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0 1. Introduction 

STEWART MILLER introduced the term “integrated optics” in 1969 to refer 
to the miniaturized optical systems he envisioned as important for the future 
of optical communications. Two subsequent decades of research and develop- 
ment in this area, along with major breakthroughs in the optical fiber and 
semiconductor laser arenas, have led to the demonstration of many integrated 
optical components, devices, and systems, and to the introduction of com- 
mercial products that make use of this technology. Furthermore, interest in 
integrated optics as a basic technology has broadened to include not only 
telecommunications, but also other applications such as optical sensors, 
information storage and processing, medical instrumentation, navigation, and 
computing, to name just a few. In addition, there is a renewed emphasis on the 
importance of making the technology of integrated optics compatible with that 
of integrated electronics. The currently widespread use of the term “integrated 
optoelectronics” is a reflection of the attitude that optics and electronics are 
complementary technologies. 

The central idea behind the concept of an integrated optical system is the 
ability to process and manipulate light that is trapped within the confines of an 
optical waveguide. Here, the term “light” is used in a loose sense. The wave- 
lengths (A) of interest in both integrated and fiber optics are, for the most part, 
in the near-infrared region of the spectrum, with wavelengths 0.8 < A < 2 pm, 
rather than in the visible region. Most, but not all, optical waveguide structures 
confine light by the mechanism of total internal reflection (TIR). Although there 
are many specific types of optical waveguides, the most important distinction 
to be drawn is based on dimensionality. A planar, or slab, optical waveguide 
consists of a layer of elevated refractive index bounded above and below by 
regions of lower refractive index. Such a structure provides confinement along 
only one transverse coordinate axis, as illustrated in fig. l a  for a step-index, 
planar optical waveguide. A geometrical optics construct that illustrates a ray 
trapped by TIR between two surfaces also appears in fig. la. Another type of 
optical waveguide provides confinement along two transverse coordinate axes 
(fig. lb). The refractive index boundaries in fig. 1 are depicted as sharp, but this 
is not an essential feature of an optical waveguide. Both graded-index and 
step-index structures are in common use. 

3 
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Fig. 1. (a) Planar, or slab, optical waveguide. The refractive index n,ofthe film layer of thickness 
h must exceed that for each of the substrate (n,) and cover (n,) media. Refractive index barriers 
appear only along the x-direction. (b) Three-dimensional optical waveguide. The refractive index 
n, within the guiding structure exceeds that outside the structure along both transverse 

directions. 

This chapter focuses on one important structure for integrated optical/opto- 
electronic systems: the waveguide diffraction grating. Since the diffraction 
grating is a familiar component for conventional optical systems, it is logical 
to assume that it will be for integrated optical systems as well. This has been 
demonstrated by the use of waveguide gratings in integrated optics for 
input/output couplers, filters, lenses, Bragg reflectors, distributed reflectors in 
lasers, and as phase-matching elements for nonlinear interactions. 

The fact that electromagnetic waves propagating within an optical waveguide 
exhibit spatial profiles that depend on the transverse coordinates complicates 
theoretical treatments of the interaction with waveguide diffraction gratings. 
Despite numerous theoretical investigations, one case has proved particularly 
troublesome: the Bragg reflection of a guided wave within a corrugated planar 
optical waveguide. The planar waveguide supports modes with either of two 
polarizations - transverse electric (TE) or transverse magnetic (TM). These are 
defined later in this chapter. A guided wave of either polarization incident on 
a waveguide grating generates a strong back-reflected guided wave if the Bragg 
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condition is satisfied at least approximately. Almost all theoretical treatments 
of this problem are in agreement when both the incident and Bragg-reflected 
waves are TE waves. This is not the case, however, for TM waves, for which 
theoretical treatments are in serious disagreement. Recent theoretical and 
experimental efforts appear to have resolved this issue satisfactorily. This 
chapter describes the essential features of the guided-wave Bragg reflection 
problem that are crucial for a proper treatment of the problem. Sufficient 
preliminary material on the properties of optical waveguide modes in several 
structures is included to introduce the reader unfamiliar with the subject to the 
more important features common to all optical waveguides. Since a full dis- 
cussion of both the theoretical controversy and its resolution has not yet 
appeared, sufficient theoretical detail has been included, particularly in the 
later sections, to allow others to carry out the various calculations. Hence, the 
introductory material is essential to make this chapter self-contained. 

A qualitative review of the uses of the waveguide gratings mentioned earlier 
is followed by a more quantitative review of the properties of optical 
waveguides, with emphasis on the step-index planar waveguide. The step-index 
planar waveguide lends itself to relatively straightforward analysis while 
revealing the essential qualitative features that are common to all optical 
waveguides. Finally, the interactions between guided waves and waveguide 
gratings are considered from several theoretical points of view. 

g 2. Uses for Waveguide Gratings 

2.1. GENERAL DISCUSSION 

Waveguide diffraction gratings can be fabricated as a periodic or near-perio- 
dic modulation of either the refractive index or one, or more, of the boundaries 
of an optical waveguide as illustrated in fig. 2. The surface corrugation grating 
is the more common, since it can be implemented in almost any solid material. 
Such surface gratings are usually prepared by recording the interference 
pattern, formed when the two halves of a laser beam recombine at a selected 
angle, in a layer of photoresist deposited onto the substrate of interest. After 
the photoresist has been developed, it serves as a mask for substrate etching 
by techniques such as ion-milling or reactive ion etching. The photoresist mask 
protects certain areas of the substrate while the etchant attacks the exposed 
areas. In this way the mask pattern is transferred into the substrate material. 
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PLANAR OPTICAL WAVEGUIDE 

PLANAR OPTICAL WAVEGUIDE 

(b) 

Fig. 2. Two types ofwaveguide diffraction gratings with period A. (a) A periodic variation of the 
refractive index near the surface. (b) A periodic surface corrugation. 

A similar procedure can be used based on electron-beam lithography rather 
than photolithography. 

