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The subband structure of a heavily doped.n-type GaAs-Ga, - Al As super-
lattice is calculated. A band bending effect caused by charge transfer from the
Ga; _,Al,As to GaAs layers is taken into account self-consistently in the Hartree
approximation. When the wavefunction along the superlattice direction is rather
localized, the band bending effect is crucial especially in the case of modulation
doping where only the Ga, _,Al.As layer is heavily doped and the GaAs layer
remains undoped. Calculated results are in good agreement with recent experi-
ments. Many-body effects such as exchange and correlation are studied in the
density-functional formulation, but shown to be unimportant. Intersubband
optical absorptions are also investigated. A local field effect can shift resonance
energies to higher energy side considerably.

§1. Introduction

The evolution of molecular-beam epitaxy has
allowed access to man-made semiconductor
superlattices, which consist of periodic hetero-
structures of alternating, ultrathin layers of two
semiconductors that closely match in lattice
constant. Heterostructures made of GaAs and
Ga, _,Al As have been studied extensively. In
case of sufficiently thick Ga;_,Al As, electrons
are bounded in single potential wells of GaAs.
With the decrease of the thickness couplings
between adjacent wells become important and
eventually cause the superlattice formation. As
a result of extensive experimental study of
various properties such as electron tun-
neling,*+? transport®** interband optical ab-
sorptions,”~® and Raman scatterings,®"'? it
has been known that the boundary is sharp to
within a lattice constant and that a simple
model of a square well potential works quite
well. Further, the parameters of the potential
are now well-established. Correspondingly,
previous theoretical calculations on the subband
structure and related quantities have been done
in the simple Kronig-Penney model.

Recently Dingle et al. used a modulation
doping technique to achieve heavily doped
superlattices having high mobilities.!?*'? In

this technique only the Ga, _,Al,As layers are
doped and the GaAs layers where electrons
mainly exist remain undoped. In such heavily
doped cases a band bending effect neglected
completely in previous calculations becomes
appreciable, and we must calculate the subband
structure self-consistently including effects of
charge transfer from the Ga, _,Al As to GaAs
layers. Charge transfer effects in layer com-
pounds like graphite intercalations have been
attracting much attention.!® The present
superlattice problem can be regarded as the
simplest example.

The purpose of the present series of papers is
to study electronic properties of heavily doped
GaAs-Ga, _,Al As superlattices. In this paper
we present results of the calculation of the sub-
band structure and demonstrate the importance
of the self-consistency. We employ the Kronig-
Penney model characterized by a single effective
mass and a barrier height for the lattice poten-
tial and take into account the charge transfer
effect by including the potential of ionized
donors and that of electrons themselves in the
Hartree approximation. A density-functional
formulation is employed to see effects of
exchange and correlation. We calculate also
optical absorption spectra, and show impor-
tance of a local field effect, i.e. that absorption
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peaks can be shifted from subband energy
separations considerably.

In §2 a brief discussion is made on the model,
approximations, and the method of calcula-
tions. A dynamical conductivity which describes
the optical absorption is introduced. Examples
of results are presented and compared with
experiments in §3. A summary and a conclusion
are given in §4.

§2. Subband Structure and Optical Absorption

2.1 Subband structure

We replace the Ga,;_,AlLAs layer by a
simple potential barrier with a height V. In the
absence of doping the problem is reduced to the
elementary Kronig-Penney model. When do-
nors are introduced in the Ga,;_,Al As layer,
they are ionized and produce electrons in the
GaAs layer. Dingle et al. used Si as donors.*
Binding energies of Si* ions are still uncertain
but have been assumed to be sufficiently
small.!*+'? As has been done in the inversion
layer problem!® we replace Si* ions by a
positive uniform distribution in the Ga, _,Al,As
layers. We use the similar model of a uniform
charge distribution also in the case of uniform

h2 d2

— 5 G52 bk @D+ V (i (D) = k) (),

with m being the effective mass and

V(z)= ,_Z_w V00[<d2) - <z— (1+ %)d)z] +0(2),
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doping where donors are distributed equally in
both layers. The neglect of discreteness of
charge is not good if binding energies are
sufficiently large and binding lengths are smaller
than the thickness of the GaAs layer. In bulk
GaAs, we have Ef~5meV and af~100 A,
where E} and af are the binding energy and the
effective Bohr radius, respectively, of a single
isolated donor. These numbers are comparable
to corresponding quantities appearing in the
present calculation. However, we are dealing
with rather high concentrations of electrons, i.e.
typically Np~ 10'® cm ™3, where Nj, is the con-
centration of donors in a unit volume. In such a
case overlapping and screening of potentials
are sufficiently large and each ion has no bound
state.!> Therefore, we expect that the present
model is reasonable as a starting approxima-
tion. In a forthcoming paper we shall study
effects of discrete charges on the carrier
mobility.

