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Effects of s-d Interaction on Transport Phenomena
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The effects of the so-called s-d interaction on transport phenomena of ferromagnetic
metals and alloys are discussed. Electrical and thermal conductivities and thermoelectric
effect are calculated with the simple molecular field approximation, and an anomalous
thermoelectric effect is expected in these substances. In sufficiently low temperatures, the
disordering of spin system is described by the collective mode of spin wave. The calculations
of transport coefficient by using the spin wave approximation are also carried out.

§ 1. Introduction

In ferromagnetic metals and alloys the most characteristic interaction is the
so-called s-d interaction, namely, the spin exchange interaction between the con-
duction and the unfilled inner shell electrons (hereafter referred to as ¢- and u-
electrons respectively). One of the main effects of this interaction is the effective
spin exchange interaction between w-electrons which were treated firstly by ZenerV
and in detail by us” and Yosida®. The other one of the main effects is the scat-
tering mechanism of c-electrons which has the important contribution to the trans-
port phenomena. The effects on the electrical resistivity are already treated by
’ for ferromagnetic metals and by Yosida” for dilute alloys using the simple
molecular field approximation. The problems concerning the effect on the super-
conductivity we treated in another paper”. Here we treat the effects of s-d inter-
action on the thermal resistivity and the thermoelectric force using the molecular

us*

field approximation. The anomalous thermoelectric force is expected to occur in
these substances. The thermal conductivity by the spin diffusion seems to be also
important because of the long range character of the s-d interaction. Furthermore
the transport coefficient in sufficiently low temperatures are also calculated with the
use of the spin wave approximation.

§ 2. Fundamental standpoints

To solve the Boltzmann Equation rigorously, because for the discussion of
the thermoelectric force careful treatment is required, we use here the following
simplified model.

(i) We assume that c-electron is reprsented by one band model with effective
mass m and that the effect of s-d interaction is represented by the effective exchange
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field H,. Then the energy spectrum of c-electron is written as

2k2
Ef=T-—%H, . . 1)
2m '
where H, is approximated by

where 7, means the mean value of the z-component of the total angular momentum
Jne located in each magnetic ion, J(0) the s-d exchange integral, N, the number
of magnetic ions per unit volume, therefore in metals N;=N, and ¢ the Lande’s
g-factor. In most cases, H, is much smaller than the Fermi energy ¢.

(ii) The other scattering mechanisms than the s-d exchange interaction, such
as electron-phonon and electron-non magnetic impurity atoms, are neglected in our
treatment. These effects are discussed in later sections.

(iii) The Hamiltonian of the s-d interaction is given by

Hyg=(9—1)/N->1335] expli(k—K)R}[{A(|k—F|)/(9—1) —J (|k—F]) j.’}

! Ry, ,
aify aw . +{A(k—K1)/(9—1) +J ([k—K]) j./} @i @i -
= J(|k—K'|) ju & a— J(|k—F')) ji ais - ar. ], (3)

where ap, and af, mean respectively the creation and annihilation operators of
electron with wave vector k& and spin quantum number y=+1/2, J(g) the ex-
change integral and A(q) the interaction except the exchange integral.

(iv)  The energy level of {j,} may be very complicated both in metals and
dilute alloys. However, we use here the most simplified model that the energy
level of j, is represented by the single molecular field H, such as

Hmag:"— ;Hojnz’ (4)
and thus the distribution of j; is given by

w(jz):exp(Hsz/ch)/;exp(PIojz/ch). ' - (5)

(v) The scattering matrix element is given by the Born approximation. The
transition probability, where the spin direction of ¢-electron does not change, namely,
the first two processes of Eq. (3), is given by :

N~ (g—1)?J(9)1*{2— 72}, in metals

N/ N*{JA(@Q "+ (9—1)"|J (@ 2F2(9—1) Re (J () A(9)) .},
in dilute alloys, (6)

Wilg) =

where 7. and 72 mean the values of j, and ;. averaged by using Eq. (5).
Furthermore, we assumed that (7.—j;) and in dilute alloys' the positions of
magnetic ions are perfectly at random and have no correlation in each other. On
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the other hand, the transition probabilities, where the spin directions change each
other, namely, the last two processes of Eq. (3), are given by

Vil =N/N*(9—1)"|J (@) '{;*+j— 72+ 7.}, ()

where + mean respectively the processes in which the spin direction of c-electron
becomes +. Also in the above treatment we assumed that there are no correlation
between magnetic ions. It is noticeable that between V,.(g) there is a relation

V.(g)=e"V_(q), (8)
where x=H,/kT. 9)

