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Résumé. 2014 On a développé une théorie générale pour la description unitaire de différents effets
flexoélectriques dans des champs électriques homogènes constants. Sur cette base on a étudié théori-
quement quatre types de géométrie :

a) couche homéotrope sous l’action d’un champ électrique orienté normalement à l’axe optique;
b) couche homéotrope et champ électrique orienté parallèlement; c) couche planaire et champ
électrique orienté parallèlement; d) couche planaire et champ électrique orienté normalement.
En plus on a étudié les cas d’une anisotropie diélectrique positive et négative aussi bien que les cas
d’égales et de non égales énergies d’ancrage. C’est-à-dire que 16 cas différents sont l’objet de cet
article. Dans les cas homéotropes on a tenu compte de la polarisation de surface. Dans les cas a) et c)
il n’existe pas de champ critique et les déformations commencent depuis le zéro. Le champ critique
dans les cas b) et d) peut dépendre de la polarité. Cette polarité a déjà été observée expérimentalement
dans une couche planaire de MBBA. 

Abstract. 2014 A general theoretical framework for a unified description of various flexoelectric effects
in uniform d.c. electric fields is developed. With this framework four basic geometries are studied
theoretically as follows :

a) homeotropic layer under the action of a d.c. electric field normal to the optic axis ; b) homeo-
tropic layer and parallel electric field; c) planar layer and parallel electric field; d) planar layer and
normal electric field. Moreover the cases of positive and negative dielectric anisotropy are considered
as well as the cases of equal and unequal anchoring energies. This means that a total number of
16 different cases are the subject of this report. For the homeotropic cases the surface polarization is
taken into account as well. In the cases a) and c) the effects are nonthreshold. The threshold for
cases b) and d) can be polarity dependent. This polarity has already been observed experimentally
in planar MBBA layers.
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1. Introduction. - A theoretical study of static
deformations in planar and homeotropic nematic
layers, arising in weak d.c. electric fields (EF) is

presented in this paper. It is well known that one
of the basic mechanisms of orientational action
of the EF on liquid crystals (LC) is the volume dielec-
tric torque caused by the dielectric anisotropy of
the nematic. If the initial orientation of the director
with respect to the EF is dielectrically unstable,
this torque leads to the familiar electric analogue
of the Freedericksz transition [1]. Details of the theo-
retical description of the above are given in ref. [2, 3].
The dielectric torque acts for a.c. as well as d.c.

EF. For d.c. fields however another orientational
mechanism arises - the mechanism of flexoelectric
deformation as pointed out for the first time by
R. Meyer [4].

It is worth mentioning now that flexoelectric
deformations of nematics possess two characteristic

features, distinguishing them from any other electro-
structural effects :

1. Flexoelectric effects can be observed in uniform
and nonuniform d.c. electric fields. First the effects
in uniform EF were described in [4] and observed
in [22]. In nonuniform EF flexoelectric deformations
were observed and theoretically interpreted for the
first time by us in 1973 [20] and later on by Prost
and Pershan in 1976 [7]. We will consider here only
uniform d.c. EF and planar deformations (when
the director is restricted to a plane containing the
EF). In this case the flexoeffect does not create

volume torques and flexoelectric terms do not contri-
bute to the torque-balance equation. The flexoelectric
deforming action is concentrated on the surfaces
alone and leads only to surface torques on the glass-
liquid crystal interfaces, as pointed out first by one
of us in 1974 [5]. This can be easily understood
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remembering that the torque is expressed as the
derivative of the stress, whichfin uniform EF is
uniform throughout the volume e.g. for flexoelectric

bending of homeotropic layer [11] according to [4]
t3 = e3x Ex so T = êt3lbZ = 0 and jumps to zero
at the interface (when instead of the derivative we
can take the difference :

2. As a result of this planar flexoelectric defor-
mations in uniform d.c. EF can be realized only
in the case of soft boundary conditions permitting
substantial changes in the director orientation on
the interfaces. Some of these déformations have

already been described by the authors using the

boundary condition derived in ref. [5] and [6] and
expressing the surface torque balance; in these

boundary conditions terms depending on the EF
and flexoelectric moduli play a part as well. In this
manner solutions for electrostructural deformation

problems with boundary conditions depending on
the electric field were obtained for the first time.
On the other hand however it has been pointed

out recently by Prost and Pershan [7] that the flexo-
effect is not the only factor giving rise to surface

torques depending on the EF. Another possible
effect is the presence of surface polarization which
couples directly with the EF. These two effects can
hardly be separated and substantial errors may be
caused when determining flexoelectric moduli from
this kind of experiment. This question will be dis-
cussed in detail later.
Due to these two features the exact solution of the

deformation problem requires a detailed account

of the orientational interaction between liquid crystal
and substrate as well as all elastic terms which do
not give volume contribution. One of these terms is
related to the second-order elasticity of Nehring
and Saupe [8] :

Its influence is given for some cases in three separate
papers [9, 10, 29].

