_ — fw(k+aq)
22 E,(k+q)+ hw

and

Ull’,nn/(qy 2, Z/) = / dZdz/¢?(Z)¢l’ (Z)U(qa 2 Z/)¢;(Z/)¢n’ (Z/) .
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Here, 9;(z) is the wavefunction of the single electron for the Ith subband due to
the quantum confinement along the 2 axis. Here E;(k) = E;(0) + h?k?/2m}, (k =
|k|) is the single-electron energy in the Ith subband. f, (k) is the Fermi-Dirac
occupation probability of electrons at the state |n,k), with the value of unity or
zero at zero temperature. U(q, z, z’) is the plane-wave Fourier transform spectrum
of the Coulomb interaction term U(r,r’). The dispersion relation of the collective
excitations is determined by the zero of the determinant of the dielectric function
given by Eq. (12): det[ey nn’(q)] = 0.

It is well known that when neglecting the difference of the static dielectric
constants inside and outside the quantum well, the Fourier expansion in Eq. (12)
has a form of

2

(& ’
U(qv’Z?Zl) = %€ eoqe_qlz_z | )
r

with ¢ = |q|. In the previous studies, this difference is omitted as a minor factor
dominating the collective excitations, assuming its contribution less than 10 per-
centage points.?> Now we are interested in calculating analytically the image po-
tential due to dielectric mismatch. Supposing an electron charge is located at
r'(p/, 2’), the image potential is governed by the Poission equation as

V23U (r,r') = —606(2)5(p —p)o(z =2 (13)
with
€1 z < —a/2 Region L (left barrier)
e(z) =1 € |z| < —a/2 Region W (quantum well) .
€3 z>a/2 Region R (right barrier)

Substituting the Fourier expansion of U(r,r’) and d(p, p’) into Eq. (13), we derive
the equation of Fourier component of the image potential to be satisfied

d*U(q,2,2')

22 - qu(quvz/) = _6—5(2 - Z/) . (14)

Equation (14) is a standard one dimensional Green function equation, and its gen-
eral solution may be expressed as follows:

(i) 2/ > a/2 (the electron is located at the right barrier R), Eq. (14) has the
solutions as

2

e (es+e€2)(e2 — el)e_q(”zl) +(es—e€2)(e2 +61)e_Q(Z+Z/_2a)

(€1 + €2)(e2 + €3)ed® + (€1 — €2) (€2 — €3)e™ 9@

UR(q7'Z?Z/) = 26063(1

+ e‘q'z"'], (15)
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(iii)

2 _ —q(z+z") q(z—2"+a)
UW(q’ 2, Z/) — 6_ (62 61)6 + (62 + E1)6 _ 7 (16)
€0q | (€14 €2)(€2 + €3)e?™ + (€1 — €2)(€2 — €3)e ™1
and
2¢5¢2 el(z—2'+a)
Urlq,z,2) = 17
M s = e T e T aen + - a)a-aen|

for regions R, W and L, respectively.
—a/2 < 2’ < a/2 (the electron is in the well), it is straightforward from Eq. (14)
to get

e2

Ur(q,2,2') = o1

(e2 — €1)e™9H2) 4 (g + €)e 172" ~0)
(61 + 62)(62 + 63)eqa + (61 — 62)(62 — 63)67‘1“

] , (18)

’ — — —q(2—2"+a) q(z—2z'—a)
Uw(q,z,2) = € {((62 €1)(e2 — €e3)[e Te }

2€p€2q €1 + 62)(62 =+ 63)6qa =+ (61 — 62)(62 — 63)67‘1“

(e2 — €1)(€2 + €3)e 1) 4 (€3 + 1) (ea — €3)e?Z+2)
(61 + 62)(62 + 63)6‘1“ + (61 — 62)(62 — 63)6_qa

+ e—‘Z|Z_Z/|} , (19)

and
e? (€2 + €3)e1F=2+0) 4 (g — 3)ea(=12)
(61 + 62)(62 + 63)6qa + (61 — 62)(62 — 63)67‘1“

UL(qa 2, Zl) = &

] (20)

for regions R, W and L, respectively.
z' < —a/2 (the electron is in the left barrier), the image potential has the forms
as

