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STUDY OF BANDGAP PROFILING CONTROL ON PHOTOVOLTAIC PERFORMANCE
IN THE THREE STACKED AMORPHOUS SOLAR CELLS

Y. Nakata, H. Sannomiya, S. Moriuchi, A. Yokota, Y. Inoue,
M. Itoh and H. Itoh

Energy Conversion Laboratories SHARP CORPORATION
282-1 Shinjo-cho, Kitakatsuragi-gun, Nara 639-21, Japan

ABSTRACT

A series of systematic experiments has been made on a bandgap
profiling control using a-SiGe and a-SiC cells to clarify the cause for
the improvement of the photovoltaic performance by the bandgap profiling in
the photovoltaic active layer. It has been shown from the analysis that the
most important contribution to the cell performance is an optimization of the
ambipolar carrier collection by the bandgap profiling. On the basis of the
results, an efficiency of 10.1% was obtained at the promising a-SiC/a-Si/
a-SiGe multi-bandgap stacked cell by the bandgap profiling.

INTRODUCTION

We have made a study of the stacked amorphous solar cell and achieved
an initial efficiency of 10.0 % with a projected degradation ratio of
10%/year by a-Si/a-Si/a-SiGe stacked cell [1],[2]. For practical
application, it_is important to improve the initial efficiency and stability.
Multi-bandgap stacked solar cells are the promising technology for improved
performance. We are developing an a-SiC/a-Si/a-SiGe multi-bandgap
stacked cell [1]. If the quality of amorphous silicon alloys are improved,
the multi-bandgap stacked cells will achieve a higher efficiency than
conventional stacked cells.

As another approach, it has been reported that the performance of a-SiGe
cells can be improved by the bandgap profiling in the photovaltaic active

layer [3],[4],[5]. According to these results of the computer simulation,
the improvement is caused by the increase of the electric field for holes
within the cell. But the physical mechanism has not yet been clarified.

Therefore, in order to clarify the physical mechanism by the experimental
approach, we have made a series of systematic experiments on the bandgap
profiling. And on the basis of the analytical results, we researched the
muiti-bandgap stacked cells with bandgap profiling in order to optimize the
cell design.

EXPERIMENTAL

1T0/pi(a-SiGe)n/stainless steel (S.S.) cells having i layers with
saddle shaped graded bandgap profiles were prepared for measurements of
I-V characteristics and 1ight-induced degradation performances by a chemical
vapor deposition.
And 1TO/pi{a-SiGe)n/ITO and ITO/pi(a-SiC)n/ITO cells were prepared for
analysis and a-SiC/a-Si/a-SiGe multi-bandgap stacked cell were also
prepared.
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RESULTS AND DISCUSSION

Performances of a-Si alloy materials

a-SiGe:H, a-Si:H and a-SiC:H were used to control the bandgap. These
materials were deposited under high hydrogen dilution conditions to obtain
the high quality by a chemical vapor deposition [6]. The dark and
photoconductivity of these amorphous alloys are shown in Fig.1. , The
amorphous alloys which have photoconductivity more than 107 (nrcm) were
obtained for a range of optical bandgap from 1.39 eV to 2.0 eV.
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Fig.1 Dark and photoconductivity of a-SiGe:H,a-Si:H
and a-SiC:H films versus optical bandgap

Composition profile

The bandgap profiles were controlled by source gas mixing ratios. So,
a composition profile was analyzed by the Auger electron spectroscopy (AES).
The film thickness was 2500 A and the optical bandgap was changed from 1.45

eV to 1.75 eV. The Si and Ge composition can be controlled smoothly as shown
in Fig.2.
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Fig.2 Si and Ge composition profile by Auger electron spectroscopy
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Performances of a-SiGe cells with bandgap profiling

The performances of the a-SiGe cells with bandgap profiling as shown in
Fig. 3 (Type P, M, N) were measured under AM1, 100 mW/cm 1light and red
light (AM1, 100 mW/cm 1light through a red (660 nm) cut-on filter). The
performances are shown in Fig.4 (a),(b) idncluding performances of a-SiGe
cell with 1.52 eV constant bandgap. The short circuit current, F.F. and
output power increase as the position of the minimum bandgap changes from the
n layer side to the p layer side. These performances of Type P cell are
improved compared with those of the constant bandgap cell.