It is our aim in this paper to develop first a general
framework in vector notation for a unified description
of various flexoelectric effects in unifonn fields.
As sketched above we derive an elastic-dielectric-
flexoelectric torque balance equation and flexo-

electrically dependent boundary conditions. Then
on these grounds we will obtain solutions of some
special planar one-dimensional cases and will discuss
their importance. We will consider the four basic
geometries presented on figure 1 :

a) a homeotropic layer and horizontal EF
b) a homeotropic layer and vertical EF
c) a planar layer and horizontal EF, parallel to the

easy axis

d) a planar layer and vertical EF.

FIG. 1. - Schematical representation of the basic geometries.

The subcases of positive and negative dielectric

anisotropy as well as equal and unequal surface

energies have been considered for each of these
basic geometries, making a total of 16 cases presented
in this paper. Two of the cases have been considered

previously in a different manner by Helfrich [11, 12].
A unified description based on a general theoretical
approach however has not been published so far.

2. Basic équations. - The basis of our theoretical
description is given by the electric enthalpy expression
of a flexoelectric nematic [4] :

where n is the nematic director, Kii : the elastic

moduli, elz and e3x : the flexoelectric coefficients
of splay and bend respectively, XII and xl : the dielec-
tric susceptibilities. 

In case of soft boundary conditions (i.e. in case of
weak anchoring) the total enthalpy of the sample
is a sum of two terms, a volume and a surface one :

The volume term is given by an integral over the
volume of the expression (1)

The surface energy is determined as we have already
noted by the orientational interaction between sub-
strates and LC. Following Rapini and Papoular [13],
we can write :
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in the case of homeotropically acting surfaces (a and b)
and

for homogeneously acting surfaces (c and d).
Here v is the interface normal and C, is a surface

energy constant which in general could be a function
of the position.
To this term we will also add, following Prost and

Pershan [7], the energy of the polarized surface layer
in an EF

where mp is the surface dipole density which might
also depend on the position. The surface polarization
plays an essential part in the homeotropic case (a and
b). The reason it arises may be the specificity in the
interaction of the substrate with the two ends of the
molecule if they are différent. As a result, a preferable
orientation of the longitudinal molecular dipole will
take place in the surface layer and an uncompensated
dipole moment will exist. In such a case this moment
will be parallel to the director and (5) becomes :

An estimate for mp for this case is given elsewhere [14].
The result for MBBA is :

statcoul . cm-1.

Molecules with equal end substituents probably
give small mp. There will also be a small mp in homo-
geneously oriented layers (c and d) because specific
interactions orienting the normal molecular dipole
are probably weaker and reorientation around the
long axis is fast.
We will now proceed with the general form of

the volume torque and the surface torque equations
in a vector notation. Let us make a variation of the
director n - n + bn with the condition

as a constraint on bn which means that bn.1 n.
The variation ôR will then generally have the form :

In the analogy with magnetism h was called in ref. [15]
a molecular field. In our case we will distinguish
between :

h : volume molecular field and

g : surface molecular field .

With the constraint n.bn = 0 in mind, it is obvious
that the condition for a minimum value of the func-
tional bH = 0 corresponding to the equilibrium
state of the system is fulfilled if h and g are colinear
with n. If this is not the case, torques arise, tending
to orient n parallel to h in the volume and parallel
to g on the ’ interfaces. The equilibrium equations
will then read :

As will be seen, (10) plays the role of a boundary
condition for the eq. (9).
The exact expressions of h and g are calculated

by means of representing bJe in the form (8). All
divergence terms from Hv take part in g as well.
The result for h is as follows :

where helast’ hflexo and hdiel are the elastic, flexoelectric
and dielectric part of the volume molecular field.

helast was given by the Orsay group [15] :

where T = n. rot n is the twist pseudoscalar

B = (rot n) x n is the bend vector

hflexo was obtained by Fan [16] :

and hd;el is analogous to the magnetic case [15] :

We will assume here that AX = XII - xi is small

enough so that E does not depend substantially on the
position, in contrast to ref. [2].
The surface molecular field has four components as

follows :