26262 e—q(z—z/—a)
Ur(q,2,72") = ,(21
A e oS e e pepapes g P
2 _ q(z+2") —q(z—2"—a)
UW(q,Z,Z/) — 6_ (62 63)6 + (62 + 63)6 — , (22)
€0q | (€1 + €2)(e2 + €3)ed® + (1 — €2)(e2 — €3)e™9°
and
Ur(a,z,2") = 2 | (e + e2)(e2 — €3)e?HE) (€1 — ) (€2 + e)ed(=H+20)
2ep€1q (61 + 62)(62 + 63)6‘1‘1 + (61 — 62)(62 — 63)67‘1“
et (23)

for three different regions R, W and L.
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Till now, the analytical forms of the image potential are fully acquired. It is
worth pointing out that the solution of Eq. (13) is also expressed into a series sum
from a finite number of images, where each has different position and charge, as
shown by Eq. (10) in Ref. 10. The authors!® ignored the dependence of the image
potential on the transverse coordinate (z, y). Obviously for the purpose in this
paper, the general solution of Eq. (14) is much more convenient than the series
expression of Eq. (13). For the case of the symmetric SQW, we have €1 = e3.
Substituting the derived expressions of the image potential of Egs. (15)—(23) into
Eq. (12), the collective excitations in the case of dielectric mismatch are totally
decided theoretically.
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Fig. 1. Dispersion spectra of the plasmon modes in a SQW structure for different ratios of the
dielectric constant €1 of the barrier layer to that e2 of the well layer: (al)—(a2) for €1/e2 = 0.5,
(b1)—(b2) for €1/e2 = 1.0, and (c1)—(c2) for €1/e2 = 2.0. The barrier height is 300 meV and the
well width @ = 5 nm. The electron density and the donor density used here are 1.6 x 1011 cm™2,
4.0 x 1017 cm ™3, respectively.
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Fig. 2. Same as Fig. 1 except for a broader well of ¢ = 10 nm: (al)—(a2) correspond to €1 /e2 = 0.5,
(b1)—(b2) to €1/e2 = 1.0, and (c1)—(c2) to €1/e2 = 2.0.

3. Numerical Results and Discussion

We show the plasmon dispersion spectrum of 2DEG in a SQW with dielectric mis-
match in detail in Figs. 1 and 2 for different well widths. In the following numerical
calculations, we assume the same electron mass inside and outside the quantum
well as m;, = 0.067mo with mg being the free electron mass for simplicity. The
typical electron density and the donor density in this system are chosen to be
1.6 x 10" ¢cm™2 and 4.0 x 10'7 cm ™3, respectively.

Figure 1 displays the dispersion spectra of the single particle excitations and
the plasmons in a SQW with the barrier height of 300 meV and the well width of
a =5 nm: (al)—(a2) for the dielectric ratio €;/ez = 0.5, (b1)—(b2) for €;/e2 = 1.0,
and (cl)—(c2) for €;/ea = 2.0. The ratio €;/e2 represents the dielectric mismatch
degree between the barrier and the well materials in a SQW. Here, the relative
dielectric constant inside the quantum well €5 remains unchanged as e; = 12.8.
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woo and wig branches denote the intrasubband and intersubband modes of the
collective excitations of quasi-2DEG, and the shadow areas stand for the single
particle excitation (SPE) continua. It is evident that all the (0-0) SPE continua
almost remain unchanged for different dielectric mismatches, however, for the (1-0)
SPE continuum, the larger the value of €1 /€5 is, the upper the (1-0) SPE continuum
moves remarkably. In the long wavelength limit ¢ — 0, the mode wqgy approaches
zero. Compared Fig. 1(al) with (bl) and (c1), we observe that the rising speed of
the mode wgg with ¢ is adversely reduced for the greater value of the ratio €;/e2. As
for the intersubband excitation wyg, the case is quite different: The frequency of the
mode wyg at ¢ = 0 is enhanced upper for the larger € /es, as shown in Figs. 1(a2),
(b2), and (c2), for instance, its value at ¢ = 0 is increased from 190.8 to 195.6,
and to 197.7 meV for €;/e2 = 0.5, 1.0 and 2.0, respectively. As ¢ increases, the
mode wig rises up monotonically and finally merges into its corresponding (1-0)
SPE continuum. Owing to the lowering of the mode wyg and the ascension of its
corresponding mode wyg for the greater dielectric ratio €; /€2, the spacing between
the intrasubband plasmon mode and the intersubband plasmon mode is increased
substantially.