Using these assumptions, both the drift and collision terms of Bloch equations
concerning c-electrons with + spin directions are written as

(Of . (k) /98) win=/1(EL) v/ kT - [ (eF—pl) —Eip T ], (10)
Of (k) /30 em=27/T1- S [ W ([k—K]) {f(K) 1 —f4(K))

—fu (k) (A—foL (k) }0 (B — EiF)

VL (k=) f=(K) A—f+ (k)

— Va(lk=K']) fo () A —f=(K)) } 0 (B — Ef + Hy) ], (11)

where the directions of the electric field F and the temperature gradient V7T are
chosen in the x axis, f;(€) means

Fi@ =[(e+1) (1+e )], (12)

and &, = (Ex—7)/kT. (13)
Further considering that £, (k) is written as

S (k) =fo(E:) +k.Ci(E0) 11 (), (14)

where Fo(&) =[e"+1]7Y, v (15)

and restricting to the linear theory, the collision terms become
Of:(R) /0) can=2/T - ST Wy (|k—F']) [1(E2) C (&) (R — k) O (B — EF)
+ Ve([k—FK']) fo(&2) fi(—E.F ) (B C3(Ex £ 2)
b, Cy(8.) V(B — B 4 (Hy—2H,))]. (16)
Then, the Bloch equations are solved easily and give the following results
C(8) =082(8) (eF—p2) — ¢ (E)up T, (17)
where

ey = B EAx(Ex£2) + (E£2)" B (8) p=0, 1 (18)
- m*eT Ai(E)Aq:(e?ix)——Bi:(E)B;c(éjzx)’ 7




230 T. Kasuya

g

24 +
1 1 1+e
A @) =2 [ W.(@gdg+—1 ;44«5 1% dqg,
+(&) = 1k § (9 g'dq ok, 1te ™ #(@q lq

B, ()_“.Lﬁ_}+64 f}ax@{l_Qi;pﬁﬂ@fééfﬁl}qdq

%, 1te ok oy
Ny
and
k1= 20 (Ea Hy =k (14T e 22,
. 9. — I, \!*)
'¢+=k.{1+<13?-*> ,
+ =k oIl }
9H,— I, \'*
7 1~<1:r .
Ve E+H, )

§3. Results
The electric current ;, and the thermal flow O, are given by
jo/ €= La(eF—pl) —Lowp T,
Qz/’cT: Ly(eF—p&) — LurpT,
where

1 «T f
L= je (k26 fi(©) dt,

— 0

and
(kidr) =ki4."(E) +R1d ¥ (8).

It is easily seen that Onsager’s relations, L,,=L,,, is satisfied.

Using the conductivity tensor L, we can calculate the various transport
coefficients. But since the formula of L is still very complicated, we use here the

following approximations.

(1) We assume that W.(g) and V. (q) do not depend on ¢ in the range

b

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

0 < g< 2k, where k, is the effective wave vector at Fermi surface determined by

— 1k 2m.

(2) Because J/¢, H,/t, H,/H, and «1/H, and furthermore J/A in dilute

alloys, are sufficiently smaller than unity, we adopt only the leading terms con-

cerning these factors.
Then L is written as

(28)
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(2 e S AOL S in metals

3t m ) Wyt VF(E)’
Loy = - (29)

2 ke 1 {1+7—W3—7— fli~—vf .t _L} , in dilute alloys

377: 7;1/w ’Wr() Wg C WO 1 —e
2 he ¢ E&fi(&ds (T . H, W0+2VF(E)} .
TR —— &= al
37 m ﬁ M VE(8) { - e Wk VR S et
Ly=Lqy= - . 3 (30)
@_ ﬁé’._ h_}.__ {l{;,;r___ V._:_aA WI,K _x v,} , in dilute aHOYS
9 m W, ¢ 7’ WO 1l—e™*
2 h 5 eAEdE
(3,7 m ) W, VF(e) > e
Ly = o - (31)
,2,75 ,ﬁ( _.,.,1,_,,ﬁ { 1 _{,-‘EL ;I:IEA__,,,,Z,, .EU —f—l’ / T[.,,,} s in dﬂute aHOYS
9 m WQ Wo C WQ 1'_6—17
where
_ {Z\/"l(g-—l)sz(O) {72— (), in metals (32)
"TUN,/N{AN(0) + (9—1)2T%(0) 72}, in dilute alloys
W,=N,/N*-2(9—1) A(0)J(0)7., in dilute alloys (33)
V=Ny/N* (9—=1)*J*(0) {j°+j—12—7.}, (34)
FE&)=0+e™)/(1+e™™), (35)
and 7,, 72, etc., are given by
2+l 1
=TT Gy T (36)
ep 2l 2 2l 2@+D gy
et—1 (6')“'—‘1)2 e(z,j+1)z___1 (ez:_l) (6‘(2‘7+1)£—1)
- _ 1 (27 +1)2 '
2 — . 2 e S Tl 38
J (_,7,) (6”—-1) (1___8—1-) (8(2‘1'"'1)':——1) (1—'“6—(23+1)T) ( )
2 a7 ::_,__2*“”,.{' 2]_{_1 e 1
i g e il (39)
(1)  Electrical conductivity o.
o is given by
G:ez L)O’ (40)