It must be noted that in fact only gsurf and gpol really
arise from surface effects while g elast and gflexo are just
mathematical expressions of bulk contributions. Thus
we obtain :

An additional contribution to gelast also gives the
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term which describes the saddle splay in the form given
by Frank [17] :

It is well known that this term does not contribute to
the volume torque because of its divergence charac-
ter [18]. For its contribution to the surface molecular
field we obtain :

This term will be of importance if the deformation is
nonplanar and two components of the splay and twist
exist. Boundary conditions paying attention to this
term were derived in some other papers [31, 32]. The
flexoelectric component of g is :

For gsurf we obtain from (3) and (4) respectively :

for the homeotropic case and

for the homogeneous case. Finally

As we have noticed already this term is of importance
only in the homeotropic case.
Now we have to specify these general results for the

problem formulated above.
The planar character of our problem means that

only deviations of the director in a plane normal to the
substrate also containing the electric field vector

(the xOz plane, Fig.1) are taken into account. Since in
case b) this plane is not defined uniquely, we shall
assume that the Ox direction is specified by rubbing of
the plates. The deviations of the director are described
by the angle 0 between the initial and the final orienta-
tion. It is also assumed that 0 depends only on the
distance to the glass surfaces - the z coordinate.
This makes the problem one-dimensional. A two-
dimensional non-planar problem for the case d) where
azimuthal deviations are considered as well - 0(y, z)
and (p(y, z) was solved recently by Bobilev and
Pikin [ 19] assumming strong 0 and cp anchoring on the
walls and a threshold for domain formation was found.
In that case a volume flexoelectric torque is acting.
The authors also have in mind strong cp anchoring, but
weak 0 anchoring. In this case :

It is easily seen that in all these cases the flexoelectric
contribution to the molecular field is parallel to the
director so that

i.e. a volume flexoelectric torque does not act as already
pointed out by the authors in the introduction. The
same is valid for the saddle-splay component of the
surface field which in the planar case is identically
equal to zero.

Finally it is important to stress that if the electric
field is nonhomogeneous, a volume flexoelectric torque
will arise even in the planar case. This effect was called
by the authors gradient flexoelectric effect (1974)
because the volume torque is dependent on the gra-
dient of the electric field and the sum of the flexo-
coefficients (elz + e3x) [20]. We have studied this effect
in an inhomogeneous EF, the inhomogeneity being
produced by a volume space charge. The importance
of the volume flexoeffect was recognized later by Prost
and Pershan and an excellent way for producing EF
inhomogeneity by means of interdigital electrodes was
used [7]. The analogy between gradient torque and the
induced birefringence in gases in EF gradient leads
Prost and Marcerou to important ideas for quadru-
polar flexoelectricity as well [21].

3. General classification. - The general features
of the different cases are summarized in Table 1.

Basically this classification makes use of the fact that
in the cases a and c the flexoelectric surface torques (19)
are equal to (Fig. 1)

so that they are different from zero even in an unde-
formed state. On the other hand in the cases b and d the
surface torques are (again Fig. 1)

so that in the case of zero 0 - undeformed state, they
are also zero. It will be seen that for the first two cases,
the theory predicts nonthreshold deformation of the
Haas et al. type [22] and for the second two cases we
have a typical instability problem solved for the first
time in a special subcase of b) : ex = 0, CI = 0,
C2 --+ oo by Helfrich [12]. This polar transition whose
polarity is connected with the surface energy asym-
metry is called the Helfrich transition by the authors.
In this case the theory predicts that at a given value of
the voltage for one polarity, deformation will be

obtained, but for the opposite polarity the flexoeffect
will tend to improve the initial orientation if it is not
ideal. Such an effect has already been observed by one
of the authors in 1974 [23] using a plauar MBBA layer
(Fig. 2) and an interference technique.
The effects of dielectric anisotropy on flexoelectric

deformations are also summarized in table I. The cases
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FIG. 2. - Interference-polarizing pictures of planar MBBA layer.
Microscope - MPI-5, green light, layer thickness - 30 J.1m.
With homogeneous orientation the lines are parallel. a) Zero
voltage - the initial orientation is not ideal. b) High frequency
a.c. voltage (10 V, 20 kHz) - the dielectric torque improves the
planar orientation. c) d.c. voltage (IV) - deforming action.
The deformation pattern is somewhat irregular. In the upper left
corner a region with strong anchoring can be seen where there