There are two main uses for waveguide gratings in integrated optics. The first 
use, illustrated in fig. 3a, involves coupling between the radiation field and a 
bound mode of the optical waveguide. As the bound modes use total internal 
reflection, there is no exterior angle of incidence for which an external beam 
of light can be made to excite a bound mode of a waveguide with flat surfaces 
by refraction. Similarly, it is not possible for a guided mode to radiate in the 
absence of some coupling mechanism. The grating provides the necessary 
coupling when the following condition is fulfilled : 

2 zm B =  n, (y) sine + - , 
C A 

where /?is the propagation constant (along z )  of the guided wave, A is the grating 
period, m is an integer, o is the (angular) frequency of the optical wave, c is 
the speed of light in vacuum, and the angle B and the refractive index n, are 
identified in the figure. This type of interaction is clearly useful for coupling light 
into or out of an optical waveguide. 

The second use, illustrated in fig. 3b involves coupling between two waves 
that are both bound modes of the optical waveguide. The grating can be used 
to deflect an incident guided mode into a different direction, or to convert a 
guided mode of one order into a guided wave of another order, or both. This 
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Fig. 3. (a) Light incident on a corrugated section of an optical waveguide can excite a guided 
mode of the structure. The grating acts as a phase-matching element to permit coupling between 
a guided mode and the radiation field. (b) A corrugated section of an optical waveguide can also 
provide coupling between two guided waves. In this example, a guided wave is Bragg reflected 

into a different direction within the waveguide. 

type of interaction can be used for “in-plane” functions, examples of which 
appear in the following sections. 

It is the period of the grating that determines which type of interaction takes 
place. A specific example will make this clearer. Consider the waveguide 
configuration in fig. 3a, but from the point of view ofthe guided wave interacting 
with the grating to produce another optical wave. If we define the effective index 
of refraction N according to 

where ,I is the optical wavelength (in vacuum), then it is not difficult to show 
that for guided wave propagation along z ,  the following first-order (rn = 1) 
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phenomena occur for the indicated ranges of the ratio of the grating period to 
the wavelength, A/A: 

Radiation into the cover medium (x > h ) :  (N  + n,)- < A/1 < ( N  - n,)- I .  

Radiation into the substrate medium (x < 0): ( N  + n,)- < A/1 < ( N  - n,)- I .  

Back reflection (first-order) : A/A = ( 2 N ) -  I. 

First-order back reflection (or Bragg reflection) occurs when a guided wave 
propagating along t z interacts with the grating to produce a guided wave of 
the same type propagating in the - z direction. Note that since n, < N < n,for 
n, 2 n,, a point that will be discussed later in this chapter, the smallest period 
in the preceding list is required for backreflection; radiation into either the 
substrate or cover media requires a period A/A > ( 2 N ) -  I. There is some degree 
of overlap of the range of periods that produce radiation into the two media. 
For the usual case of n, 3 n,, this means that radiation into the cover medium 
is always accompanied by radiation into the substrate, but that a range of 1 
exists that produces radiation into only the substrate (refractive index n = n,). 

2.2. INTERACTIONS BETWEEN GUIDED WAVES 

An extensive literature exists that describes various demonstrations of the 
use of waveguide gratings. In one of the first such demonstrations, 
PENNINGTON and KUHN [ 197 11 used gratings formed in a layer of photoresist 
deposited onto a planar, glass, optical waveguide to fabricate a multistage 
beam-splitter. After the photoresist was developed, lines of photoresist re- 
mained to serve as perturbations of the effective index of refraction of the glass 
waveguide. This is illustrated in fig. 4, which shows a guided wave, incident 
from the lower left, split into two beams, both still contained within the 
waveguide, by means of diffraction. This process is repeated for the other two 
gratings to produce a total of eight beams emerging from the grating on the right. 
A similar system was reported by HANDA, SUHARA, NISHIHARA and 
KOYAMA [ 19801 that used refractive-index gratings (fig. 2a), instead of surface 
gratings, made by direct electron-beam writing in arsenic trisulfide (As$,) 
waveguides. 

FLANDERS, KOGELNIK, SCHMIDT and SHANK [ 19741 demonstrated the 
spectral filtering property of a waveguide grating in the back-reflection 
geometry that appears in fig. 5 .  A surface corrugation grating was formed in the 
upper surface of a glass waveguide by first recording an interference pattern in 
a layer of photoresist deposited onto the glass layer. The pattern that remained 
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Fig. 4. Top view of a multistage beam-splitter fabricated in a planar optical waveguide. 

TOP VIEW 

PLANAR OPTICAL WAVEGUIDE 

INCIDENT - 
f--- 
REFLECTED 

CORRUGATED 
SECTION 

Fig. 5. Top view of the arrangement for a Bragg-reflection experiment using a planar optical 
waveguide. 

after developing the photoresist was then transferred into the glass layer by 
means of ion-beam etching, resulting in an approximately 50 nm modulation 
in the thickness of the waveguide ( N 0.85 pm). A tunable dye laser was used 
to excite a guided wave propagating to the right (in fig. 5) ,  which was subse- 
quently back-reflected when the incident wavelength satisfied the Bragg con- 
dition. They reported reflectivities greater than 75% and reflection bandwidths 
less than 0.2 nm, thereby demonstrating that the grating can function as a 
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narrow-band reflector for use in integrated optics. The emphasis in their work 
was on narrow-band filters, although broad-band filters are also of interest 
(SHELLAN, HONG and YARN [ 19771). 

Aperiodic gratings can also be useful for the coupling of two guided waves. 
LIVANOS, KATZIR, YARIV and HONG [ 19771 made use of a so-called “chirped” 
grating as a wavelength demultiplexer in the scheme illustrated in fig. 6. Here, 
the term “chirp” refers to the nearly linear variation in the grating period along 
the grating axis ( z ) ,  which causes the wavelength that satisfies the Bragg 
condition to vary along z. When collinear guided waves excited by two indepen- 
dent sources with wavelengths A I  and Az  interact with the grating, the different 
wavelength components are diffracted at different locations along the grating. 
A glass waveguide was used in the experiment of Livanos and co-workers, 
along with a surface corrugation grating made by holographic exposure of 
photoresist followed by ion-beam etching, as discussed in the previous para- 
graph. The grating period varied between 0.293 < A < 0.321 pm over a dis- 
tance of 6.5 mm. This produced a separation of 4 mm between diffracted waves 
for I ,  = 0.607 pm and A z  = 0.627 pm. 