The above obtained results can be interpreted from a simple argument as follows:
For a charge ) placed near an interface between two different dielectrics, the image
potential is attractive for charges on the low-dielectric-constant side of the interface
and repulsive for charges on the high-dielectric-constant side of the interface.'*
Thus, it can be concluded that when the dielectric constant €; outside the quantum
well is less than that es inside the quantum well, i.e. in the case of €1/e2 = 0.5,
the image potential for electrons inside the well is repulsive, which leads to the
significant enhancement of the interaction between electrons inside the well. As a
result, the frequency of the intrasubband plasmon associated with the collective
oscillation of electrons should be increased. On the contrary, when the dielectric
constant €; of the barrier layer is greater than that es of the well, i.e. in the case
of €1 /€5 = 2.0, the attractive image potential for electrons inside the well tends to
weaken the interaction of electrons inside the well, which results in the lowering of
the frequency of the intrasubband plasmon mode. As for the higher frequency of
the mode wyg in the case of €1 /€3 = 2.0 in contrast with other two cases, it belongs
to the fact that, when the dielectric constant €; outside the quantum well is much
greater than that inside the well, the effective potential of the SQW is essentially
enhanced, so the spacing of energy levels between the ground state and the first
excited state of the electrons inside the well is broadened. As a result, the spacing
between the modes wig and wyg is also increased for the greater dielectric ratio
€1/€2.

Figure 2 depicts the variation of the dispersion spectra of the plasmons for a
larger width of the well, @ = 10 nm, with different dielectric contrasts: (al)—(a2)
correspond to €1/e2 = 0.5, (b1)—(b2) to €1/e3 = 1.0, and (c1)—(c2) to €1/€ea = 2.0,
respectively. Here, other parameters are chosen the same as those in Fig. 1. Simi-
lar phenomena can be observed now for the variation of the dielectric ratio €;/es.
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Comparing Fig. 1 with Fig. 2, it is clearly seen that the (0-0) SPE continuum
remains almost unchanged for a broader well, while the frequency of the intrasub-
band plasmon mode wq is lowered a little. For the width-increased quantum well,
we find that the (1-0) SPE continuum falls down substantially, for example, its
value at ¢ = 0 is decreased from 189.1 (193.9, 196) meV to 95.3 (97.3, 98.4) meV
for €1/e3 = 0.5 (1.0, 2.0), respectively, when comparing Fig. 1 with Fig. 2. More-
over, the intersubband plasmon branch wig is lowered accordingly, for instance,
from 190.8 (195.6, 197.7) meV to 97.9 (100, 101) meV for €;/e2 = 0.5 (1.0, 2.0),
respectively, at ¢ = 0. Consequently, the separation between the modes w1y and
woo is narrowed for a broader well, as expected. We also observe that the span of
the mode wig in wavenumber range is extended significantly for a wider quantum
well, comparing Figs. 1(a2), (b2), and (¢2) with Figs. 2(a2), (b2), and (c2). When
lowering the barrier height, the effects are analogous to the broadening of the well.

4. Summary

We have investigated the properties of the plasmons in SQW in consideration of
the image potential due to the dielectric mismatch inside and outside the quantum
well. We present the analytical expressions of the image potential, which is a general
solution to the standard one dimensional Green’s function and is much more conve-
nient than the series expression of Eq. (13). We numerically display the dispersion
spectra of the collective excitation modes for various physical parameters. Our re-
sults show that the frequency of the plasmon modes and SPE continua is strongly
related to the mismatch degree of dielectric constants inside and outside the quan-
tum well. When the dielectric constant of the barrier material is less than that of
the well, the repulsive image potential of electrons inside the well strengthens the
interaction between electrons inside the well and leads to the greater rising speed
of the intrasubband plasmon modes wgy with ¢, when comparing with the case of
dielectric match. Moreover, the frequency of the intersubband modes falls down,
consequently, the spacing between the intra- and inter-subband modes is narrowed
accordingly. On the contrary, when the dielectric constant of the barrier is greater
than that of the well material, the situation becomes reverse fully. The frequency
of corresponding intrasubband plasmons wqg is lowered remarkably, which stems
from the attractive image potential of electrons inside the well now. However, the
intersubband mode rises adversely due to the expansion of the separation of the
energy levels between the ground state and the first excited state of electrons inside
the well. We reasonably attribute these results to the action of the image potential.
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