and Ly is given by Eq. (29). The formula of L, differs from that of the earlier
papers”” because the degrees of the approximation to solve the Bloch equations
are not equal. Nevertheless, the main charactor that o increases with the increasing
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magnetic order, that is the increase of =z, is of course equal. The electrical resis-
tivity at absolute zero temperature and in the state of no magnetic order are

given by
0 in metals
(e Nro=1 37 m N, . g2 T2 . H,
e e A0 + =D O 2= DI @ A,
in dilute alloys, (41)
and ‘
37z m 1 0 .. 5 .
S (9—1)?j(j+1)J?*(0), in metals,
2 Hhz Né
(071 1m0 = ‘ ' (42)
_?5_ %”(_ Nfgzz.{m(o) +(g—1)%(j+1)J2(0) |, in dilute alloys.

It is also easily seen from the above mentioned charactor that the electrical
resistivity decreases when the external magnetic field is applied because x increases
by the application of the external magnetic field.

In metals, if F(&) is replaced approximately by unity, the result of [I] is
obtained, namely

2 72
ol = 32” . (9’1};;7 ©) (yj—7—-7), in metals. (43)

(2) Thermal conductivity «, and Lorentz number L.
ry and L are given by

Lll LOO ] LOI

ky=1*T I , v (44)
> L — Ly L
L= ;OT :’; HLOOLnﬁ 1050 (45)

As is seen in Egs. (29), (30) and (31), L,, and L, are much smaller than Ly
and I,; and thus we can write

« j _EAEdE [f [i&dE
) W+ VFE@E) 1) W+ VFeE)’

in metals,
L: 62 2 2 2 3 (46)

”K{ (9—1)" J*(0) =z -2~a?~} ST

AT | I LAY , +7i—7—7.)t, in dilute alloys.

g o1 2 A0 1 (j°+i—7—7.) y
In metals L has a nearly constant value (7?/3) (x/e)” over the whole range of x.
This result is caused by the assumption of the isotropic scattering. As is seen in
later section, if this assumption is not adopted I changes markedly from the value
(7*/3) (k/e)*. '

(3) Absolute thermoelectric power &.

© is given by



Effects of s-d Interaction on Transport Phenomena 233

>_ © Ln - 47)
e Loo' (

In metals, neglecting W, compared to VF(E), we obtain (see Appendix I)
the following simplified approximated expression,

@:-f_,{ n* kT H, 1—e™ } . (48)

KL g e 2T
e '3 ¢ & 14e™
The first term corresponds to the ordinary mechanism, namely this is characteristic
of the isotropic scattering. The second term is characteristic of the s-d interaction
and it is noticeable that this term is dominant than the first in sufficiently low
temperature and remains to be of the finite value in absolute zero temperature.
However, in general, there exists a some kind of lattice imperfection and thus W,
remains the finite value B,. Then in sufficiently low temperature B, becomes
larger than VF (&) and & is written as

2 2
=" {7 ®T vV - 4, xe} . (49)
e 3 ¢ By
e
“k
2.80F
Scales of the ordinate, 2.00, 2.40 and
2.80 should be read as 0.20, 0.24 and 0.28,
2.40F respectively.
2.00F
0.16f
0.12-
0.081
0.04} - ,
L Tu/Te
e 1 n | \ L :\ L L L %lzT/Tqr
0 0.2 04 0.6 0.8 1.0 1.2 14 16

‘ Fig. 1 The graph of &(e/k) versus T/T, (Gd)
(a) means G, namely the anomalous part of & calculated by
simple molecular field approximation.
(b) means &3PV, namely the anomalous part of & calculated by
spin wave approximation.