It is important, however, to note that waveguide gratings used at non-normal 
incidence (as in fig. 6) usually depolarize the incident wave. As will be discussed 
later in this chapter, a planar optical waveguide supports waves of two polari- 
zations: transverse electric (TE) and transverse magnetic (TM). FUKUZAWA 
and NAKAMURA [ 1979) demonstrated this effect by showing that an incident 
guided wave of the TE polarization produced both TE- and TM-diffracted 
waves. The TE- and TM-components are spatially separated, since the Bragg 
condition is slightly different for the two polarizations due to waveguide dis- 
persion (the effective index of refraction N depends on the polarization, even 

TOP VIEW 

‘‘CHIRPED GRATING 

PLANAR OPTICAL WAVEGUIDE 

Z AXIS 
___+ 

Fig. 6. Spatial separation ofguided waves of two wavelengths using a “chirped” grating, for which 
the grating period varied along the length of the grating. 
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Fig. 7. Two crossed gratings fabricated in a planar optical waveguide. Incident guided waves with 
two different wavelengths are diffracted into opposite directions. 

for a fixed wavelength). Therefore, although fig. 6 shows only two diffracted 
components, there will, in general, be four diffracted components, because of 
this polarization effect, a fact that could be important if a high degree of 
wavelength discrimination is required. 

It is possible to use multiple exposure techniques to create a grating that 
diffracts guided waves of two wavelengths in opposite directions. The scheme 
used by YI-YAN, WILKINSON and LAYBOURN [ 19801, illustrated in fig. 7, 
makes use of crossed gratings, shown here as solid and dotted lines, on the 
surface of a glass optical waveguide to achieve the greatest possible spatial 
separation between the two wavelength components. 

HATAKOSHI and TANAKA [ 19781 pointed out that a waveguide grating can 
function as a lens. They reported the use of a glass waveguide and a grating 
fabricated by electron-beam writing to focus a collimated input of wavelength 
A = 488 nm. Here, as shown in fig. 8, the orientation of the grating rulings is 
changed along the grating to make certain that each segment of the incident light 
is diffracted toward a common point. 

One of the most important uses of waveguide gratings for the coupling of two 
guided waves occurs in the distributed feedback (DFB) and distributed Bragg- 
reflector (DBR) semiconductor lasers. The DFB laser was first discussed by 
KOGELNIK and SHANK [ 197 1 ,  19721, and was first implemented in a semicon- 
ductor (waveguide) laser by NAKAMURA, YARIV, YEN, SOMEKH and GARVIN 
[ 19731. The ability of a waveguide grating to couple forward- and backward- 
going guided waves was discussed in connection with fig. 5 .  A strong reflection 
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Fig. 8. A waveguide grating lens. The grating period and orientation can be adjusted continuously 
to deflect different portions of the incident wave toward a common point. 

can be achieved within a narrow spectral bandwidth. The gain region of the 
laser is corrugated in a DFB laser so that the coupling between forward- and 
backward-going guided waves takes place throughout the laser cavity; hence, 
the term “distributed feedback”. The DBR laser is somewhat similar to the 
DFB laser, except that only the unpumped end regions of the laser are 
corrugated in the DBR case; the gratings are used as passive reflectors. Both 
approaches take advantage of the narrow Bragg bandwidth of the corrugated 
waveguide to reduce the spectral width of the laser emission. 

Waveguide gratings are also useful as phase-matching elements in nonlinear 
optics. This seems to have first suggested by SOMEKH and YARIV [ 19721. In 
the case of second-harmonic generation, for example, it is necessary that the 
propagation constant of the wave at frequency 2 o (nearly) equal twice that of 
the wave at o. This cannot be easily achieved in all materials, but in a 
corrugated waveguide the grating constant provides an extra contribution to the 
phase-matching argument so that the matching condition becomes 
p(2o) = 2p(w) + 2 x /A ,  in first order. The ability to vary both the grating period 
and the waveguide thickness within reasonable limits allows greater control 
over the phase-matching condition in a periodic waveguide than in a non- 
periodic medium. 

The many uses that have been found for grating-induced coupling between 
guided waves makes it clear that a quantitative description of the strength of 
the coupling interaction is essential. This subject constitutes the main emphasis 
of this chapter. 
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2.3. INTERACTIONS BETWEEN GUIDED WAVES A N D  THE RADIATION FIELD 

Waveguide gratings can be used for the excitation of a bound mode by an 
incident optical beam or to allow a bound waveguide mode to radiate. This 
point was discussed earlier in this section. DAKSS, K U H N ,  HEIDRICH and 
SCOTT [ 19701 appear to have been the first to use a grating to excite a guided 
wave. They used photolithographic techniques to form a photoresist grating 
with a period A = 0.665 pm on the surface of a planar glass optical waveguide. 
Light from a helium-neon laser (A = 0.6328 pm), incident as shown in fig. 3a, 
was used to excite either the TE or TM modes of the waveguide for the proper 
choice of source polarization. They reported an input coupling efficiency of 
40%. 

Input coupling efficiencies that exceed 40% are also possible. DALGOUTTE 
[ 19731 achieved an efficiency of 70% using a photoresist grating and a glass 
optical waveguide. One interesting feature of this experiment was the use of 
“reverse coupling”, shown in fig. 9. In the actual experiment, light was incident 
on the lower surface of the waveguide through a prism (not shown) placed in 
contact with the substrate. Efficient coupling occurs when there is only one 
incident beam that can couple to the guided mode of interest. As pointed out 
earlier, there is a range of the grating period A for which a guided mode can 
radiate into the substrate, but not into the cover medium. The guided wave can 
be excited most efficiently when light is incident at this same unique angle of 
radiation. In Dalgoutte’s experiment a grating period of 0.222 pm was used to 
achieve this. 