We choose the z direction as the superlattice
direction. The wavefunction corresponding to
the electron motion in the xy plane is given by a
simple plane wave, and the wavefunction in the
z direction satisfies

@2.1)

2.2)

where 0(x) is the step function, d, is the thickness of the GaAs layer, d is the period of the superlat-
tice (d=d, +d, with d, being the thickness of the Ga, _,Al As layer), and v(z) is the potential of
positive charges and electrons themselves. In the Hartree approximation we have

d? 4 4
v @)= ne® ne®

d+oo

2l=—

2.3)

() -(=(3)) ]

for the modulation doping (MD) case, where n(z) is the electron density distribution and « is the
static dielectric constant. The dielectric constant of Ga, _,Al, As is not known and is assumed to

be the same as that of GaAs. We have

Np=n=

d/2
N,= j
~d/2

with

Ny/d, ()

dz n(2), 2.5)

where N, is the areal electron density per GaAs layer. In case of uniform doping (UD) the second
term in the right hand side of eq. (2.3) should be replaced by 4ne® Np/k.
To solve eq. (2.1) we expand the wavefunction as
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2nl
ta=e () 3 k) exp (i5F), 2.6
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+ 00 :
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l=—ow
We then get
h? 21\ ) by (), ()
ﬁ kz+ 7 cl (kz)+ , Z Vl—l’cl' (kz)=8n(kz)cl (kz)a (28)
I'=—w
- with
+ o0
V()= Y V,exp (z’ 277le> 2.9)

The electron density distribution is given by

2k?
")=25 2% B[EF o= [l OO, 2.10)

where the factor 2 comes from the spin degeneracy, k=(k,, k,) is the component in the xy plane,
and Eg is the Fermi energy determined by the charge neutrality condition (2.4). In terms of the
Fourier transform of n(z), i.e.

2
n(z)— Z n, exp <z—g-lz> 2.11)
we have
Vo mld 4me’(d\? d (=1 . nld, -
V,———7—r751n p Ly— ” (2_7tl> I:n, NDd 7 sin d‘ , (2.12)

for /#0 in the MD case. We choose the origin of energy as V(z=d,/2)=0, which determines the
value of V;_,.

The Hartree approximation usually overestimates the Coulomb repulsive force of other electrons
and sometimes many-body effects such as exchange and correlation become important. We study
the exchange-correlation effect in the density-functional formulation. In this formulation, the
effect is taken into account by introducing an exchange-correlation potential v, [n(z)] which is
given by a functional derivative of the exchange-correlation part of the ground state energy with
respect to the electron density.'®~*® In the well-established local approximation v,, becomes the
exchange-correlation part of the chemical potential, y,., of the uniform electron gas having the
same local electron concentration. Strictly speaking, this potential can be used only for the cal-
culation of the ground state energy and the electron density distribution. However, it can be used
in a good approximation for the subband structure calculation also as has been discussed pre-
viously.!®) This exchange-correlation potential has been calculated by a number of people. We
use here an expression parameterized by Gunnarson and Lundqvist.2?

2 114
ars[l +0.0545r, In (1 + )] et @.13)
where o= (4/97)'/3=0.521 and
-1
o= iy | @14
with aff =«xh?/me*.