are divided into stable and unstable on the basis of
their dielectric stability. When they are unstable, they
will be treated in terms of a flexoelectrically influenced
Freedericksz transition.
The cases a and c are formally equivalent. The

solution of c) is obtainable from a) by replacing e3x
by elz, K33 by K11 and Ax &#x3E; 0 by AX  0 or vice versa.
In this manner case c) can be used to measure the splay
flexocoefficient e1z only, as already proposed by the
authors [24]. In the same manner solutions of b) and d)
become equivalent with the substitution of AX &#x3E; 0

by AX  0 or vice versa. For this reason we will
consider in more detail only cases a) and b).,
Some words about the general idea of the calcula-

tions are necessary. Let us look at the nonthreshold
cases a) and c) first. The most simple situation is that of

is no deformation. d) d.c. voltage reversed (-lV) - the reversed
polarity tends to improve the planar orientation, similar to a.c.

voltage. The planar orientation is accomplished by the rubbing
method. Low anchoring conditions are obtained by keeping the
sample for a period of about two weeks (in a desiccator). During
this time a decrease of the surface energy C was observed, probably
due to the slow building up of adsorption layers of impurities and

liquid crystal molecules on the surfaces.

a zero AX. The solution is an odd function of z, taking ,
maximal values at the boundaries where flexoelectric
torques are concentrated. In the small angle approxi-
mation the amplitude of the solution is linear in e;n E.
So in fact we calculate the flexoelectric linear response
function for the orientation.
The situation is more complicated when the dielec-

tric anisotropy comes into play. Now the solution is a
linear combination of an even function of z : :f1(Z),
describing the dielectric response, with a maximum in
the middle where the layer is most free from the boun-
dary constraints, and an odd function f2(z) with a
minimum in the middle describing flexoelectric res-
ponse :



278

TABLE 1

General characteristics of the basic subcases

In the symmetrical dielectrically stable situations
(Table I) there is no dielectric response of the system
at all. The dielectric torque only leads to a depression
of the flexoelectric response. In the symmetrical
unstable situations there is also no dielectric response
of the system - 61 = 0 for electric fields up to the
threshold for Freedericksz transition E,, - due to the
different symmetry of the deformation pattern the
flexoelectric and dielectric response are not coupled.
In the unsymmetrical stable situations there is flexo-
electric as well as dielectric response but both of them
are dielectrically depressed. And finally in the unsym-
metrical unstable situations both the dielectric and
flexoelectric response tend to infinity in the vicinity of a
threshold field. This resembles the behaviour of the

response function for the electric polarization x of a
pyroelectric near the Curie temperature for the phase
transition pyroelectric-ferroelectric (e.g. [33]).
The somewhat unusual character of our problem

consists in that : it is the same electric field which via
the boundary conditions determines the flexoelectric
response and via the volume action leads to the

instability in the system. Strictly speaking in that case
the net tilt of the layer, produced by the flexoeffect,

causes a degeneration of the Freedericksz transition
- the coupling between the flexoelectric deformation
and the dielectric torque tends to amplify the flexo-
electric tilt even at small fields. The increase of the
deformation is continuous and no threshold field can
be consistently defined - as we say the transition is
degenerated..

In the cases b) and d) this problem does not exist.
Either flexoelectric or dielectric torque or both of them , 
lead to instability behaviour - below a definite value
of the electric field, depending both on dielectric and
flexoelectric parameters of the material the déforma-
tion is identically zero. There is no linear response of
the system. The small angle approximation permits
only the threshold field determination. The field

dependence of the deformation above the threshold
necessitates keeping third powers of 0 in the equation
and boundary conditions (equivalent to the truncation
of the total enthalpy expression (2) to fourth order).
This is done by us in two cases only - formulae (64)
and (68). Due to the fact that there is neither first nor
third powers of 0 in (2) the combined dielectric-
flexoelectric transition in these cases is truly second
order.
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Another point deserves mention as well. In our
calculations we do not take into account the reverse
action of the depolarizing field due to the flexoelectric
polarization of the deformed structure itself as was
done in the papers of Deuling [34, 27]. This correction
field is important in very pure materials, because the
flexoelectric polarization once created is screened by
redistribution of the space charges within a time 8/4 nu,
where a-conductivity. It also becomes important at low
temperatures, where J decreases several orders of
magnitude and the space charge is frozen [30].