Many similar experimental results have been reported using different 
materials, different fabrication techniques, or different types of gratings. The 
use of blazed gratings has been explored by GRUSS, TAM and TAMIR [ 19801. 
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Fig. 9. Scheme for exciting a guided wave using the reverse-coupling technique. 
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The use of ion-implanted gratings has been demonstrated by KURMER and 
TANG [ 19831. The importance of absorption losses on grating performance was 
considered by STONE and AUSTIN [ 19761. Most recently, gratings have been 
used as output-couplers to make surface-emitting semiconductor lasers 
(EVANS, HAMMER, CARLSON, ELIA, JAMES and KIRK [ 19861, MACOMBER, 
Mom, NOLL, GALLATIN, GRATRIX, O’DWYER and LAMBERT [ 19871) and as 
focusing couplers for integrated read/write heads for optical data storage 
systems (SUHARA and NISHIHARA [ 19861). 

8 3. Modes Supported by Planar Optical Waveguides 

3.1. BOUND MODES OF THE STEP-INDEX OPTICAL WAVEGUIDE 

The planar, step-index, optical waveguide (fig. la) supports electromagnetic 
modes of two polarizations : transverse electric (TE) modes, and transverse 
magnetic (TM) modes. The term “mode”, as it is used here, refers to a solution 
to the wave equation that satisfies the appropriate boundary conditions. Each 
such mode is an electromagnetic wave with a unique transverse field profile and 
propagation constant fl (MARCUSE [ 19741, KOGELNIK [ 19751, ADAMS 
[ 19811, HALL [ 19871). Optical waveguides are open structures that support 
both bound modes and radiation modes. For bound modes only certain dis- 
crete values of /? are allowed. For radiation modes is continuous within a 
certain prescribed range of values. This section considers the bound modes. 

TE modes are characterized by a single electric field component that is 
oriented perpendicular to the direction of propagation. TE modes are thus 
specifled by an electric field E of the form 

(1) E = jiE,(x) $02- 

where the hat ( A )  designates a unit vector, in this case along the y-direction, 
E,(x) is the TE mode function, m is an integer, /? is the propagation constant 
with propagation assumed in the z-direction, and w is the (angular) frequency. 
TM modes are, in like manner, specified by a single transverse component of 
the magnetic field H according 

(2) H = y~,(x)  ei(BZ-wr) 

where H,(x)  is the TM mode function. Since f i  is discrete, it would be reason- 
able to attach the mode-integer subscript m, as in &, but we will suppress this 
subscript to Pfor the present to preserve simplicity of notation. When the above 
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fields are inserted into the usual wave equations for each medium, 

and 
V 2 E  + n 2 ( ~ / ~ ) 2 E  = 0 , 

V 2 H  + n2(o/c)2H = 0 , 

with n ( x )  defined in piecewise fashion, 

n2(x)= n,‘ x > h , 

= n f ‘  O c x c h ,  

=n,2 x t O ,  

we find that the TE mode function is given by 

E,(x)= E, exp[ - y,(x - h)] x > h , 

(3) 

(4) 

= Ef cos (kfx - $Js) 0 < x < h , 

= Es exp( - Y S X )  x < o ,  (6 )  

(7) 

(8) 

where E,, E,, and Es are constants. The remaining parameters satisfy 

y t  = (p2  - n?k:)ll2 (i = c, s) , 

kf‘ = (n,Zk: - f12)’12 , 

with k, = o / c  = 2 4 2 ,  and $Js is just the TIR phase-shift angle associated with 
the lower interface; +s is defined by 

Yi tan$Ji = - (i = c, s) , 
kf 

(9) 

for the case of TE modes. The mode function for the TM modes has the sirnilar 
form 

H,(x)= H, exp[ - y,(x - h ) ]  x > h , 

= Hfcos(kfx - +tm) 0 < x < h , 

= H, exP(- YSX) x < o ,  (10) 

where H,, H,, and Hs are constants, and the parameters are defined in the same 
way for TE and TM modes. The phase-shift angle for the TM polarization is 
slightly different from that in eq. (9), 
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The requirement that the wave must be localized in or near the higher-index 
layer (n,> n,, n,) determines that pis  restricted to the range n, k,  < p < n,k,. 
It further requires that the mode functions E,,,(x) and H J x )  exhibit exponential 
decay with increasing distance from each interface. The application of the 
boundary conditions on the tangential components of E and H produces a 
dispersion relation given, for TE modes, by 

k f h  - 4= - 4s = mn. (12) 

The corresponding result for TM modes is 

k,h - $trn - 4irn = mn, (13) 

which differs from eq. (12) only in that the correct phase shifts must be used 
for each polarization. The presence of the mode integer m is of central 
importance in these dispersion relations. Equations (7)-(9) and (1 1) show that 
for a given wavelength and set of refractive indices, kf and the phase shifts are 
functions of the propagation constant 8. Each value of m in either eq. (12) or 
(13), therefore, leads to a new value of 8. The allowed values of f l  thus form 
a discrete set, not a continuum. Figure 10 shows the electric field profiles E,(x)  
associated with the three lowest order TE modes of a typical planar waveguide. 
It is clear that the mode integer m determines the number of zero crossings that 
each mode exhibits. The same general behavior occurs for TM modes. 