2.2 Optical absorption
Inter-subband transitions are induced by a far-infrared radiation polarized in the z direction. In
single-layer cases like inversion layers on semiconductor surfaces, a resonance occurs when an
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induced current becomes maximum at a fixed external electric field. The situation is different in
the superlattice with infinitely many layers. Since the wavelength of light is much larger than the
period of the superlattice, the system can be regarded as a medium having a macroscopic con-
ductivity o,,(w). According to conventional theory its poles give positions of optical absorptions.
In single-layer cases resonance energies can be shifted from corresponding subband separations
due to the depolarization effect.?!) Resonance energies can be shifted also in the superlattice. To
illustrate this so-called local field effect, let us first consider an independent-layer model where
- each GaAs layer is sufficiently far from each other and can be treated as isolated. When an external
electric field De™ ! is applied in the z direction, the induced current is given by

@)= jdz'a(z, 2E@), @.15)

where o(z, z’) is the conductivity and E(z) is the total electric field, which is related to the external
field through

E@=D-2(a), 2.16)

in the limit of the infinite light velocity. Let us introduce a two-dimensional conductivity &,p(®),
defined by
d/2

d j(co); j a2 dz j(z)=6,p(w)D. 2.17)
We have the following relation between the macroscopic current j and electric field E.
. 1_ 1. 4ri 1 | -t
j(w)= EUZD(w)D= 30'21)(@)[1 B aazn(w)] E. (2.18)
In the independent-layer model, therefore, the macroscopic conductivity becomes
1. 4ri 1 _ -1
(@)= 57200 1= 0 55200 | @.19)

As has been shown in the case of semiconductor inversion layers, 6,5(w) is affected by the depolar-
ization effect and its peak is shifted from subband separations by an amount of an effective plasmon
frequency.??) For simplicity, we consider the case that only the lowest subband is occupied by
electrons and transitions to the first excited subband are dominant. We then have

4ni 1 -1
5’21)(“’):0'20(60)[1 + £ Zozn(w)]‘ » (2.20)

with { being of the order of the effective thickness of the GaAs layer and

Nse2 .f] O( - lCl))
m wi,—w’—2io/t

o2p(@)= 221)

where hw,,=¢; —¢&g is the energy separation, f;, is the oscillator strength, and t is a phenomenol-

ogical relaxation time. We get

. N. 2 . »
o(w)= Lf;—f‘g—-l—ai)[wio-kd)i—wz—Ziw/T]—l, (2.22)

which shows that the resonance position is shifted to (w?,+@3)'/? with

~ 47ther10 C
@2= T(l - Zz)' (2.23)

In case of the square-well model with infinite barrier height, we have {~0.584;. Thus the depo-
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larization effect is not cancelled out except in the case that the wavefunction in the z direction is
sufficiently extended and close to the plane wave. This is an example of the so-called local field
effect.22-23 ,

In actual superlattices, we expand the induced current, the electric field, and the conductivity as

2nlz
i@=Liew (7). @.24)
2l

E@)=Y E, exp (z’ —7;3> (2.25)

and
dnlz  2rlz’
0@z, 2)=Y. Y. 6,1(e) exp (i—z—z +i ’;Z ) (2.26)
[
Here we have
2 (nk,| jiln'k,)m'k,| ji\nk,)
owl@)=—iEEE LY
h2k? B2k
6 EF_gn(kz) - - 0 EF— 8n’(kz)— .
2m 2m
x , 2.27)
wn’n(kz) —w
with
B , dk
(ke k)= — 22y c?"(k,)c:m(k,)[ =42t 1} (2.28)
md & T

where hw,.,(k,)=¢,.(k,)—¢,(k,). In silicon inversion layers, a final state interaction called exciton-
like effect is known to be important.?" This is because the exchange and correlation effect is crucial
in the inversion layer.!®> As will be shown in the next section, the many-body effect is not so im-
portant in our system. Therefore we neglect the exciton-like effect. We get

j1=2 ouwkp, (2.29)
and
Ey=Dyo— 1, (230)
=00 amjl’ .
which give
El=|:1+4—m6(co):l—10 (2.31)
WK o

where é(w) is a matrix whose components are given by a,,.(w). The macroscopic current is given by

J(w)=jz=o(w)=[5(¢)[1+:—:%i5(w)]— ]D (2.32)
and the macroscopic conductivity becomes
. -1 . -17-1
o(@)=j(w)/E,~¢= [&(w)[l + %6‘((0)} ]00[[1 + %6‘(60)]00 :| . (2.33)

. . . merically. We can calculate the density distribu-
§3. Numerical Results and Comparison with