(¢) means Snor, namely the normal part of & and is given by
0.011 ¢z,
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The temperature range where the e
above equation is applicable cor-

. .16}
responds to that where the electrical %
resistance is nearly determined by 0141

0.12f

the residual resistance. In Eq.
(45) it is noticeable that the O-IOT
second term is proportional to  008f
(V/B,)? and the term proportional 006}
to V/B, vanishes. This result is o004}
owing to the assumption that J(g) o0}

does not depend on ¢. In general, A O\
if J( ) depends on the term 0 0.2 04 . 0.6 0.8 1.0 t=T/Tc
q. p q . Fig. 2. The graph of & (e/k) versus T/T, (the dilute
proportional to (V/B,) exists. alloy of 1.8% Cu—M,)
I : lloys, is : (a) means the anomalous part of &.
n dilute a loys, © written (b) means the normal part of & and is given by
as 0.0008 ¢.

2 11373 A 2
6::;; {"7‘; fg~“i(g‘"226{(o)“fz(jz+j“ 727 lf = } - (50)

As mentioned above, if J(g) depends on ¢ the term proportional to V/W, should
appear. For example, if we assume that J(q) is written by

J*(q) =J*(0) —J.* ¢*/ ko', (51)

the following term apears.
_r L H =DV s o oy 52
e 3 A0 (J+i—72—7) - (52)

This term is nearly of the same order of magnitude as the second term of Eq.
(50).

The more detailed comparison between the normal term and the anomalous
terms are given in Figs. 1 and 2. (see §5)

§ 4. Calculations by spin wave approximation

In the preceding sections we calculated transport coefficients using the simplest
molecular field model. But in sufficiently low temperatures, the magnetic ordered
state may be represented by some kind of collective mode. In dilute alloys,
however, it is a very complicated problem to treat the ordered state on the col-
lective description. On the other hand, in metals the collective description of the
ordered state is possible as was done in the previous paper.” Therefore we treat
in this section only the metaltic ferromagnetics such as rare earth metals.

To perform the calculation we use the following model. (i) The magnetic
spin system is always in the local thermal equilibrium. The justification of this
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assumption may be fairly complicated because in a rigorous treatment the phonon
system should be also considered, and then the so-called Umklapp process becomes
important. (2) We assume here that the collective mode of the spin system is
represented by the so-called spin wave mode and that the energy spectrum of the
spin wave with wave vector k is written by &(%).

(iii) Because we consider only sufficiently low temperature range, we adopt only
the process in which only the one spin wave quantum is emitted or absorbed.
(iv) The square of the transition matrix element is given by

2j(9—1)° z['N(q)H]
\% =N g , 53
+(@) ~N |J(q)] N (53)
where + correspond respectively to the emission and the absorption of the spin
wave, and N(g) means the distribution function of the spin wave with wave vector
q in the thermal equilibrium, namely

N(g) Z[exp %(%?v‘m 1]_1. (54)

Then we can write the Bloch equations concerning the electrons of - spin
directions. The drift terms are same as Eq. (10). In collision terms of Eq.
(11), the first term proportional to W, (q) vanishes because it represents two spin
wave processes, and only the last two terms are available substituting Eq. (53)
for V.(¢) and e(q) for H,. Now, however, because it is impossible to solve these
Bloch equations rigorously, we use here the technique of the total balance method.”
The assumptions adopted for the following calculation are as follows. (v) We
adopt only the lowest terms concerning H./¢ and «7/¢. (vi) In Eq. (14) we
assume that C, (&) is approximately written as

C.(&)=C2+Cle. (55)

Then the total balance method means that the Bloch equations are multiplied
respectively by %, and €.k, and then integrated by dk. These equations mean
respectively that the change of the total value of %, and .k, (or the total current
and thermal flow) by drift effect and collision mechanisms are balanced in steady
state, and from these four equations we can determine CJQ and Cl. It is easily
shown that in the case of electron-phonon interaction this method gives the same
result as that of the second order variational method obtained by Sondheimer and
Wilson.”® (see Appendix II). Here we omit the detailed process of the calcu-
lation (see Appendix II) and give only the final results. Rewriting C} such as

C;:: ‘_’_‘CO(EF—“VC)—'“ y:i:llCVT3 p:O, 15 (56)
conductivity tensor L in Eq. (26) is obtained as follows,

1 «T .
00 :'é";r"{ A;?,z* (¢0i0 kig) s (57)
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, 1
Ln=t T (g p . 58
w=g R, (58)

1 2 T 11 -'
Ln= oy 51| @ b+ kD (59)
T
o=y 5 15 " GLeD+ @ERD], (60)
where

(B ) =R S B+ RD6 (61)

b l=h,? <1 + fj) , (62)

and adopting only the leading terms with respect to «7/e(q,), where g means

the maximum wave vector of spin wave mode, we obtain

G —-[Zf 61 (63)
(g1 /eié):zg b ‘[fﬂ e (64)
e B ar=] | |
e G Y e ) @
where [ £(g, 2)] such as [¢*z] means the following value,
R LandiOl . o

For example, we calculate transport coefficients in some simple cases.