The careful reader might have noticed that the wave equations in eqs. (3) and 
(4) do not contain the V E  terms ( E  is the permittivity; E = con2,  with 
E, = 8.85 x 10- ” F/m) that appear for a medium in which the refractive index 
n depends on the coordinates [recall, n’(x) = E ( x ) / E , ] .  Clearly, n = n ( x )  for the 
planar waveguide. This dependence can be made explicit by writing E ( X )  in the 
form 

E ( X )  = E,[H? + (n,2 - n:) O(X) + (n,Z - n:) O(x - h ) ]  , (14) 

where O(x - a)  is the unit step function, defined according to 

O(x - a )  = 0 for x t a ,  

O(x - a)  = 1 for x >  a , (15) 

which shows explicitly the abrupt changes in E, and hence n’, at the boundaries 
of the waveguide. The more general wave equations are 

V2 E + ~ ’ ( x )  (w/c)’ E = - V I“;&) - 9 
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and 

V 2 H  + n 2 ( x )  (w/c)’H = iw(E x V E )  . (17) 

When E m ( x )  and Hm(x)  in eqs. ( 5 )  and ( 6 )  are written in the style of eq. (14), 
it is not difficult to show that the previous solutions do indeed satisfy eqs. (16) 
and (17) as well as eqs. (3) and (4), as long as the boundary conditions on the 
tangential components of E and H are satisfied. More specifically, the delta- 
function terms generated by the V2 operator and by V E  can be made either to 
cancel or to vanish separately by applying the boundary conditions. The 
right-hand side of eq. (16), for example, vanishes for the TE modes of the planar 
waveguide, since the dot product E * V E  = 0. 

It is conventional to introduce the effective index of refraction N, defined 
according to 

N = B/ko7 (18) 

where, again, k,, = w/c = 2 4 A .  One of the central properties of an optical 
waveguide is its ability to transport energy in a given direction, chosen to be 
the z-direction here. Since is the z-component of the propagation constant, 
guided waves with field profiles such as those shown in fig. 10 can be said to 
propagate along z, treating the waveguide as a medium of refractive index N .  
It is easy to show that N is restricted to the range 

n, < N G n,, (19) 

for bound modes, where it has been assumed that the substrate has the larger 
refractive index of the two outer media in fig. la: n, 2 n,. This refractive index 
convention will be adopted throughout this chapter. The effective index can be 
related to the propagation angle 8, defined in a ray-optics model (see fig. la) 
as the angle between the ray and the normal, by the relation N = n, sin 8, from 
which it is clear that the lower limit in eq. (19) represents the minimum value 
of 8 that provides total internal reflection at both interfaces. The upper limit 
in eq. (19) represents the natural limit 8 = f n. The dispersion relations in 
eqs. (12) and (13) can now be regarded as transcendental equations that 
determine N for guided waves of the TE and TM polarizations. 

Figure 11 shows illustrative plots of the effective index N as a function of the 
film thickness h for both the m = 0 and m = 1 TE modes for a typical asym- 
metric geometry (n, # n,). The parameters used for the plot are given in the 
figure caption. Typically, for afixed wavelength and choice of refractive indices, 
there is a minimum thickness required to support a given mode of order m. For 
TE modes, for example, it is easy to show from eq. (12) that the minimum value 
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Fig. 11. Plots of the effective index of refraction N as a mnction of the layer thickness h for the 
m = 0 and m = 1 modes of a sample optical waveguide, for which n, = 1.46, n f =  1.7, and 

no = 1 .  

of the ratio h / l ,  the so-called cutoff value, for a guided wave of order m is given 
by 

where 

Inspection of eq. (20) shows that higher-order modes require thicker wave- 
guides for propagation. Equation (20) also shows that for the case of a symmet- 
ric waveguide, for which n, = n, and a = 0, the ratio = 0. This 
means that there is no nontrivial cutoff for the m = 0 mode of the symmetric 
optical waveguide. Equation (20) holds only for TE modes, but one obtains the 
same conclusion for TM modes. A symmetric waveguide of arbitrary nonzero 
thickness will support the m = 0 mode of both polarizations. This is analogous 
to the case of an optical fiber, a structure with refractive index confinement in 
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both transverse dimensions (x, y )  and cylindrical symmetry, for which the 
lowest order mode also has no nontrivial cutoff. 

One of the most important features to note in fig. 11 is that for a given 
waveguide with a given thickness h, the effective index N is different for the 
m = 0 and the m = 1 modes, even though the wavelength A is the same for both 
modes. This is of central interest for efforts in the field of integrated optics, 
which attempts to define optical components such as lenses, gratings, switches, 
and modulators in or on optical waveguides. The effective index N determines 
the way in which a guided wave interacts with a component. If some of the 
incident energy in the waveguide is carried in each of the m = 0 and m = 1 
modes, then each mode will interact with the component in a different way to 
produce two different effects. In the case of a lens, for example, this means that 
there will be two different focal lengths. Other components have similar 
problems. It is for this reason that integrated optics is usually considered to be 
restricted to the use of single-mode waveguides. The presence of only one mode 
(of each polarization) in the waveguide permits a more precise definition of the 
operation of the components that make up an integrated optical or optoelec- 
tronic system. 

A convenient normalization for the bound modes of the planar waveguide 
makes use of a power normalization. For the time dependence assumed here, 
exp( - iwt), the time-averaged Poynting vector S can be written as 

S = i R e { E  x H * } ,  (22) 
where Re designates the real part of the bracketed quantity and the asterisk 
designates the complex conjugate. The standard normalization sets to unity the 
power per unit width carried by the guided wave: 

where the hat (")  designates a unit vector. For TE modes this reduces to 

OD E,(x) Ez(x) dx  = 1 (TE) , 
2pow -a, 

whereas for TM modes. 

where E ( X )  is as in eq. (14). The size of the planar waveguide is assumed to be 
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very large along the y-direction so that its size places no restrictions on the fieId 
distributions that can propagate. For this reason the integration in eq. (23) is 
carried out over only the x-dimension, and the result is referred to as the 
“power per unit width (along y)”. In reality, eq. (23) is just a normalization 
condition. 

