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We obtain the exact solutions of a single particle magneto-confined in a one-dimensional
(1D) quantum wire with a single square barrier. Theoretical analysis and numerical
computation show that for a set of fixed barrier height and width, the quantum levels
and states of the system depend on the displacement d of the magnetic trap, and for
a fixed d value the system occupies only one or two lower quantum levels of n < 20
of a free harmonic oscillator. In the barrier region, the finite-sized effect implies that
only for some discrete barrier parameters and d values, the system has the Hermitian
polynomial solutions, otherwise it has the infinite series solutions. Therefore, one can
manipulate the external motional states of the system and prepare some required lower
energy states by adjusting the displacement of the magnetic trap experimentally.
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1. Introduction

It is well-known that for a free harmonic oscillator with infinite boundary coor-
dinates, the boundary conditions of quantum-mechanical wavefunctions lead to n
possible quantum eigenstates and eigenenergies for n = 0, 1,2, . ... From this result,
we think that if one considers a system which obeys the same Schrodinger equation
of the free harmonic oscillator but satisfies more boundary conditions, the eigen-
states and eigenenergies should be limited further, namely some of the n possible
eigenstates will be forbidden. Such a system can be realized by a single particle har-
monically confined in a one-dimensional (1D) quantum wire with a single square
barrier.

fCorresponding author.
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The advances in modern semiconductor processing techniques has enabled us
to construct the microscopically bounded installations such as the quantum wells,
quantum wires and quantum dots, as well as their fabrications that allow the ar-
tificial confinement of only a few particles. Due to the discontinuity of the band
edges at the semiconductor interfaces' or the dipole potential of a far detuned laser

2 a single square barrier potential or an array of square barriers can be pro-

beam,
duced in the 1D quantum wire.?> 2 The systems including square barriers provide
so much convenience for us to study quantum tunneling and preparing quantum
states, that they have attracted considerable interest of researchers.'>24 The trans-

5—12

fer matrices technique,® Floquent scatter theory, path integral method'®~ !> and

the Wigner function for the square barrier?!

were applied to these studies. In the
case of a square barrier and a bounded well, an interesting result is that the mat-
ter wave packet'6 '8 behaves like a quantum chaos without classical counterpart.'®
The finite-size effects of the spatially bounded quantum systems have widely been

d,?°728 and can lead to new forms of quantum states and levels.}29-31

investigate
Particularly, the parabolic potential can be generated and applied to the atomic
system,3? and the center site of the potential may be controlled by a magnetic
field.? Therefore, the magneto-confined particle in the quantum wire with a square
barrier is an interesting quantum system whose external states and levels can be
manipulated by adjusting the magnetic field.

In the present paper, we use the above system to reveal that given the height
and width of the potential barrier, the external quantum levels and states of the
system depend on the experimentally controllable center sites of the magnetic trap.
For a given center site, the system can occupy only one or two lower quantum
levels of n < 20 of a free harmonic oscillator. In the square barrier region, the
finite-sized effect implies that the wavefunction can be a Hermitian polynomial or a

3031 depending

superposition of two infinite series solutions of the same eigenenergy,
on the potential barrier parameters and displacements of the magnetic trap. The
results show that we can manipulate the external quantum states by adjusting the
magnetic trap and can apply the system to perform the quantum logic operations by
laser-coupling the external motional states with the internal electronic states.?%3°
Although this system is simple, the results are very interesting and useful, and can

be experimentally tested.

2. Quantum-Mechanical Exact Solutions

We consider a single particle loaded into a 1D quantum wire along the z-direction
with a square barrier of width 2/ generated by the discontinuity of the band edges
at the semiconductor interfaces,! then impose a 1D harmonic trapping potential by
using an homogeneous magnetic field. The previous experiment has demonstrated
that the center site of the magnetic trap can be controlled to translate a variable
distance ranging up to 300 pm, by changing the currents through the coils of the
magnetic trap.3® Given such a system, it is feasible to study the preparation and
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Fig. 1. Potential distribution of the system from Eq. (1) for a positive displacement d of the trap
center. The magnetic trapping potential and square barrier are indicated by the dashed curve
and solid lines respectively. There are three regions: (I) x < =l —d, (II) =l —d < 2 <1 —d and
() z > 1 —d.

controlling of the external quantum states through the manipulation to the mag-
netic field.