Experiments

In numerical calculations we divide k, into
discrete points and truncate the summation
over /' in eq. (2.8) at /'=[,,. The resulting
matrix Hamiltonian is then diagonalized nu-

tion of electrons and the self-consistency is
established iteratively by using the uniform
electron distribution as an initial solution. We
use m=0.068m,, with m, being the free electron
mass, k=11.9, and /,,,, =20 which gives a con-
vergent result in the case considered below.
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An example of the density distribution,
potential energies, and energy spectra calculated
in the Hartree approximation is given in Fig. 1.
We have assumed that d; =221 A, d,=218 A,
Vy=300meV, Np=0.697x10'%cm™3, and
N,=3.06x10'2cm~2. For these parameters
couplings between adjacent layers are weak for
electrons in the three lowest subbands. The
corresponding result in the simple Kronig-
Penney model is given in Fig. 2. The importance
of the band bending is readily seen. The increase
and decrease of the potential energy at z=0 and
z=d/2, respectively, are very large and electrons
are pushed toward the interface strongly if we
include the band bending. Consequently, the
electron density at z=0is only 1/3 of the peak
value, and the lowest and next lowest subbands
are already close to bonding and antibonding
levels of the ground subbands associated with
the two sub-layers which are separated by a
potential barrier around z=0.

An example in the UD case corresponding to
Figs. 1 and 2 is shown in Fig. 3. The band
bending is about a half of that in the MD case.
The electron density at z=0 is comparable to
the peak value. Quantitatively. however, the
band bending is still appreciable when the

400
Modulation Doping
di =221A d2=218 A V5, =300meV
n = 0.697x108 cm-3
Ng = 3.06x10'2 cm~2
300
N
% X

S

200= VA A

V\r\_

™ Electron Density

Energy (meV)
\

m
7/

/ 2 \
100f= 1
0
BSSLHAFT11FO19
0 L | ! I
0 50 100 150 200
z (A)

Fig. 1. An example of energy levels, density distribu-

tion of electrons, and the self-consistent potential
in the modulation doping case calculated in the
Hartree approximation. The subband widths are
described by hatches.
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wavefunction is localized and the electron con-
centration is sufficiently large.
A result calculated in the density-functional

400
Kronig-Penney Model
d1 =221A dz =218A VO =300 meV
n=0.697x108 cm-3
Ng =3.06x 102 cm=2
3001
<
[]
E
2001 -
&
5 —Electron Density
(=4
u 3
1001 -
2\
Er \
1
0 0 : - BSSLKP.FmFIoco
0 50 100 150 200

z (A)

Fig. 2. Anexample of energy levels, density distribu-
tion of electrons, and the self-consistent potential
in the Kronig-Penney model. The parameters are
the same as in Fig. 1.

400
Uniform Doping
C|1 =221A d2 =218A VO= 300 meV
n =0697x10'8cm™3
Ng =3.06x102cm™2
300 Y

Energy (meV)
N
o
S

EFk\ Electron Density
2 "\_ _

1001
1
\
0
stu-lu.FTnFooz
0 ! h | !
0 50 100 150 200
z (A)
Fig. 3. An example of energy levels, density distribu-

tion of electrons, and self-consistent potential in
the uniform doping case. The parameters are the
same as in Fig. 1.
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Modulation Doping (Density-Functional)
dy = 221A gz =218A V,=300meV
n = 0.697x108 cm3
Ng = 3.06x 10'2 cri2
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N ..

)
00

Energy (meV)
[N
8
|
H
/

/ 2 \, Electron Density
1

N -
=0
ES‘LDA.FTHFOIO
0 | 1 I
0 50 100 150 200

z (A)

Fig. 4. An example of energy levels, density distribu-
tion of electrons, and self-consistent potential in the

~ modulation doping case calculated in the density-
functional formulation. The Hartree part of the
potential is represented by a dotted line. Electrons
are slightly pushed toward the interface, but the
exchange-correlation effect is not so important.

formulation for the MD case is given in Fig. 4.
The dotted line represents the Hartree part of
the potential. The exchange and correlation
slightly reduce the Coulomb repulsive force and
electrons are further pushed toward the inter-
face. However, they are not so important as in
inversion and accumulation layers on Si.?®
This is because the effective mass of electrons is
much smaller than in Si and the effective elec-
tron concentration is sufficiently large in GaAs.