Case A. €(@) =¢€q/q, J(@) =,
In this case | f(qg, )] is written as

>

(Fa )= L =D IE el \f RO E N N

N n (e"—1)(1—e™)
where ‘
t:/CT/G(), xo;-—¥f——~ ]_;{,c, *k,on, (68)
4 & Q@

and from Egs. (40), (57) and (63) we obtain

4 Ne ke <A0> 11

rrrrr 69
3t om jlg—D¢ \ g (69

t ¢4(Z . xo)
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=Lt R
=5 ) G e e e
i 4n2¢2(t“?,5(;)1’+x;3(t‘1, ) >} ’ 7
and where
3. (7, 20) :j (ev_f;(‘ff_ — (72)

When =z, is sufficiently smaller and ¢7* is sufficiently larger than unity, we can
replace ¢,(¢7", 2y) by @,(co, 0). The values of ¢,(co, 0) are given as follows,

dy(co, 0) =3.29, @(co, 0)=7.22

(73)
b.(co, 0)=25.9, ¢s(co, 0)=124.4.
Then o is proportional to 77* L to T* and © is written as
S=_r_ kT {1 +4 (ﬂ?)zﬁbﬁ# . (74)
e 3 < ko €’

When z, is sufficiently larger than unity, that is, in very low temperature range,
we can replace ¢,(t”, x,) by

G (277, x0) = j x"e *dx

)
= (i +nxy '+ +nl)e (75)

and thus o is proportional to e*. On the otherhand, the denominators of I and
© vanish if we take only the leading term of Eq. (75). Therefore we must
calculate the values of L and & in such a very low temperature range using the
full expressions as given in Appendix II. However, in such a very low tempera-
ture range, we must consider the following facts that (i) The approximation to
replace C. (&) by C{+C/€ becomes very poor. (ii) The Raman process in which
one spin wave is absorped and the other one emitted becomes important because
in this process there are no lower limit with respect to ¢. (iii) Furthermore, in
actual case, the transport phenomena of such a low temperature range are de-
termined mostly by residual resistance. The more detailed calculation by consi-
dering such a circumstance may be carried out in future.

Case B e=¢eq’/q’ J(q) =

In this case [ f(¢% x)] is written as
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- g 1 jg—1T0) mkT o, {7 f(g’tx, x)
D)= N i e amen®™
where t= KT, x0=—1—<ﬁ»f~ Z@Y ) (77)
€ 2 ¢ Qo /
and thus we obtain
_8 N AL (kN1 1
37 m j((] 1)2J2(0) < Qo ) 2 (7, ) ’ (78)
e 7 g {67 ) _ 6,G7 x0)
L= e 9 <ko> ’ /{ G (t77, o) ¢ (7 xo)}’ (79)
_ Kk 7 H, ([, 2) 85t x) 4\
[1 ( /€o> €0 {< G (77, x,)° 1)
2¢1(1f , Zo) - fz
+3(4 N +1> }J - (80)

When z, is sufficiently smaller and 77! larger than unity we can replace
¢, (¢, 2o) by ¢,(c0, 0) as was shown in Eq. (73). However, this replacement is
impossible for the function ¢, (¢7', x,) because ¢,(¢t™", x,) diverges logarithmically in
the limit of x,—0. Considering the above fact o is proportional to T7? and L
proportional to 7. While & is written as

i T Bl @

and in this case, too, the anomalous term becomes large because the value of
H,/¢, is in general of the order of 10 and Inz, is not so large (see §5).

In the case of antiferromagnetic ordering the same treatment is possible (see
Appeneix II). For example, the explicit results of the case A are given as follows.

Ne* /14 ko 1
o ) 2
___“2_71'_ Qo \" 2 7’ K s - 1 -1 ]
L=*, = (k) z/[1+ 4 (k) £ 1= L a ) /e - (83)
@:fi _‘ﬁfi _’iz 1 +772<QO/]€0) P{1— (1/4752) Qse(fl)/@(fl)} (84)
e 3 ¢ 1+ @3) (g k) {1— (1/22%) 6 (t™) /B (t™)}
where
oy (7 xtdx
h=) ey (85)

and t=xT/e,.