For simplicity, we adopt the reference frame with origin fixed at the center site
of magnetic trap and assume the coordinate of barrier center vanishes initially. Let
the displacement of the trap center be d which is positive towards the x-direction
or negative in the opposite direction. Thus after making a displacement d, the
potential function becomes

1
V0+5z2, —l—d<zx<l-d,
V(z) = . (1)
59:2, r<—-l—d or z>[—d.

Here lengths z,l,d and barrier height Vj have been normalized by the harmonic
oscillator length I;, = \/h/(mw) = 1/2c¢/eB and the level difference fiw respectively,
where m is the effective mass of the particle, w = eB/(2c¢m) is the Larmor cyclotron
frequency with B being the intensity of the magnetic field, ¢ is the velocity of light

in vacuum and e is the unit charge. The coordinate of the barrier center is —d and
the distance between the trap center and barrier center is |d|. For d > 0, the barrier
center lies to the left side of the trap center, as shown in Fig. 1. On the contrary, the
barrier center coordinate becomes positive for d < 0. We estimate the amplitude of
the harmonic oscillator length being I;, ~ 10 pum for B ~ 10 pT, and I;, ~ 107 m
for B ~ 30 T. The dimensionless barrier width 2] and the displacement d will be
taken in the regions 2! € (0,3) and d € (—3,3) in units of I,. The experimentally
motivated values of the barrier height and width can also be in larger regions! 316
and some of them will be taken in our calculations. We have labeled the barrier

region as region I and its left and right sides as region I and IIT in Fig. 1 respectively.
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Quantum motion of the system is governed by the Schrédinger equation
Uy + (A= 2?)U =0, (2)
where the dimensionless energy A reads

2(FE - V), —l—-d<z<l-d,
A= ®3)
2F, r<—-l—d or xz>Il—d.

Here ¥ denotes the external motional state of the particle, and F is the eigenenergy
in units of hw. Obviously, in regions I and III, Egs. (2) and (3) are identified by
a free harmonic oscillator equation whose state functions ¥, and eigenenergies
E,=n+ % are well-known. We will investigate how these eigenstates are limited
by the boundary conditions at the barrier boundaries. The eigenenergies F,, cannot
been changed in region II for the considered eigenstates ¥,,. From Eq. (3), it is seen
that in region IT (=l —d < 2 <l—d), only A > 0 (E > V;) is permitted by classical
mechanics, and A < 0 is classically inaccessible, where the quantum tunneling may
oceur.

We are interested in determining the state functions of region II as follows. It is
clear that for a given energy, the linearly ordinary differential equation (2) of the
second order has a general solution consisting of the linear superposition between
its two linearly independent special solutions.?6:3” One of the special solutions is
the usual eigenstate and another is not quadratically integrable for the systems
with the infinite boundaries, but both are quadratically integrable in region IT with
finite boundaries. Therefore, the finite-sized effect enables us to solve Eq. (2) for
the general solution in region II. Setting the general solution in the form ¥(z) =
exp(—x?/2)u(x) and inserting it into Eq. (2) yields the equation of u(x),

Uy — 20Uz + (A — Du=10. (4)

It is the well-known Hermite equation, whose two linear independent series solutions
may be finite or infinite. We can apply the coordinate transformation z = 22 to make
it the confluent hypergeometric equation with two linear independent solutions in

terms of the confluent hypergeometric functions as3®

up = F(0.25(1 — X),0.5,2%),  up = xF(0.25(3 — \), 1.5, 27), (5)

where F(p,q,2?) is the confluent hypergeometric function. When p is zero or
negative integers, F(p,q,x?) is a finite series, namely the Hermitian polynomial,
otherwise it is an infinite series.

In regions I and III, when we consider the well-known Hermitian polynomial
solution H, (x) which makes the state satisfy boundary condition ¥(+o0) = 0
at * = oo, the dimensionless energy A becomes one of the integers 2n + 1 for
n=0,1,.... If nis an even number, u; is equal to H,(x) and s still is an infinite
series. For an odd number n, we have us = H,,(x) and u; an infinite series. We can
take the general solution W = exp(—g—z)[Bul(oz) + Cug(x)] only for region IT with
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finite boundaries. Applying these results to the three regions yields the solution

2
U, = Aexp (—%)Hn(a:), x<—l—d,
IQ
v = \I/]]:eXp <?>[BU1(I)+C’M2(I)], 7[7d§93§l*d, (6)
I‘Q
Vrrr = Dexp (—E>Hn(a¢), x>1—d.