To analyze the performances, the ordinary spectral responses and the
spectral responses under bias voltage of 0.3 V normalized by that under bias
voltage of O V were measured and are shown in Fig.5 (a),{b). The
spectral response and the bias voltage dependence of Type P cell are improved
at the long wavelength.
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Light-induced degradation of a-SiGe cells with bandgap profiling

The light-induced degradation performances of the a-SiGe cells (Type P, N

and 1.52eV constant bandgap cell) which were exposed 2to AM1.5, 10 SUNS
1ight were measured under the red light (AM1, 100mW/cm’ Tight through a red
(>660nm)cut-on filter). The cells kept on open circuit condition during the

exposure.  The original performances and the normalized performances by the

initial values are shown in Fig.6(a),(b). The initial output power of the
Type P cell is larger than that of the other cells. And the degradation
ratio of the Type P cell is smaller than that of the other cells.

The bandgap profiling 1is useful to obtain a more efficient and more
stable cell than the conventional cell.
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Fig.6 light-induced degradation performances under red light of a-SiGe Type P
(& ),Type N( ¥ ) and 1.52 eV constant bandgap cell { O } which is
exposed to AM1.5, 10 SUNS 1ight [ Original (a) and normalized (b) data].

Carrier transport

The performances of a-SiGe cells can be improved by the bandgap
profiling as mentioned above. In order to clarify the physical mechanism by
the experimental approach, we have made a series of systematic experiments.

To evaluate the effect of the bandgap profiling on the carrier
transport, four type cells were prepared. The cells have the transparent
electrodes at the both sides and have a p/i interface layer which have larger
optical bandgap than that of the i layer as same as conventional cell, as
shown in Fig.7. The i layers were made of a-SiGe and a-SiC. The
bandgap profiles of these cells are shown in Fig.8 ( a-SiGe Type P,N and
a-SiC Type P,N ).
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By the time-of-flight technique using a dye laser with 470 nm 1light,
the charge collections of the a-SiGe Type P and N cells as a function of the
externally applied voltage were measured. The Tight was entered from the p
layer side to measure the electron collection and it was entered from the n
layer side to measure the hole collection. The experimental data are
shown in Fig.9(a),(b). At the same applied voltage, the electron collection
of Type P cell is smaller than that of Type N cell, but the hole collection
of Type P cell is larger. These experimental data suggest a possibility
that the electron transport is reduced but the hole transport is improved in
the Type P cell by the bandgap profiling.
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Fig.9 Electron collection (a) and hole collection (b) of a-SiGe Type P (o)
and a-SiGe Type N (@) cell.
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The hole and electron transports were evaluated under a steady 1light
like a operating condition. The blue light (AM1, 100mW/cm light through a
blue (<420nm) cut-on filter) was irradiated to the a-SiGe Type P,N and a-SiC
Type P,N cells from the n layer side. Under this condition, carriers were
generated- near the n layer side and electrons were collected to the n layer
immediately but holes were transported to the p layer through the i Tlayer.
The hole transport can be evaluated by the bias voltage dependence of a
output current, in other words it can be evaluated by the F.F. of the cell
performance under blue light from the n layer side. In the same manner as
these experiments, the electron transport can be evaluated by the F.F. under
blue light from the p layer side. The cell performances under blue light from
the n layer side and tne p layer side are shown in Table I and Table II.
In the a-SiGe cells, the F.F. of the Type P cell is larger than that of
the Type N cell under blue light from the n layer, but the F.F. 1is almost
same under blue light from the p layer. These results suggest that hole
transport is improved but electron transport is not improved in the Type P
cell and agree with the results of the time-of-flight measurement. But, in
the a-SiC cells, the F.F. of the Type P cell is smaller than that of the
Type N cell under blue 1ight from the n layer side contrary to the
experimental result of the a-SiGe cell. This result suggests that hole
transport get worse in the a-SiC Type P cell.

