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by a 3 to 10% perturbation in the local rotation
rate in the outer few percent of the Sun (16).

Finally, the Sun’s mean hexadecapole shape
amplitude is small (–0.1 T 0.4 milli–arc sec) but
shows a hint of variability (21). This value is
marginally correlated with the sunspot cycle
with an amplitude of 2.1 T 2 milli–arc sec. The
hexadecapole shape is also sensitive to the in-
ternal solar differential rotation, but if due only to
rotation, it would require large changes (on the
order of 50%) in the outer parts of the Sun (16)
that are not consistent with the constant helio-
seismic rotation (20) and the constant oblateness.
In contrast, solar-cycle changes in near-surface
flows or magnetic stresses localized near mid-
latitudes could affect C4 and not the oblateness.
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A Physically Transient Form of
Silicon Electronics
Suk-Won Hwang,1* Hu Tao,2* Dae-Hyeong Kim,3* Huanyu Cheng,4 Jun-Kyul Song,5

Elliott Rill,1 Mark A. Brenckle,2 Bruce Panilaitis,2 Sang Min Won,6 Yun-Soung Kim,1

Young Min Song,1 Ki Jun Yu,6 Abid Ameen,1 Rui Li,4,7 Yewang Su,4 Miaomiao Yang,2
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A remarkable feature of modern silicon electronics is its ability to remain physically invariant,
almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications
of integrated circuits that exist today, there might be opportunities for systems that offer the
opposite behavior, such as implantable devices that function for medically useful time frames but
then completely disappear via resorption by the body. We report a set of materials, manufacturing
schemes, device components, and theoretical design tools for a silicon-based complementary
metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with
integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable
transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.

Anoverarching goal in the development of
nearly any new class of electronics is to
achieve high-performance operation in

physical forms that undergo negligible change
with time. Active and passive materials, device
and circuit layouts, and packaging strategies are
each formulated individually and then configured
collectively to accomplish this outcome. Here we
present concepts and strategies for electronics
that involve similar attention to engineering de-
signs, but with the goal of achieving systems that

physically disappear at prescribed times and at
controlled rates. Applications that could exploit
this transient behavior include implantable med-
ical diagnostic and therapeutic devices that resorb
in the body to avoid adverse long-term effects,
fieldable environmental sensors that dissolve to
eliminate the need for their retrieval, and portable
consumer devices that decompose tominimize the
costs and health risks associated with recycling
and the management of hazardous waste streams.
For these three examples, the desired time scales

for transience range from days orweeks, tomonths,
to years, respectively. The approaches reported
here can address these and other application
concepts with circuit components whose opera-
tional characteristics match those of nontransient
counterparts formed in the usual way on silicon
wafer substrates. When combined with transient
sensors, actuators, power supplies, and wireless
control systems, this technology provides levels of
function that substantially exceed those available
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Fig. 1. Demonstration platform
for transient electronics, with key
materials, device structures, and
reaction mechanisms. (A) Image of
a device that includes transistors,
diodes, inductors, capacitors,
and resistors, with interconnects
and interlayer dielectrics, all on a
thin silk substrate. (B) Exploded-
view schematic illustration, with a
top view in the lower right inset.
(C) Images showing the time
sequence of dissolution in DI
water. (D) Chemical reactions for
each of the constituent materials
with water.

Fig. 2. Experimental studies of transient electronic materials and devices and
corresponding theoretical analysis. (A) Atomic force microscope topographical
images of a Si NM (initial dimensions: 3 mm× 3 mm× 70 nm) at various stages
of hydrolysis in PBS at 37°C. (B) Diagram of the processes of reactive diffusion
used in models of transience. (C) Experimental (symbols) and theoretical
(lines) results for time-dependent dissolution of Si NMs (35 nm, black; 70 nm,
blue; 100 nm, red) in PBS at 37°C. (D) Optical microscope images of the
dissolution of a serpentine trace of Mg (150 nm thick) on top of a layer of MgO
(10 nm thick) in DI water at room temperature. (E) Experimental (symbols)
and theoretical (lines) results of dissolution kinetics of similar traces of Mg
(300 nm thick) with different encapsulating layers: MgO (400 nm, red;
800 nm, blue) and silk (condition i, cyan; condition ii, purple). (F) Measure-
ments of transience in operational characteristics of n-channel transistors

encapsulated by MgO and crystallized silk (picture in the inset on the left) and
then immersed in DI water. The results show the drain current (Id) at Vd = 0.1 V
as a function of Vg at various times (left) and at Vg = 5 V as a function of time
(right).
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