4. Solutions. - 4.1 THE HOMEOTROPIC LAYER

UNDER THE INFLUENCE OF A HORIZONTAL ELECTRIC

FIELD. - In this case the torque balance equation
for a small angle approximation takes the form

(following (9), (11), (13) and (14)) :

Boundary conditions in the same approximation
are given by (following (10), (15), (16), (19), (20’)
and (21)) :

Different cases of surface polarization (hydrophilic
and hydrophobic surfaces) are discussed in detail
elsewhere [14]. If the surfaces are different in general
mpl + mp2 =f:. 0. But if they are identical, the surface
polarization moments will be equal and in the opposite
direction, i.e. :

The field dependent surface torque will then take
the same form at the two boundaries : (e3x + mp) E.
This means that the surface polarization acts together
with the flexoeffect increasing or decreasing its action
’depending on its direction (see ref. [14]). For bigger
deformations however these two terms become diffe-
rent due to their dif’erent dependence on 0 :

e3x E COS2 0 versus mp E cos 0.
It is convenient to discuss the solutions in terms of

the following parameters :
- dielectric coherence length :

- flexoelectric coherence lengths :

- extrapolation lengths :

- threshold voltage for Freedericksz transition :

- threshold voltages for Helfrich transition

4.1.1 Dielectrically compensated LC (AX = 0). -
In this special subcase (which can be realized for
instance with mixtures) the solution of (24) can be
expressed in the form :

where

and

where the ratio r1/r2 = (e3x - mp2)/(e3x + mpl ) is
not dependent on E.

This solution generalizes the Helfrich solution [11] ]
obtained at equal anchoring energies (bl = b2) and
zero surface polarization (mp = 0). It demonstrates
that as a result of the surface asymmetry, the plane of
zero deformation is no longer in the middle of the
layer. For this reason with asymmetrical boundary
conditions the influence of the anchoring energy is

sufficient even for small values of layer thickness while
in the symmetrical conditions it is of importance only
at greater thicknesses of the order (bi + b2).
Making the assumption (26) which means that

n1 = n2, we obtain :

with

The zero deformation plane is nearer to the boun-
dary when C is larger.

It is evident from this result that the homeotropic
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layer deformation proposed by Helfrich as a method of
measuring the bend flexocoefficient e3x requires the
elucidation of the problem for the values of two

important corrections, which if not taken into account
will lead to substantial errors :

a) boundary asymmetry correction (b1 :0 b2) ;
b) surface polarization correction (m, :0 0).
The boundary asymmetry correction can be best

estimated by calculating the field induced birefringence
which is the experimentally measured quantity in this
type of experiment [25] :

where no and ne are the ordinary and extraordinary
refractive indices respectively.

E.g. if bl = 2 b2 the correction in the b value is 33 %
regardless of the layer thickness.
The dependence of b on the layer thickness d permits

the evaluation of the total extrapolation length : for
smaller d from (36) we obtain a cubic growth

but for greater d, a linear growth with a slope (b1 + b2 )2
is established :

The surface polarization correction is estimated by
the authors elsewhere [14]. It can easily be seen that
depending on its direction, the surface polarization
torque can act in the same or in the opposite direction
as the flexoelectric one, thus increasing or decreasing
the apparent value of e3x which was found in fact in
two experiments with MBBA [25, 22] using different
boundary conditions. From the two very different
apparent values of e3x : 3.7 x 10-5 d yn. 1/2 and
2.7 x 10-4 dyn.l/2 the true value of e3x was estimated
to be

This value is more realistic than the broadly accepted
value 3.7 x 10- 5 dyn.lJ2. It resolves the apparent
contradiction between different flexoelectric experi-
ments with MBBA [25, 26].

4.1.2 Dielectrically stable layer (AX  0). - This
is the most probable case for substances with large e3x
because of the large normal component of the mole-
cular dipole. In this case the volume dielectric torque
acts against the surface flexoeffect with a tendency to
depress the flexodeformation. Due to the fact however
that the flexoeffect is linear, it prevails at small voltages.

Our torque balance equation (24) can be written as

with a general solution of the type

The constants 01 and 02 are given by the solution of the
boundary value problem :

The determinant of the system

is always different from zero. The system always has a
solution. The deformation is not a threshold one.

If the assumption (26) is made, the solution can be
written as :

where

It is evident from (43) that in this case the zero defor-
mation plane z = zo moves with the voltage towards
the middle of the layer. Only when a strong anchoring
is imposed on one of the walls (bi or b2 = 0) is the
plane fixed, and it then coincides with this wall.