The boundary conditions lead to relationships between the amplitude con- 
stants that appear in eqs. (6) and (10). For the TE case, for example, one 
obtains the following formulas 

and 

These reduce the number of amplitude constants in eq. (6) from three to one, 
i.e. E,. When eq. (6) is inserted into the normalization integral in eq. (24), E,  
is then obtained in terms of the various waveguide parameters 

where 

1 1  
heff = h t ~ + - 

Yc Ys 
(TE) 

is termed the effective waveguide thickness. Equation (28) determines the value 
of E,  subject to the normalization condition in eq. (23). 

The TM result is a bit more complicated, but of the same form. The boundary 
conditions give 

and 
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where 

qi = (N/n,)2 + (N/ni)" + 1 (i = c, s) , 

[I. 8 3 

and the preceding notation follows that of KOGELNIK [ 19751. The normali- 
zation integral, in turn, gives 

where 

1 1 
hes = h + - + __ 

'Ycqs YS9S 
(TM) (34) 

The mode functions also satisfy a useful orthogonality relation. For real 
refractive indices this relation is given by 

al 

{E,,(x) x H;,(x)} - 2 dx = 0 for m # n , (35) s- co 
where the subscript t designates the transverse component of the vector field. 
Equation (35) can be applied to electric and magnetic fields of the forms given 
in eqs. (1) and (2), as long as one of them vanishes at x = f 00. If one or both 
of them is a bound mode, this is certainly the case, not only for modes of the 
step-index planar waveguide, but also for more complicated structures such as 
planar, graded-index optical waveguides. It is only necessary that eqs. (1) and 
(2) describe the fields and that they behave properly at x = f 03. 

3.2. BOUND MODES OF THE GRADED-INDEX OPTICAL WAVEGUIDE 

One often encounters optical waveguides for which the refractive index is a 
continuous function of at least one of the spatial coordinates. Such waveguides 
are called graded-index waveguides. A sketch of the simplest type of a planar, 
graded-index waveguide, for which n, depends on the single coordinate x, 
appears in fig. 12. Note that x increases downward from the upper waveguide 
surface in fig. 12, in contrast to fig. 1. In this structure the refractive index n,(x)  
is greatest at x = 0 and diminishes with increasing x until it reaches some 
constant value. In practice, waveguides of this type are often made by diffusing 
some species into a host crystal. The result is a region typically a few microns 
thick for which the average refractive index exceeds the ambient value in the 
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Fig. 12. The geometry for a typical graded-index optical waveguide. The refractive index is 
highest at the surface and decreases with depth toward the ambient value of the most material. 

host crystal. This higher-index region can confine light in much the same way 
as the step-index structure. 

The qualitative features of the bound modes of the graded-index waveguide 
are not significantly different from those of the step-index waveguide. Electric 
and magnetic fields of the form given in eqs. (1) and (2) solve the wave 
equations in eqs. (16) and (17), subject to the appropriate boundary conditions. 
The graded-index waveguide supports both T E  and TM modes, but the mode 
functions Em@) and H J x )  are more complicated than those for the step-index 
waveguide. It is usually the case that both the mode functions and the dis- 
persion relations can only be determined by numerical techniques. A discussion 
of these techniques is outside the scope of this chapter, but the reader can 
consult the published literature for further information. (CONWELL [ 19731, 
KOGELNIK [ 19751, KOROTKY and ALFERNESS [ 19871, HOCKER and BURNS 
[ 19751). 

3.3. BOUND MODES OF THE NONLINEAR OPTICAL WAVEGUIDE 

Certain materials exhibit a type of nonlinear response that leads to a refrac- 
tive index that depends on the intensity of the optical wave propagating in the 
medium. If the wave has a nonuniform spatial profile, it produces an index 
gradient that, in turn, modifies the properties of the propagating wave. The 
self-focusing of a laser beam in a nonlinear medium is perhaps the most familiar 
example of this process. 

A layer of this nonlinear material, bounded by linear media, is capable of 
supporting guided waves. An exhaustive discussion of this subject is beyond 
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the scope of this chapter, but one example will be examined here. Equation ( 3 6 )  
gives the refractive index configuration for this example, 

n2(x)= n,’ x > h ,  

= n , Z + A + n , I E I 2  O < x < h ,  

= n, x < o .  (36) 2 

Here, n2 is the nonlinear coefficient that describes the (real) magnitude of the 
nonlinear term in the refractive index of the layer and A is a small, negative (real) 
number. For E = 0, the refractive index of the layer is smailer than that of the 
substrate (n,) ,  which means that the layer cannot serve as an optical waveguide 
in the conventional sense, since the total internal reflection condition cannot 
be satisfied at both interfaces. As E grows, the nonlinear term will first equal, 
then exceed A, and one expects bound modes of some sort to appear. 

The wave equation for TE modes can be solved using the familiar form 

(37) E = G ( ~ )  ei(/3. - W 

where 

G(x)= E,  e-Yc(x-h) x > h ,  

= E,  sech{k,(x - x,)} 0 < x < h , 

= E, eySx x < o .  (38) 

is the mode profile. Application of the boundary conditions on the tangential 
components of the electric and magnetic fields leads to the dispersion relation 

k,(Yc + YS) 

k f  + Yc Ys 

tanh(k,h) = (39) 

It is convenient at this point to introduce a few new parameters in terms of 
which to discuss some interesting features of these nonlinear guided waves. The 
parameters V, D, and a are defined according to 
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The original parameters can be expressed in terms of the new ones as: 

k f =  k , { ld l  (1 + D)}1’2, (43) 

The dispersion relation can therefore be written in the form 

The exponential decay rates in eqs. (44) and (45) must be positive to assure 
proper behavior at x = + 00. This is only possible for D 2 0, which means that 
the minimum power the wave must carry is determined from the condition 

which is a condition that ultimately determines the required minimum intensity 
of the source used to excite the nonlinear guided wave. The larger the nonlinear 
coefficient, the smaller the required intensity. The effective index of refraction 
N = /?/(o/c), introduced earlier, is “power dependent” for the nonlinear wave 
and is given by 

N = (n: + (dl D)’l2. (48) 

As in the discussion of the step-index waveguide, N must exceed ns, which 
follows immediately from eq. (48) and the condition D 2 0. This suggests a 
connection with the normal internal reflection mechanism that is at work in the 
step-index case. 