The cause for the change of the hole transport by the bandgap profiling
was investigated. It can be considerd that the electric field for holes
within the cell {s increased in the a-SiGe cell. But, in the a-SiC cell, if
the increase of the electric field within the cell was a more effective cause
to improve the cell performances, the F.F. of the Type P cell would be larger
than that of the Type N cell. But the experimental results are contrary and
can not be explained only by the increase of the electric field within the
cell. In comparing the a-SiGe Type P cell with the a-SiC Type P cell, it
can be considered that the bandgap profiling produces an almost
equivalent idincrease in the electric field within the cell. But  the
mobility*1ifetime ( KT ) products of holes and electrons near the n layer of
a-SiGe Type P-cell are larger than that of the a-SiC Type P cell , because
the region of a-SiGe cell contain a few germanium Tike a-Si and that of a-SiC
cell contain many carbon. Therefore, 1in the a-SiGe Type P cell which has a
larger put product of holes near the n layer, the transport of holes which
is genarated near the n layer is.improved, even if the electric field near
the n layer is small. But the WT product of holes near the n layer of a-
SiC Type P cell is small , and the hole transport is worse. With these
idea about the increase of the electric field for holes within the cell and
the distribution of pr product for holes, the performances of these four
cells can be explained.

As a result, the hole transport is improved in the a-SiGe cell and
reduced in the a-SiC cell by the bandgap profiling. It can be considerd
that these performances are caused by the increase of the electric field for
holes within the cell and the spatial distribution of uT product for holes.

The AM1, 100mW/cm® 1ight was irradiated to the a-SiGe Type P,N and
a-5iC Type P,N cells from the p layer sides. The cell performances are shown
in  Table III. In the a-SiGe cells, the output power of Type P cell is
larger than that of type N cell and this result agree with the performance
which is shown in Fig.4. In the a-SiC cells, the output power of the Type P
cell is larger than that of the Type N cell in spite of the poor hole
transport. This experimental result can not be explained by the hole
transport.

In both a-SiGe cells and a-SiC cells, since the output powers of the
Type P cells are larger than those of the Type N cells, the distribution of
photogeneration was investigated.
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Distribution of photogeneration

To evaluate the effect of bandgap profiling on the light absorption, the
light 1intensity change by the absorption and the distribution of the 1light
absorption amount were calculated. The calculated data in the a-SiGe Type P,
N and 1.52 eV constant bandgap cells under 690nm 1ight are shown in Fig.10
(a),(b). These results show that the distribution of the light absorption
amount corresponds closely with the bandgap profiles under the long
wavelength 1light. In other words, we can designed the distribution of
photogeneration by using the bandgap profiling, especially under the long
wavelength light. As a result, the light is absorbed in the narrow bandgap
region near the p Tlayer of the a-SiGe Type P cell and the carriers are
photogenerated near the p layer and the collection efficiency of holes is
increased.
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Fig.10  Calculated light intensity change {a) and distribution of Jight

absorption (b) in a-SiGe Type P,N and 1.52 eV constant bandgap celi
under 690nm 1light.

To confirm the effect of light absorption, a well type potential cell
was made as shown in Fig.11. It is considered that there is not the increase
of the electric field within the cell at this cell structure. The long
wavelength 1ight is almost absorbed at narrow bandgap layer which we named
" carrier generating layer " as shown in Fig.12. The F.F. of the well type
cell were improved compared with that of the constant bandgap cell as shown
in Fig.13. As a result, it is considered that the distribution of 1light
absorption is the most effective cause.
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Effect of bandgap profiling on cell performance

Performances of a-Si solar cells is usually dtermined by a performance
of holes, which are " limiting carrier ", because a hole mobility is smaller
than a electron mobility [7]. It is considered that a limiting carrier of
a-SiGe and a-SiC cell in this case is also holes. Therefore, to improve the
cell performance, it is important to improve the hole collection even if the
electron collection is reduced slightly.