Here A =2n+1— Vs inregion Il (-l —d <z <1—d) of Eq. (3), A,B,C,D are
arbitrary constants adjusted by the matching conditions at barrier boundaries and
the normalization. The corresponding energies are fixed by Eq. (3) of regions I or
I with A =2n+1 as

1
E, = —.
n+2 (7)

For a free harmonic oscillator, the quantum number n in Eq. (7) can take arbitrary
non-negative integer. However, for the considered system with a square barrier the
matching conditions at barrier boundaries and the normalization will confine n
to some particular non-negative integers. This is an interesting finite-sized effect.
Setting a = [ —d and b = [+ d, the matching conditions at barrier boundaries z = a

and x = —b reads
Uilo=—b = Vrr|o=—b, Urrle=a = Vrrr]s=a
avy dVyy d¥rr _ Ay (8)
de |,__, de |, de |,_, dv |,_,°
and by the normalization condition, we mean
/_b|\111|2da:+/2|\1111|2d33+/00|\I/HI|2d33: 1. (9)

Once the parameters [, V{y of the potential barrier and the trap displacement d
are given, we can substitute Eq. (6) into Egs. (8) and (9) to obtain the undetermined
constants A, B,C, D and the admissible quantum numbers in the dimensionless
energy A\ = 2n + 1 — Vj. After eliminating constants A, B, C, D, the admissible
quantum number n is determined by the algebraic equation

M(1,a)M (2, ~b) — M(1,—b)M(2,a) =0, (10)

where M (k, ¢) = up(¢) -t Hp|o—c — Hn(¢) fe g o—c for k = 1,2 and ¢ = a,b. Noticing
a=1—d, b=1[14+dand A = 2n+1—V,, for a given parameter set [, Vg, d it is possible
that this equation does not have the solutions of some integers n. By continuously
varying d values, we solve Eq. (10) for n = 0,1,...,20 respectively, finding that
only for some discrete d values a few lower quantum numbers are allowable.
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Table 1. Quantum levels n for different d and fixed barrier parameters Vo = 4, [ = 0.5682.

d 0 +0.1053 +0.1828 +0.5454 +0.8694 +1.0816 +1.3696
0 3 1 2 2 3 3

d +1.5258 +1.7784 +1.9148 +2.1299 +2.1300 +2.2647 +2.2674

n 4 4 5 5 0 1 6

d +2.4397 +2.4447 +2.5975 +2.7064 +2.7143

n 6 2 7 3 7

It is worth noting that in region II if the barrier height obeys A = 2(E,, — Vj)) =
2n’ + 1 for n’ = 0,1,..., Egs. (2) and (3) imply that the solution W;; is in the
form of a Hermitian polynomial. Combining this equation with Eq. (7) gives the
quantized barrier height Vy = n —n/. However, u; and us cannot be the Hermitian
polynomial simultaneously, which implies B = 0 or C' = 0 in the general solution
of Eq. (6). In two such cases, Eq. (10) is simplified as

{C:(), M(1,a) =0, M(1,—b)=0;

(11)
B=0, M(2a)=0, M(2,—-b)=0.

It is clear that Eqs. (10) and (11) are the existence conditions of the exact solutions
(6). The comparison between Eqs. (10) and (11) shows that Eq. (11) is two special
cases of Eq. (10). The parameter set {Vp,[,d,n} which satisfies Eq. (11) can obey
Eq. (10), but not the contrary. An obvious condition of the case (11) isn = Vo+n' >
V. Similarly, for a given parameter set [, Vj, d only a few lower quantum numbers
are allowed by Eq. (11).

When the parameters [, Vo, d, \(n) are given by Eqgs. (10) or (11), the constants
A,B,C,D in Eq. (6) can be easily obtained by inserting Eq. (6) into Eqs. (8) and
(9). Thus the quantum-mechanical solution of the system is determined completely.

3. Lower Quantum Levels and States

Now we take a set of barrier parameters as an example from Egs. (10) and (11)
to calculate the admissible quantum levels with lower energies. For the sake of
convenience we assume barrier parameters Vo = 4, [ = 0.5682 and let n run from
0 to 20 to find the allowable displacement d for each n respectively. The results
corresponding to |d| < 3 are listed in Table 1. In this table, we show that for a fixed
|d| value and for the given barrier parameters only one lower quantum number of
n < 20 is admissible, namely the system has only one lower energy state, which can
be called the ground state of the considered system. However, it is possible that
two different |d| values correspond with a same quantum level, which may be the
ground state level n = 0 of a free harmonic oscillator. Note that for most of |d|
values of region d € (—3,3) the system does not have lower energy state, and the
possible states may be the higher energy states of n > 20. In the case of lower energy
levels of Table 1, of course, some higher energy states of n > 20 also may exist. On
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Table 2. Quantum levels n for different d and fixed barrier
parameters Vo = 2, [ = 0.7071.

d —2.5838 —2.3361 0 2.3361 2.5838
n 1 0 0,1 0 1

the other hand, we can see from Table 1 that for |d| < 3, the admissible quantum
numbers obey n < 8 and the largest n value of region n < 20 increases with the
increase of |d| values. These results mean that we can adjust the displacement of
the magnetic trap to manipulate the quantum states of the system and to prepare
some required lower energy states.