The dispersion relation provides the allowed values of N for a given structure 
and choice of wavelength or frequency. Figure 13 shows a plot of the dispersion 
relation from eq. (46), plotted as N versus V, since D determines N according 
to eq. (48), for a symmetric structure (a = 0). It is significant that for a given 
V, i.e. a given structure, there are two distinct solutions for N, and hence for 
D, for a given value of V. This result means that two different nonlinear guided 
waves can, in principle, be supported by a particular nonlinear waveguide at 
two different power levels. 

There are other structures that support nonlinear guided waves. For example, 
a nonlinear waveguide can be formed by depositing a layer of a linear material 
onto a nonlinear substrate, or by sandwiching a linear layer between two 
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Fig. 13. Plot of the effective index N as a function of the parameter V for the nonlinear optical 
waveguide. 

nonlinear media. Furthermore, important issues such as the stability of the 
nonlinear waves and the means of exciting these waves remain the subjects of 
very active investigation. The reader is referred to the extensive literature on 
nonlinear waveguides for more exhaustive treatments of the subject 
(STEGEMAN, BURKE and SEATON [ 19871). 

3.4. RADIATION MODES OF THE STEP-INDEX WAVEGUIDE 

The previous sections described the bound modes that are supported by 
planar optical waveguide structures of various kinds, with emphasis on the 
step-index waveguide. The TE and TM modes were described by electric and 
magnetic fields of the form 

and H = f+H,,(x)ei(flz-ot), (49) E = f+E,(x) ei(flz - a t )  

which vanishes at f 00, and for which n,(w/c) < B < n,(w/c). The wave 
equations also admit solutions of the form given in eq. (49) for other values of 
(real) fl, but they are not localized near the waveguide layer. These solutions 
are termed radiation modes and correspond to oscillating fields in at least two 
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of the three media in fig. la. Since they have the form of eq. (49), the radiation 
modes of the step-index waveguide are orthogonal to the bound modes of the 
same waveguide, according to eq. ( 3 9 ,  although they cannot be normalized by 
the simple prescription in eq. (23). Only the essential characteristics of the 
radiation modes will be described here. 

The two types of radiation modes for the geometry in fig. l a  are substrate 
radiation modes and substrate-cover radiation modes. Retaining the usual 
convention that n, 2 n,, for the substrate radiation modes, pis restricted to the 
range n, k, < f i  < n, k,. The field profiles for the TE and TM substrate modes 
are 

and 

where each is in a form consistent with that used by KOGELNIK [ 19751. It is 
clear from the field profiles and the range of p considered that a substrate 
radiation mode has total internal reflection at the cover/film boundary (x = h), 
but not at the substrate/film boundary ( x  = 0). In fact, eqs. (50) and (51) are 
precisely the fields one obtains by solving the Fresnel reflection problem for the 
case of a plane wave incident on the film layer from the substrate at an angle 
greater than or equal to 8 = arcsin (nc/ns), measured with respect to the normal. 
It is important to note that #l is continuous within its prescribed range for 
radiation modes, as one might expect given the analogy with the Fresnel 
reflection problem. 

The situation is more complicated for the substrate-cover radiation modes, 
for which 0 < < n, k,. There are two sets of these radiation modes, which can 
be understood by noting that for a symmetrical waveguide the field profiles will 
possess even or odd symmetry. For the asymmetric waveguide one set of 
radiation modes must possess even symmetry and the other, odd symmetry, in 
the limit n, + n,. The field profiles for the TE and TM substrate-cover modes 
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are of the form 

cos 
E,,(x) = E: {qc(X - h )  + d:'} X > h 9 

sin 

O < x < h ,  cos 
= E: {qfx - de)}  

sin 

x < o ,  
cos 

= E: (qsX - d;)) 
sin 

[I, § 3 

and 

cos 
HJX) = H: { d x  - h) + c',"'} x > h , 

sin 

1 O < x < h ,  
cos 

= Hf' {qfx - dm) 
sin 

where, in each expression, e and m label TE- and TM-related quantities, + and 
- designate even and odd modes, respectively, and cosine is used for even ( + ) 
modes, sine is used for odd ( - ) modes. Physically, these modes correspond 
to spatially oscillating fields in all three media. They can be viewed as properly 
phased superpositions of the solutions to the Fresnel reflection problem for the 
cases of plane waves incident upon the layer of thickness h from above and 
below. 

Although this will not be discussed in detail at this point, the bound and 
radiation modes of the step-index planar optical waveguide constitute a com- 
plete set of orthogonal functions. The bound modes make up the discrete 
spectrum, and the radiation modes make up the continuous spectrum. It is 
often convenient to use a mode expansion based on these functions when 
analyzing interactions in optical waveguides that have been perturbed in some 
fashion. A typical example is a waveguide with one corrugated surface. The 
periodic surface perturbation can provide a mechanism for converting forward- 
going waves into backward-going waves, or for coupling the bound modes with 
the radiation field, as might be exploited for input or output coupling. 

Since the major emphasis in this chapter, the interaction between bound 
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modes and waveguide gratings, does not require a deep understanding of the 
radiation modes, no further details about them are given here. The interested 
reader is referred to the works of KOGELNIK [ 19751 and MARCUSE [ 19741. 

0 4. Nonplanar Optical Waveguides 

The waveguide geometries so far considered in this chapter provide confine- 
ment along only a single coordinate axis. Waveguides that provide confinement 
along two axes are required for several applications. The circularly cylindrical 
optical fiber is the most familiar example, but other types are in common use 
as well. Unfortunately, numerical techniques are needed to analyze these 
structures in detail, but their qualitative features are easy to infer from those 
obtained earlier for planar waveguides. 