In antiferromagnetic ordering, H, becomes zero and thus the anomalous term of &
proportional to H,/¢ disappears.
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§ 5. Conclusions and discussions

(i) By s-d interaction, anomalous thermoelectric force as well as electrical
and thermal resistivities appears both in ferromagnetic metals and alloys.

(ii) For the more qualitative discussions we take Gd as an example of fer-
romagnetic metals. Then using a free electron model we can obtain the following
values. '

n/N=3, ¢=1.2x10"erg., Jy=2.5X10""erg-,
g=2, 7=7/2, - (86)
H,=175%10""7,/; erg.
If we assume that there is only the s-d exchange interaction, FH, is written as
Hy=H,, 7., (87)

and H,, is determined experimentally by the paramagnetic Curie temperature 7,
such as

«T, :Z(%%.l}{m (88)
and thus in Gd we obtain
T,=300"K, H,=8X10""erg=>57«. (89)
€, is also determined experimentally by 7 as follows,
3 3 3\ .

where T, is obtained as an effective Curie temperature by extrapolating the
. magnetization curve of the range where 7°* law is applicable in a good approx-
imation. In Gd we obtain the following results.

T,y=470"K, €,=5.8X10""erg.,

Xog—

—_ S0 (ﬁg !@)2 13
T

= (91)
I @

and the 7°* law of the magnetization curve is applicable still up to 200°K. In
Fig. 1 the curve of & is plotted as a function of 7. Experimental value of € is
however, not available.

>

(iii) As is well-known, the electrical resistivity by the ordinary electron
phonon interaction, say g, is proportional to 7° in temperature sufficiently lower
than the Debye temperature. While the resistivity by s-d exchange interaction,
say ps,, is proportional to 7* from Eq. (78). Therefore the following behaviour
of p is expected that in sufficiently low temperature g, overcomes p,, and p is
proportional to 7% In Gd, however, the temperature dependence of p differs from
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the expected behaviour. This result seems to be owing to the fact that in rare earth
metals the temperature dependence of ¢, may be fairly different from that of the
ordinary theory because of the complicated band structure and thus it is very
difficult to separate ¢ into p,, and p,, in good accuracy. For example, the electrical
resistivity of La at sufficiently low temperature is rather proportional to 7. Recently
Mannari pointed out that in Fe p changes with 77 in low temperature.” In the
transition metals, too, g, seems to be fairly different from that of the ordinary
theory as is seen in Pd and W and thus it is still ambiguous whether this tempera-
ture dependence is due to the s-d interaction or not.

(iv) In rare earth metals the thermal conductivity has not so far been measured.
In the above calculations we neglected the thermal flow due to spin diffusion or
spin wave flow. But it seems for me that the effect of spin diffusion may be
important because of the long range character of the s-d interaction. The more
detailed discussion about this point may be made in future.

(v) For an example of dilute alloys we take up here the Cu-Mn alloys as
one of the simplest substances because Mn** is in the state of °S and has no
orbital momentum. Notwithstanding of this circumstance the actual magnetic state
of Cu-Mn alloys seems to be fairly complicated and the interactions other than the
s-d interaction seems to be important for the magnetic ordering. However, with
respect to the electrical and thermal resistivities the results of Egs. (40) and (44)
do not depend so sensitively on the character of the magnetic ordering and the
agreement with the experimental results is fairly good as was shown by Yosida.”
While the anomalous part of & depends so sensitively on the character of the
magnetic ordering. For example, if the magnetic spins are in a state of some
kind of the antiferromagnetic ordering, the anomalous part of & disappears.
However, on the other hand, for the applicability of Eq. (50) it is not necessary
that there appears the resultant magnitude of the magnetization because Eq. (50)
does not depend on the direction of 7.. For example, Eq. (50) is applicable even
in the case that the ferromagnetic ordering exists only in the limited range of the
mean free path of the conduction electron’s spin. Therefore the measurement of
© may give a certain knowledge about the magnetic ordering of dilute alloys.
For a more quantitative discussions we take up the sample of 1.8 atomic per cent
Mn'” which was chosen by Yosida for the discussion of the anomalous electrical
resistivity. Then using the free electron model we obtain the following values.

(6™ peo=4.60hm=5.1xX10""e.s.u,

(6™ ,_o=bprohm=5.55%X10""e.s.u.,

g=2, j=5/2, N/N=0.018, | (92)
£=1.1X10"erg.,, N=8.5X10"c.c™,

A(0) =3.4%X10""erg., J(0)=0.7X10""erg.,
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H,=3.15X10""erg.,, 7,~20°K.