It is interesting that when the barrier parameters are supposed to Vy = 2,
[ = 0.7071, the similar calculations show an external two-level system with d = 0,
as in Table 2. That is, when the trap center coincides with the barrier center, two
lower quantum numbers n = 0,1 become allowable simultaneously for the given
barrier parameters. Thus we can prepare an external two-level system with longer
lifetime compared to that of the free harmonic oscillator, because of the large energy
gap between the levels n = 1 and n > 20. The previous studies revealed that for
a trapped-ion system by laser-coupling two or three internal electronic states with
two external phonon states, one can perform the controlled phase-flip gate3* or the
other quantum gates.?® The above external two-level system will be useful for such
quantum logic operations, because of the similarity between the considered system
and the trapped-ion system. The longer lifetimes of our two external states imply
the higher stability of the system.

Given the parameter set n,Vp,l,d from Egs. (10) or (11), we can combine
Eq. (6) with Egs. (8) and (9) to calculate the undetermined constants A, B, C, D
in Eq. (6). In fact, substituting Eq. (6) into Eq. (8) gives four linear equations
of A, B,C,D and solving them leads A, B,C' to be the functions of D. Then we
apply the results to Eq. (9), yielding the value of D and the consequent A, B,C
values. The system parameters n, Vj,[,d and constants A, B, C, D determine the
quantum-mechanical solution of the system completely. We take eight sets of pa-
rameters n, Vo, [, d from Egs. (6), (8) and (9) to derive constants A, B,C, D, and
then apply them to solutions (6). The results are listed as in Table 3, where any one
of Wi = [Bui(z) + Cuz ()] exp(—22/2) is an infinite series for the cases n =0, 1,2
or the Hermitian polynomial for the case n = 5. The well-known wavefunctions W,
and ¥y are not shown here. From Eq. (6), we know that ¥; and ¥ ;; depend on
constants A and D. Table 3 shows that when the symmetric potentials with d = 0
are selected, we have the symmetric wavefunctions with A = D, and in other cases,
the solutions may be asymmetric.

According to the probability interpretation of quantum mechanics, norm |¥|?(z)
of the wavefunction denotes the probability density of the particle. We take four
sets of parameters in Table 3 as examples and insert them into Eq. (6) to illustrate
the probability distributions of the trapped particle as the solid curves in Fig. 2.
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Table 3. Quantum states and levels for different system parameters.

n Vo 21 d B C A D Bui(x) + Cuz(x)
0 4 1.1364 0 0 1.0371 0.9891 0.9891 CxF(2.5,1.5,22)
1 4 1.1364 0.1828 0.2311 0.4668 0.7352 0.0923 BF(1.5,0.5,22) + CzF(2,1.5,22)
2 4 1.1364 0.5454 —0.158 0.0287 0.0787 0.4123 BF(1,0.5,22) + CxF(1.5,1.5,22)
0 2 1.4142 0 0 0.9599 1.1191 1.1191 CzF(1.5, 1.5,3)2)
1 2 14142 0 04245 0 0.4948 0.4948 BF(0.5,0.5,22)
5 3 28545 0 0.4161 0 0.0123 0.0123 BF(—1,0.5,22) = —%BHg(ac)
5 2 1.6975 0.2598 0 1220 0.0079 0.0138 CaF(—1,1.5,22) = — & CH;(x)
5 2 22171 0 0 15785 0.0101 0.0101 CaF(—1,1.5,22) = — & CHz(x)
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Fig. 2. Plots of the probability distributions |¥(x)|? illustrated by the solid curves from Eq. (6)
for the parameters: (a) n = 2, Vo = 4, 21 = 1.1364, d = 0.5454, A = 0.0787, B = —0.158, C =
0.0287, D =0.4123. (b) n =5, Vo =2, 2l =2.1711,d =0, A=0.0101 = D, B=0, C = 1.5785.
(¢) n =05, Vo =2, 2l = 1.6975, d = 0.2598, A = 0.0079, B =0, C = 1.229, D = 0.0138. The
corresponding probability densities of a free harmonic oscillator with the same energies are plotted
as the dashed curves, and the rectangles denote the square barriers. The spatial coordinate has
been normalized by the harmonic oscillator length.