If now bl = b2 = b - the symmetrical surface
case - zo = 0 and the solution (42) is :

It can immediately be seen that if [ Ax [ - 0 or

2(1(;;
E « ) V iAXï so that IfÇ -. 0 the solution (45) is

v!A/
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reduced to solution (55) discussed above. At small
voltages the dielectric effect is negligible but at higher
voltages the maximum deformations on the walls tend
to a saturation value (for C = 0) :

and the deformation penetrates into the layer only at
distances of the order of ç - the dielectric coherence
length. One can obtain for the induced phase diffe-
rence :

For weak voltages e3x K3 + 3 m PE 2 d 3 i.e. the increase
follows E2 but for higher 3 voltages there is a decreasefbilows E2 but for higher voltages there is a decrcasc
following ç, i. e. E -1.

4.1.3 Dielectrically unstable layer (AX &#x3E; 0). - In
this case layers with strong anchoring (bi = b2 = 0)
will display a Freedericksz transition at a critical field

EF = ] J K33/LBX. With weak anchoring this threshold
field decreases as has already been calculated by
Rapini and Papoular. In our case we have to take into
account the surface field-dependent torques as well.
The results can be described briefly as follows : if the
problem is symmetrical (b 1 = b2, mp1 = - mp2) the
flexodeformation established at small voltages is zero
in the middle of the layer and is an odd function of z
- formula (35). On the other hand the Freedericksz
deformation is characterized by an even function of z
with a maximum in the middle (e.g. ref. [2, 3]). For this
reason in the symmetrical problem these two effects
remain uncoupled as we have already noticed. On the
other hand when b, * b2 the zero deformation is not
in the middle and the flexoeffect produces a net tilt of
the layer which degenerates the Freedericksz transition
because the volume dielectric torque immediately tends
to increase this tilt.
The torque balance equation (24) now reads as

follows :

and its solutions can be obtained from those of (39) by
changing ç to iç :

The boundary value problem now has a solution
when,A :0 0. The condition d = 0 leads to the follow-

ing, equation for the Freedericksz threshold : in the
absence of flexoelectric surface torques :

which determines the threshold value of ç(E). Having
in mind that

expression (49) can be rewritten in terms of the
threshold field Etr :

This equation is a generalization of the Rapini-
Papoular equation for the unsymmetrical boundary
condition. It can easily be demonstrated using the
identity

that when bi = b2 eq. (51) contains the solution of the
Rapini-Papoular equation :

If we make the assumption (26), the solution in the
unsymmetrical case can be written in the form similar
to (42) :

where

In the symmetrical çase b 1 = b2, eq. (54) shows
that zo = 0 until the denominator becomes equal to
zero. In view of (50) this condition is equivalent to
eq. (52). So up to the threshold Esym, the two effects are
uncoupled, as we noticed at the beginning. The
complete solution in the flexoelectric region is then,
analogously to (45) :
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In the unsymmetrical case it is evident from (54)’
that zo increases with thè voltage, the field tends to
increase the flexoelectric tilt and the Freedericksz
transition is degenerated.

The solution of eq. (51) in the case of weak asym-
metry Ab/b « 1 can be expressed by the solution Esym
of (52) with b = 1/2(b1 + b2) in the following manner :

where 

An analysis of eq. (57) shows that the boundary
asymmetry increases the threshold in comparison to
that corresponding to the mean value of the anchoring
energy.

4.2 A HOMEOTROPIC LAYER UNDER THE ACTION OF A
VERTICAL ELECTRIC FIELD. - In this case, in a small

angle approximation, the torque balance equation
takes the form :

The boundary conditions in the same approximation
are given by :

As we have already noticed in this geometry the
deformation is characterized by a definite threshold
voltage.
4.2.1 Dielectrically compensated LC (AX = 0). -

In this special subcase the solution is a linear function
of z and it arises when the field exceeds a value which is

given by the condition that the déterminant of the
system (60) becomes zero :

Because of the potential jump at the surface pola-
rized electrodes the field acting on the layer is given by
Ed = U + 4 n(mp1 + mp2). UH, and UH2 in (61) are
given by (31). Because of the term linear in Etr whose

existence is due to the anchoring energy and surface
polarization asymmetry, the effect is polar - the
positive and negative thresholds are different (positive
means that the electric field is in the positive Oz direc-
tion - from C2 to Cl). Let us now assume surface
polarization symmetry (26). Then UH1 = UH2 = UH
and E. d = U. The solution of (61) is given by :