From the above value it is easily seen that the term proportional to H,/¢ in Eq.
(52) is smaller than that proportional to J(0)/A(0) and thus we can use Eq.
(50) in a good approximation. The graph of © given by Eq. (50) is plotted in
Fig. 2. The anomalous thermoelectric effect is very much larger than the normal
part. For example, the maximum value of the anomalous part is 350 times of
the normal part at 10°K.

Even in the case of non-ferromagnetic ordering, the anomalous part of & is
observable by applying strong magnetic field. For example, using a simplest model,
we can replace H, by

Hy=g#H, (93)

and taking only the linear terms with respect to the external field H, we obtain
, : T 4 o, J(0) \* [ BH\*
@:KZ {71' kL _‘~F2 f—-l 2 2 +1 2<ﬁ___ﬂ) <‘m> } 94
e l3 ¢ 9/(/ )G )A(O) T (94)
For example, taking the above data of 1.89; Mn-Cu alloy, we obtain
_Kk /CT,_{1_13_(_1_Q:i@,j.} ,
e 3 ¢ (10717)3

and we can see that when the external field of 10* gauss is applied the anomalous

(95)

part dominates the normal part in the temperature range lower than 22°K.

Measurement of & in various Cu alloys has been carried out so far'™

and
the anomalously large values of & were observed in samples which exhibit resist-
ance anomalies. It seems to me that one of the mechanisms of such anomalous
thermoelectric power may be what is considered in this paper. However, because
@ depends sensitively on the ordered states of impurity atoms or the band struc-
ture of Cu and these are considered as fairly complicated in Cu alloys (the sign
of & in pure Cu is inverse from that predicted by the free electron model), the
detailed qualitative comparison between our theoretical and experimental values is
not tried here. Measurement in a strong magnetic field or in alkaline metals is
desired. '

(vi) The mechanism of anomalous thermoelectric power may be recognized
as follows. When temperature gradient V7T exists, the electron distribution function
f(k) changes from the thermal equilibrium values as shown in Fig. 3a. On the
other hand, the inelastic scattering causes a mixing as shown in Fig. 3a and thus
the stationary distribution function becomes such as shown in Fig. 3b. If there
are no other different circumstances between the systems of + spin electron, the
“situation of Fig. 3b exhibits no anomalous thermoelectric current. However, if
there are some differences between + spin electrons, for example, the difference of
the transition probability of elastic scattering in dilute alloys or the existence of
the effective field in metallic ferromagnetics, the anomalous thermoelectric current
flows as shown in Fig. 3¢ and thus &,,, appears.
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(a) (5)
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Fig. 3 Illustration of the mechanism of the anomalous thermoelectric power. (a), (b) and
(c) show the mechanism of anomalous thermoelectric power. (d) shows the mechanism
of normal thermoelectric power ©,,.. @, is proportional to the difference of the
displacements (D) and (@), and thus usually of the order of «77¢.

Appendix I

The integrals to be solved are such as

(* 1-+e &
I= &
j‘°°(€€+1) (I+e™)?

When 7 means an even number, we can write the integrand as follows,

de, n=0,1, 2. (A1)

Sn . &r
—(1—e™) .
(e*+1) (14e™) (e+1)*(A+e™)

(A2)
The first integral is easily performable. The second integral is also performable
using the following relation,
. 1 o4 1 P
@E+D*A+e™)  (E+D)A+eD”  (FHDA+e)

Thus I, is obtained as follows,

(A3)

L,=1/2-(14e™),
L=7%/6-(1+e""), etc. ' (A4)

When # means an odd number, we can calculate I, as follows,
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o (7 en d
I,=—1/2-(1—e ‘)j_f de {’(eaﬁjilJre—E)'}dE

goo{ Sn—l

=" 1—en| ——— = (ge
2 Jw(ef+1) (14+¢7)

Thus
L=4(1—e™).

Appendix I1

(AS5)

(A6)

The equations of the total balance with respect to %k, and .k, are written as

r=PY, v=0,1 (A7)
where
1 (. T
dh= {k;;o(eF—p(:)w »»»»» Lk VT}, (A8)
2 2
diy= 6"12;{{»72: «-’ﬁ(T- koa(el"——p(_‘)—%mkio r VT}, (A9)
Sy— 1 mT 21(971).2? & ng“ dg _*tdJ @
127° 7’ N —o wil)e (€ +1) (1—e™®) (1—e™)

x[(L-terrs Lo wetT) ot Eency)

S

+ <k10+/e02 E’CTT> (C‘gE +ec;>}.