Figure 5 shows calculated energies as a
function of the electron concentration. We
assumed the MD case with d;=d,=200 A,
V=300 meV, and used the Hartree approxi-
mation. The Fermi energy, Er, and the potential
energies at z=0 and z=d/2 are also included.
The potential energy at z=d/2 decreases almost
linearly with Ny, i.e. with Np, since V(z=d/2)=
Vo—2ne’Nd/x if we neglect the slight density
of electrons in the Ga, _,Al As layer. The Fermi
level touches the bottom of the first excited
subband around N,~0.8 x 10'?2cm™2 and that
of the second excited subband around N~
3.3x10'2 cm 2. Because of the band bending
the energy of levels bounded in the GaAs layer

Tsuneya Anpo and Shojiro Mor1x
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increases with N,. Around the electron con-
centration where they cross the V(z=4d/2) line,
widths of the subbands increase drastically and
their characters turn into three-dimensional
rather two-dimensional. The levels with higher
energies corresponding to extended states even
for N,=0 decrease in energy with N; also
because of the band bending. We can see
interactions of these two different levels when
they cross. Above N,~4x 10'2cm ™2 the elec-
tron density distribution becomes extended and
begins to have a considerable amount in the
Ga;_,Al As layer. This corresponds to the case
of a partial charge transfer from the Ga, _,Al,
As layers.

Available experimental results are quite
limited so far. Stérmer et al. measured the
Shubnikov-de Haas oscillation of the conduc-
tivity along the xy plane in samples corre-
sponding to Figs. 1 and 4. They observed two
periods which are very close to each other and
obtained the energy separation of the two
lowest subbands as 8.6 meV. The present
calculation shown in Fig. 4 gives 9.4 meV in
excellent agreement with their experiments. We
should notice that it is given by 26.7 meV if we
neglect the band bending effect. Thus we can
conclude that the self-consistent calculation is
crucial in this system and that its proper
inclusion gives results which are in good agree-
ment with the experiments. The present cal-
culation shows that electrons occupy also the
second excited subband. This does not con-
tradict the experiments, however, since the
number of those electrons is extremely small
and they do not contribute to the oscillation.

Similar experiments have been performed in
UD systems by Chang et al.¥ An example of
calculated level structure corresponding to the
sample (C) of their paper is shown in Fig. 6.
We have assumed that d; =d,=90 A, V=100
meV, Np=1.9x10'® cm ™3, and N,=3.43 x 10*2
cm ™~ 2. The band bending effect increases widths
of the lowest and next lowest subbands. The
Kronig-Penney model predicts that Adegy=
leo(k,=0)—¢o(k,=7/d)|=2.5meV and de; =
21.5meV, while the present calculation gives
Agy=4.0 meV and de; =27.6 meV. The energy
separation between the lowest and next lowest
subbands is reduced about 109 by the band
bending. In this case the self-consistency is
not so important. From the period of the
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Energy (meV)

Modulation Doping

di=d, =200 A
Vo = 300 meV

0 ! I
0 1 2

1 I
3 4 5

Ng (10%cm?)

Fig. 5. Calculated energies as a function of the electron concentration in the modulation doping case.

The subband widths are described by hatches.

Shubnikov-de Haas oscillation Chang et al.
determined the Fermi energy measured from the
lowest subband. The present calculation gives
89 meV which is in agreement with their ex-
perimental results given by 97 meV. The
Kronig-Penney model gives 96 meV in better
agreement. This is considered to be just a
coincidence. We have calculated the subband
structure by varying values of the various
parameters slightly. The result shows that the
Fermi energy measured from the bottom of the
ground subband is rather insensitive to a slight
change in the barrier height, but very sensitive
to the electron concentration or the doping
level. There might be an uncertainty in the
measured value of Np. Chang et al. determined
it by low temperature Hall effect. Since elec-
trons occupy two subbands which can have

different mobilities, the Hall coefficient is not
given by the total electron concentration. This
problem will be discussed in a following paper.
To make a more conclusive comparison, one
should know more precise values of the doping
level.