If Ci &#x3E; C2 (bl  b2) and e1Z + e3x + mp &#x3E; 0 (UH &#x3E; 0)
then the positive threshold is lower than the negative,
so a lower threshold is obtained when the electrode
with a lower anchoring energy is an anode.
The small angle approximation permits the deri-

vation of the deformation threshold but the amplitude
of the deformation remains undetermined. In order to
calculate it for voltages greater than Utr, cubic terms
have to be included in the expansion of sin 2 0 in the
boundary conditions. Let us now consider for the sake
of simplicity the symmetrical case (bi = b2 = b) when
the thresholds in two directions are the same :

With K11 1 = K3 3, we obtain

where

The case where b --+ oo (C = 0) and the deformation
is, according to (63), not a threshold one is of some
theoretical interest. Analysing now the full boundary
conditions, one finds that the boundary angles 01
and 02 are connected by the relation

and that 01 (at the wall Ci) for small voltages is given
by

We got nonthreshold behaviour and as a result a linear

response.
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This result means that at a voltage just above zero
the layer is inclined as a whole at an angle of 450 to the
field and after that it starts deforming. When U
increases, 01 -+ n/2 and O2 -+ 0. This resembles the
situation realizable in the case Ci - oo as will now be
demonstrated. In the latter situation (b 1 = 0) the
positive threshold is given by :

while the negative is infinite. The Helfrich solution

corresponds to the case b2 -+ 00 (Utr = UH). The maxi-
mal deformation at the wall Ci as a function of voltage
not far from the threshold (67) is given by formula (68).
As usual the response is non linear :

4 . 2 .2 Dielectrically stable layer (AX &#x3E; 0). - The
torque balance equation is

with a’solution

01 and 02 are given by the solution of the boundary
value problem

The condition Li = 0 leads to the following equa-
tion for the threshold voltage Ut, (with tll = ’12’
UH1 = UU2 = UH)

This equation has a solution if UF2/n2 UH2  1. This
means that a limiting value of the dielectric anisotropy
in such a geometry there exists above which the layer is
absolutely dielectrically stable - the flexoeffect is not

capable of creating deformations at all. The same
conclusion was reached by Fan [16] when considering
the influence of the dielectric anisotropy on Meyer’s
domain formations. In our case when

The limiting anisotropy is :

If the previously assumed value is taken for the total
flexocoefficient, namely

then àXù,, - 2 x 10-3 which is an extremely small
value and the appearance of the effect will require very
careful compensation of ex. But if

as already discussed in case 4 .1. l, then Aux - 2 x 10- l .
This means that the flexoelectric effect will be impor-
tant for the usual nematic materials with small dielec-
tric anisotropy, provided that the surface polarization
does not act in the opposite direction. On the other
hand in this geometry it is possible to display such an
effect in nonflexoelectric materials, using surface

polarization only.
Equation (72), due to the presence of the linear term

(b 1 - b2) Utr has two différent rôots for positive anddUH 
’ o p

negative direction of E - the effect remains polar. If
the symmetrical case is considered, the following
equation will be obtained for Usym :

When Ab « 1 we can write for U

Utr = Usym + AU, where USym is a root of (74)

with b = 1 /2(b 1 + b2) and AU is given by the equation

Now AU-Ab in contrast to case 4, where AE,-...; (Ab)2
- eq. (58). Eq. (75) demonstrates explicitly how
anchoring energy asymmetry produces polarity of the
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effect. Where Ci &#x3E; C2 the positive threshold is lower
than the negative in accordance with eq. (62) for
AX = 0. 

4.2.3 Dielectrically unstable layer (ex  0). - If
there are no surface torques in this case, a pure
Freedericksz transition will take place at a threshold
voltage given by an equation similar to eq. (51)

Utr is independent of polarity.
The influence of flexoelectricity will express itself in

that it will cause a decrease in the threshold for one
polarity and an increase for the opposite polarity,
provided that there exists a surface asymmetry. This
feature has already been mentioned by Helfrich [12].
The equation for U,, derived in analogy to (72) by

changing UF in i UF now reads :

It reduces to eq. (76) if Uu -+ oo.
The equation for the symmetrical case is written to

estimate the effect of the surface asymmetry on the
polarity :

if Ab « 1, , U. = U sym + AU, , where U sym is a root

of eq. (78) with b = 1/2(b, + b2) and

Here, just as in case 4.2, Ci - C2 &#x3E; 0 leads to a
decrease of the positive threshold and an increase of
the negative with respect to Usym.
Another aspect of eq. (78) is worth mentioning. The

value of Uo, the Freedericksz threshold with soft

boundary conditions, can be measured using a high
frequency electric field and symmetrical boundary
conditions because over several hundred Hz the flexo-
effect is not active. If a constant electric field is now

applied, the value of U sym will be measured. The

difference between these two values can be used to
determine UH and consequently (elz + e3x + mp)
because Uo is given by a special form of (78) taking
Un -+ 00. If the difference AU = Usym - Uo is small
enough, it is given by

Such a method of determining (elz + e3x + mp) can
provide some advantages as compared to Deuling’s
method [27] because for the latter extremely pure
materials are needed. For MBBA an estimate of this
difference for the case b N d, i.e. Uo - (1/2) UF gives
AU/Uo - 1/3. Such a différence could be registered
quite unambiguously.