To compare the barrier-trap system with the harmonically trapped particle, the
probability densities of a 1D free harmonic oscillator for the same energy levels are
exhibited by the dashed curves. In Fig. 2(b), we display that for d = 0 the density
distribution is spatially symmetric, like that of the free harmonic oscillator. How-
ever, when the coordinate —d of barrier center deviates the origin, —d = —0.5454
in Fig. 2(a) and —d = —0.2598 in Fig. 2(c), the symmetry is broken down. From
Figs. 2(a) and 2(c) we see that the maximums of the probability densities may
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Fig. 3. The probability densities of the external two-level system with parameters Vo = 2, 2] =
1.4142, d = 0 for (a) n = 0, and (b) n = 1. The rectangles and dashed curves denote the same
things with Fig. 2, and the spatial coordinate is in the same units as Fig. 2.

appear at the left side or right side of the barriers. The profiles of the symmet-
ric and asymmetric density distributions are greatly different from those of a free
harmonic oscillator, because of the finite-sized effects of the square barrier.

In Table 2, the external two-level system with parameters Vy = 2, 2] = 1.4142,
d = 0 is indicated. The corresponding probability densities of the two states are
plotted as Fig. 3. Differing from the case of the free harmonic oscillator, here the
ground state density vanishes and the probability density of n = 1 state does not
vanish at the origin. This shows the effects of the square barrier on the probability
distributions. It is well-known that the lower quantum states possess higher life-
times and the probabilities of a ultracold atom occupying higher excitation states
of n > 20 are very small. In spite of the possible higher excitation states, the above-
mentioned lower quantum states will be useful for us to prepare different quantum
states by displacing the magnetic trap and to realize some applications of the lower
quantum states.

It is worth demonstrating that the above-mentioned results sensitively depend
on the forms and parameters of the trapping potential. For example, when the
particle is confined between two hard walls and interacting with a square barrier,
the time-dependent wavefunction may behave like a quantum chaotic state.'® On
the other hand, for the considered potential form of Eq. (1), if the potential param-
eters have a small deviation from the existence conditions of the solutions (6), the
exact stationary states cannot exist, so the system has to enter the non-stationary
states. However, it is impossible for a non-stationary state (e.g. the well-known
coherent state of a harmonic oscillator) to strictly satisfy the boundary conditions
at the barrier boundaries for every time such that the possible state may become
the unpredictable quantum chaotic-like state.

4. Conclusion and Discussions

A single particle magneto-confined in a one-dimensional (1D) quantum wire with
a single square barrier potential has been studied. For different potential param-
eters, several sets of exact solutions which are in the forms of the infinite series
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or the Hermitian polynomials have been constructed. It is shown theoretically and
numerically that for a set of supposed height and width of the potential barrier,
the quantum levels and states of the system depend on the displacement d of the
magnetic trap, and the latter can be controlled experimentally. The existence con-
ditions Eqs. (10) and (11) of the exact solutions are obtained as the relations among
the system parameters and the quantum levels. Fixing a d value, the mutual effect
of the magnetic field and the square barrier leads the system to occupy only one
or two lower quantum levels of n < 20 and of a free harmonic oscillator. In the
square barrier region, because of the finite-sized effect of the square barrier, only
for some discrete barrier parameters and d values does the system have the Her-
mitian polynomial solutions, otherwise the infinite series solutions. Applying these
results, we can adjust the displacement of the magnetic trap to manipulate the
external motional states of the system and use laser to couple the external states
with the internal states, that is useful for the quantum logic operations. Partic-
ularly, only one or two external states of lower energies exist in our system. The
large energy gaps between the lower energy states and the possible higher energy
states (n > 20) imply the longer lifetime of the states and the higher stability of
the system compared to that of the free harmonic oscillator.

The above-mentioned results can be easily applied to some similar trapping
systems. For example, we can extend the results to the cases of a single magneto-
confined particle interacting with the double square barriers or with an array of
square barriers. We also can construct a system consisting of above N systems. Al-
though the more barriers there are, the more parameters and matching conditions
there are, our method will be useful for solving these problems, and the conclusion
will be similar with what we obtain in this paper. With the development of semi-
conductor processing techniques, the applications of the small-size square barrier
system have been continuously increased, and will play more and more important
roles.
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