(A10)

Because, as is seen from Eq. (61), the quantities we require are (k{d:), we

transform {C}} into {a,, 5.} as follows,
By Ch+k§Cl=(k} C})=a,,
B, Cr—k,C =8,

Then the matrix to determine {a,, f%,} is written by using the

(A11)
(A12)

approximation to

adopt only the leading terms with respect to «7/¢ and H,/¢ as follows.

aO; / 90; al; 19 1 e,{’V_TVC
S _ _ . _ S ‘ .
) z, _ 9 x2’ ke
2 4
2
—oxd—% 0, x4 —f—-»;r J, __nz fe Tk(f
2 2 ¢
— —~ =
_ (2/@0—*2) z, (213(,-_a> z 0
2 2 2
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2xd+4".0, /B i) B 0
12
VVV - - 27_7 27” 1 ) ‘ x?; 7T2 fCT o
— 2/6_(]*)2_5_’ : ,‘{3132 S 2(mie T }, 7 kT g
( "y )5 6 o +q (T'x 5 ) 2 ¢ 0
2 d+ x4, 2 (P+7x) d— _ﬁgﬂi{ﬁ, — —n—zr—kga
3 4
g ;L{ 22 dmr) — z( 2 #_56,3)
= Ap @) — (== )L 0
_ g S A8TE 5 v?.(x34"_ﬂ2x)4+_~?4+2§_2.£¢j5, 0
12 3
(A13)
where
A= e a:koz»f“_kT_, (A14)
and f(q, x) means (in Eq. (66) it is written as [ f(q, x)|)
1 omkT j_'(ﬂ:llgﬁ)"”" S, gl DL, (A15)
2r #t N wiols (€°—1) (1—e™)

From the above matrix, we can easily obtain the required quantities as follows.

(i) (YA =k (A16)
D,
where
gz _ gz . ‘
2’ 4
D,= . (A17)

gz _ kPArz+2) — ¢ (Px—x'/2)

4 6 l

Because the available wave vector ¢ of the spin wave is much smaller than %, in
low temperature, we pick up only the leading term with respect to ¢/k,. Then
we obtain

(9% k%) =zf’°6~ : (A18)
qgx
(1) (L By = . ko —Ch'—q/2)x , (A19)
3 D, ,

where
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2 2 2
_ <2k02-,“l.) z, <2k02—'—~ ‘1> x
2 2 2
D— , (A20)

2 2

and taking only the leading terms respecting q/%, we obtain

110723 0\ 2m? 4 [x]
B =27 4 | (A21)
(B B =" b o [T

2
Gi) 2= ’“CT<¢‘;3 Fio)
_~2xd——3~;24, 0, x2d+;,x,33’ _.,q2x,2,
2 4 i
2 6 9 , .
+ T ko — <2k02_ q )x, (2/302__@“) £ 0
3 D,D, 9 5) 5

—xd— w@cg + 8z )

® 4 x4+2ﬂ.2x2 (“
12

2 3 2
, (P Hrr)d+ 0,
3 ( ) 4

=k (47’2 +2°) +¢* (nPx—2°/2)
6 N

(A22)

and taking only the leading  terms with respect to g/k, we obtain the result of
Eq. (65). ‘

If one wihes to obtain the ordinary results of electron-phonon interaction, the
following simplification should be made. (i) The behaviours of the electron systems
with + spin directions are equivalent and thus in the matrix of Eq. (A13) 5, and
B: should be put zero and the second and fourth lines of the matrix be omitted.
(i) The effect of the scattering mechanisms becomes twice that in the above case
because in the present case the two mechanisms corresponding to the emission and
absorption of phonons are available. (iii) The transition probability given by Eq.
(53) should be replaced by the ordinary value of electron-phonon interaction.
Then the matrix to determie «, and a; becomes such as

@ ay eF—p¢ wpT’
qu, 02«;;_3* 'f/T’ kos - 7; ’fr ) /306
3 T 1 . x° 7t kT, n?
prt wL L {3k2x-*+ Y — T } RS — o ke’
0 5 ¢ 3 0 (]( 2 ) 2 ¢ 0 3 0

(A23)

and this gives just the same result as that calculated by Sondheimer and Wilson
using the second order variational method.
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In the case of the antiferromagnetic ordering, the situation is just the same
as that of the electron phonon interaction and the matrix of (A23) is also ap-
plicable. The explicit forms of (g4*k%,) are given as follows.

6
B By =", (A24)
qx
kS
3k’ 2+ ¢ (Px— x°/2) ’

(% F) _—:%2/@06 2k’ 4 (Fx—22) (A26)

(¢ x][ 3k’ + ¢ (T x—27/2) ]

(2 Kio) = (A25)
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