On the basis of that idea, the analytical results about the effect of
the bandgap profiling on the cell performance are summarized in Table IV.
A upward arrow means a positive effect and a downward arrow means a
negative effect on the cell performance. It can be considerd that the carrier
transport are changed by the increase of electric field for holes within the
cell and the spatial distribution of pt products of holes and electrons.
The hole transport is improved in the a-SiGe cell and reduced in the a-SiC
cell by the bandgap profiling. The distriubution of photogeneration can be
designed and the carriers can be photogenerated near the p layer by using the
bandgap profiling.

In the a-SiGe cell, all causes by the bandgap profiling have the
positive effect on the cell performance. In the a-SiC cell, in spite of the
poor hole transport and the Tless effect by the distribution of
photogeneration, bandgap profiling also has positive effect.

In conclusion from the analysis, the bandgap profiling affect the
carrier tansport and the distribution of photogeneration. And, the most
important contribution to the cell performance is an optimization of the
ambipolar carrier collection by the bandgap profiling.

Table IV Effect of bandgap profiling on the cell performance.
a-5iGe cell | a-GiC cell

. Electric Field >
Carrier

ambipolar Transport Distribution
carrier of HT product

collection [ cribution | Distribution of I
of photogen, | light absorption

Total Effect

DIDC|D
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Bandgap profile design of a-SiGe cell

On the basis of the analytical results, the bandgap profiling of a-SiGe
cells was investigated. The minimum bandgap was decreased from 1.50 eV
to 1.39 eV to increase the carriers which were generated near p layer. The
total i Tayer thickness s 2500 A and the maximum bandgap at the both
interfaces is 1.74 eV. The performances under red light ( AM1, 100 mu/cni
light through a red (>660nm) cut-on-filter ) are shown in Fig.14. The short
circut current increased remarkably and F.F. decrease slightly as the minimum
bandgap decrease. The output power is almost constant, but the Tlargest
short circuit current with decreasing bandgap was 7.1 mA/cni . This cell is
suitable to adjust the current of each component cell at a stacked cell,
because the short circuit currents of the other component cells are more than
7 mA/cm®,

Bandgap profile design of a-SiC cell

The bandgap profiling of a-SiC cell was also investigated. The output
powers of a-SiC cells with a narrow bandgap near p layer are larger than
those of the cells with a narrow bandgap near the n layer, as shown in Table
III.

The minimum bandgap of the a-SiC cell were decreased from 1.99 eV to
1.80 eV to increase the carriers which were generated near p layer. The
total i layer thickness is about 1300 A and the maximum bandgap at the both

interfaces is 1.98 eV. The performances under AM1 light are shown 1in
Fig.15. The F.F. and short circuit current increase and open circuit
voltage decrease slightly as the minimum bandgap decrease. As a result,

a-SiC cell with high F.F. and high open circuit voltage was obtained.
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a-SiC/a-Si/a-SiGe multi-bandgap stacked cell

On the basis of the investigation of a-SiGe and a-SiC cells with bandgap
profiling, we made an a-SiC/a-Si/a-SiGe multi-bandgap stacked cell with
bandgap profiling. The cell structure and bandgap profiles are shown in
Fig.16 and Fig.17. The bandgap profiling was applied to the a-SiC and
a-SiGe component cells. The efficiency of the multi-bandgap cell with
bandgap profiling 1is 10.1% as shown in Fig.18. This wvalue 1is improved
compared with 8.6% of the cell without bandgap profiling. The F.F. s
improved by the bandgap profiling and the open circuit voltage is improved by
using the wide bandgap materials at the a-SiC cell.
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CONCLUSIONS

It has been shown from the analysis that the bandgap profiling affect
the carrier transports and the distribution of photogeneration, therefore
ambipolar carrier property can be controlled by the bandgap profiling.

The most  important contribution to the cell performance is an
optimization of the ambipolar carrier collection by the bandgap profiling.

A promising a-SiC/a-Si/a-SiGe multi-bandgap stacked cell with 10.1%
efficiency was demonstrated.
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