Direct information on the subband structure
can, of course, be obtained by intersubband
optical absorption. We have calculated the
dynamical conductivity by truncating the sum-
mation over /” at I'=1[_,, with [, =20 in the
case that #/t=5meV, d;,=d,=200A, and
V,=300 meV. Examples are shown in Fig. 7.
We have taken into account only intersubband
components and neglected the Drude type
intrasubband contributions. The dotted lines
represent oyo(w) which does not include the
local field effect. Its peak positions are deter-
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200

Uniform Doping BSSLHU.FT11FO30
dy = d2 =90A Vo=100 meV

n = 1.9x108cm™3

Ng = 3.42x102crri2

150 |-

00%

50

—_

Energy (meV)

——Electron Density

0 I 1 |
0 20 40 60 80

z (A)
Fig. 6. Calculated energy levels, density distribution
of electrons, and self-consistent potential in the.
uniform doping case. The thickness and barrier

height are considerably smaller than in Figs. 1~4.
The subband widths are described by hatches.

mined by the corresponding subband separa-
tions. The solid lines represent the macroscopic
conductivity which contains the local field
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effect. The two low energy peaks for N,=1, 2,
and 3x10'2cm™2 arise from the transitions
from n=0to 1 and n=1 to 2. Consideration of
the parity of states at k,=0 gives a quasi-
selection rule valid for low-lying subbands that
transitions among states with even n and among
those with odd n are almost forbidden. The
amplitude of the 0 to 1 transition becomes
smaller with the increase of N,. This is partly
because the electron occupation numbers of the
subbands 0 and 1 become close to each other
and the Pauli exclusion principle prohibits the
transition. Further, the wavefunctions of the
two subbands become similar to each other
with the increase of the band bending. These
two transitions correspond to those between
the bands whose wavefunctions in the z direc-
tion are well localized. Therefore, the local field
effect is very important and shifts the peak
positions to higher energy side.

The transitions to the extended states, i.e.
from n=0 to 3 and from n=1 to 4 appear
around hw~ 150 meV. The local field effect on
these transitions is small as expected. At
N,=4x10'2cm~? an additional absorption
appears around Aw~25 meV. This arises from
the transition to n=3 from n=2 which has
become occupied by electrons. As can be seen
in Fig. 5, the n=2 and 3 subbands have a

Modulati i ' v
ulation Doping | 4x10% em 2

d, = d, =200 A -

Vo = 300 meV 3x10% em'?

2x10'% e |
[ 1x10%2 e2 I

€l
v
B
C
w L
Q
s
o
J
T |
C
o
3

) 7 OASLH.FT12F021~024

0 50 100 150

hw (meV)

Fig. 7. Examples of calculated optical absorption spectra in the modulation doping case. The dotted lines
represent the results obtained by neglecting the local field effect. The numbers shown in the figure represent
N;. We have introduced a relaxation time given by #%/t=5 meV.
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wavefunction which is extended. Correspond-
ingly the local field effect on the transition is
negligibly small.

There has been no attempt to observe inter-
subband optical absorptions, although transi-
tions from the valence band to the conduction
band have already been investigated.®”’ In case
of interband transitions, the local field effect as
considered here is not important. Instead the
conventional exciton effect plays an important
role. Its importance has already been observed
experimentally,® but detailed theoretical study
of the exciton effect in the superlattice has not
been made yet.

§4. Summary and Conclusion

We have calculated the subband structure of
heavily doped GaAs—-Ga, _, Al As superlattices
taking into account the band bending effect
self-consistently. Donor ions have been replaced
by uniform positive charges and the calculation
has been performed in the Hartree approxima-
tion in the two cases, uniform doping and mod-
ulation doping. The band bending due to the
charge transfer from the Ga, _,Al As to GaAs
layers is important in the modulation doping
case especially when the wavefunction along the
superlattice is localized. Under certain condi-
tions the two lowest subbands turn into levels
similar to those in coupled two accumulation
layers. Calculated energy separations between
them agree with experimental results of
Stérmer et al. although only for a single set of
parameters. Future systematic experimental
study is highly expected.

The many-body effect such as exchange and
correlation has also been studied in the density-
functional formulation. It is, however, not so
important.

Optical absorption spectra have been cal-
culated. It has been demonstrated that the local
field effect is important when the wavefunction
is localized and shifts resonance positions to
higher energy side considerably.
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