4.3 PLANAR LAYER UNDER THE ACTION OF A HORI-
ZONTAL ELECTRIC FIELD PARALLEL TO THE EASY AXIS. -

As already noted, this case is formally équivalent to
case a. A simplification of the solutions will take place
if in the planar case the surface polarization mp is small
enough. Then fil = fl2 (28) where we have elz instead
of e3x. Also instead of K33, we should put in the
formulae (27)-(31) the splay elasticity constant K11.
The importance of this geometry is that it gives the

possibility of experimental determination of eiz

only [28]. The corresponding formula describing the
flexoelectrically induced change of the phase difference
will look like (36) :

The problem is that in planar layers the anchoring is
much stronger and one can hardly find a surface with
b &#x3E; 1 J.1m, so that very thin cells are required. The
Rychenkow-Kleman technique [28] for depositing
amorphous coating seems to be promising but

unfortunately in that case the LC layer becomes
spontaneously homeotropic. The construction of an
asymmetrical cell could possibly help to solve the

problem-namely imposing a strong planar ancho-
rage on one of the glass plates which for elastic reasons
should be capable of orienting the whole layer. The
flexoelectric surface torque will then act only on the
opposite amorphous carbon surface.

4. 4 PLANAR LAYER UNDER THE ACTION OF A VERTICAL

ELECTRIC FIELD. - Here again in formulae (27)-(31)
we should set mp = 0 so that UH, = UH2 and replace
K33 by K, 1. As in the previous case the subcases with
the same dielectric stability are with opposite dielectric
anisotropy (Table 1).
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An important difference is that surface asymmetry
induced polarity is just the opposite to the case b : the
lower threshold corresponds to an EF in the direction
strong anchoring electrode-weak anchoring electrode.
The reason for this is that in the boundary conditions
the flexoelectric terms enter with a sign opposite to
that in (60).
As we have already pointed out such an asymmetric

effect was registered by one of the authors. It is shown
on figure 2.

5. Conclusion. - At least 16 cases of electro-
structural deformations in a d.c. electric field are

considered by the authors using a general theoretical
approach with regard to different flexoelectric, dielec-
tric, anchoring and surface polarization parameters of
the nematic. In all the geometries considered the

volume flexoelectric torque is zero and the flexoeffect
comes into play with surface torques only which
definitely requires weak anchoring for its manifes-

tation.
The importance of these experimental geometries

can be summarized in two points. First, some of them,
e.g. the polar flexoeffects, could find interesting
display applications. For this reason it is important to
know the influence of the different dielectric and
surface parameters on their performance. Such a polar
effect has already been observed by the authors.

Second, others have been proposed as methods for
measuring the flexoelectric moduli of the material.
The authors demonstrate here that such experiments
could not give a direct means since in the total effect,
the flexoeffect is related to the surface properties,

often in a complicated manner. The evaluation of the
moduli therefore from a single type of experiment is
often not possible. The necessity of complementary
experiments is obvious. The importance of the surface
polarization can for instance be estimated only after a
careful comparison of the results with hydrophilic
and hydrophobic substrates.
On the other hand the exact determination of the

flexoelectric parameters generates exact information
about the boundary conditions as well. In this manner
the results of the authors could be useful in studying
surface interactions (e.g. the thickness dependence of
the electrooptical effects). The importance of the exact
knowledge about the surface properties of liquid
crystals need not be specifically stressed. The situation
in this field now resembles solid state physics where
volume properties are much better understood than
the surface ones. The development of methods for
weak and anisotropic anchoring will bring about a
great advance. This will give the possibility of splay
flexocoefficient measurements.

Interesting new information can be obtained from
the dynamic behaviour of these surface driven effects,
e.g. information can be obtained about the dissipation
of energy on the surface. Some preliminary theoretical
and experimental studies of flexoelectric oscillations
have already been performed and reported else-
where [5, 6].
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