The fields associated with the bound modes of the three-dimensional 
waveguide are of the general form 

E(x, y, z,  t )  = $+Em,(x, y )  ei(P--Z-w‘), 
and 

(54) 

for assumed propagation along the z-direction. Note that the propagation 
constant p now depends on the two mode integers m and n, and that the field 
amplitudes depend on both the x- and y-coordinates. When the size of the 
waveguide is sufficiently small along each of the two transverse directions, a 
standing wave is set up within the guiding region much like the case for 
one-dimensional confinement. This leads to field distributions much like those 
shown in fig. 10 along each transverse direction. Only one integer label was 
needed in the case of the planar waveguide, an integer that specifies the number 
of zeros of the field. Two such integers are needed for confinement along two 
axes, since the number of zero-crossings need not be the same in both 
directions. Strictly speaking, the x- and y-dependences in eqs. (54) and ( 5 5 )  are 
not separable, although it is sometimes a useful approximation to write 

and likewise for the magnetic field. 

m and n. They also satisfy an orthogonality relation given by 
The modes satisfy a dispersion relation that involves the two mode integers 

{Emqt(x) x H,*,,(x)} - 1 d x  dy = 0 for m # n and q # s , (57) 
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where the subscript t, again, designates the transverse component(s) of the field, 
just as in eq. (35) for planar waveguides. The notation (three subscripts) is 
somewhat cumbersome, but eq. (57) is just the natural extension of the earlier 
result. 

This chapter does not make use of the detailed forms of the modes supported 
by the two-dimensional waveguide, so no further discussion of them is included 
here. The interested reader can consult the references for further information 
(ADAMS [ 19811, KOGELNIK [ 19881). 

8 5. Coupling Between Guided Waves 

The problem of a guided-wave propagating in a periodic medium can be 
formulated in a variety of ways. Of particular interest is the case for which the 
propagation constant p (along z )  very nearly satisfies the Bragg condition. The 
most popular theoretical technique develops a pair of coupled-mode equations 
that connect the amplitudes of the forward- and backward-propagating waves. 
These equations can be extracted directly from the one-dimensional wave 
equation, as demonstrated below. 

Consider the following one-dimensional differential equation: 

[$ + 8’1 f ( z )  = - 2BK(z) f ( z )  , 

where the specific choice of constants on the right-hand side has been chosen 
for convenience. The important feature of the right-hand side of the equation 
is the product form; K ( z )  is simply some function of z. A particular solution 
of eq. (58) can be written in terms of a Green function g(z,  z ’ )  for the one- 
dimensional Helmholtz equation according to 

where g(z,  z f  ) for the one-dimensional Helmholtz equation is known to be 

,ifllz-z’l 

g(z, z ’ )  = ~, (60) 2iB 

subject to the requirement that only outgoing waves appear at z + + co. [Recall 
the time dependence used here is exp( - iwt).] 
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To simplify what follows it is convenient to define the right-hand side of 
eq. ( 5 8 )  as Q(z>, 

Q(4 = - 2BK(z) f(z) . (61) 

The absolute value in eq. (60) makes it clear that eq. (59) can be written as the 
sum of two terms, one for z' > z and one for z' < z, 

f(z) = A + (z) eipZ + A - (z) e - iflz , (62) 

where A +  and A -  are the z-dependent amplitudes of forward-going and 
backward-going waves, respectively, given by 

and 

It is now easy to show that eqs. (63) and (64) correspond to a set of coupled, 
lirst-order differential equations that determine the amplitudes A + and A - . 

First, differentiate eqs. (63) and (64) to obtain 

dA+ 1 
- e-'pz Q(z), 

dz 2iB 

and 

Next, substitute eqs. (61) and (62) into eqs. (65) and (66). The results have the 
simple form 

and 

~ = - iK(z) A + (z) ei2pz - iK(z) A - (z) dA - 
dz 

These are the coupled-amplitude, or coupled-mode, equations. 
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Equation (58) contains no dependence on the transverse coordinates, 
something that is essential for a proper description of interactions in an optical 
waveguide. The wave equation, however, often reduces to that in eq. (58) within 
some convenient approximation that allows integration over the transverse 
coordinate(s). As soon as such an integration becomes possible, coupled 
equations of the form given in eqs. (67) and (68) can be expected to emerge from 
the analysis. 

Several treatments of the problem of grating coupling between guided waves 
will be presented and discussed here. Not all of these start with the wave 
equation, but coupled amplitude equations of the form that appears in eqs. (67) 
and (68) nevertheless emerge from all these analyses. 

5.1. IDEAL-MODE EXPANSION AND COUPLED-MODE EQUATIONS 

Most of the published coupled-mode formulations of the problem of the 
interaction of a guided wave with a waveguide grating have been based on the 
so-called ideal-mode expansion. Slightly different versions of this approach to 
the grating problem have been used by YARN [1973], MARCUSE [1974], 
KOCELNIK [ 19751, STREIFER, SCIFRES and BURNHAM [ 19751, WAGATSUMA, 

SAKAKI and SAITO [ 19791, and others (YAMAMOTO, KAMIYA and YANAI 
[1978], LIN, ZHOU, CHANG, FOUOUHAR and DELAVAUX [1981]). All 
versions of the theory provide a good description for TE-polarized guided 
waves, but there is evidence that the approach fails for the TM polarization. 
KOCELNIK'S [ 19751 treatment is particularly instructive, and is included here 
to illustrate the ideal-mode technique. Only planar waveguides are considered. 

The transverse (to z) components of the waveguide mode functions form a 
complete set of orthonormal functions that can serve as the basis set for an 
expansion of the fields of interest. This is true strictly for real refractive indices 
and real values of the propagation constant /?. The expansion includes both 
bound and radiation modes. If E, and H, represent the transverse components 
of the fields of interest for a forward-going wave (propagating in the + z  

direction), the mode expansion can be written as 

E;' = a: ( z )  E:i(x) + a + ( z ;  4 )  E; ' ) (x;  4 )  dq , (69) 
n s,1 

and 

H;' = C a,: (z)  H:?(X) + a + (z; 4) H~"(x ;  4 )  d4 . (70) 
I ,  
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The superscript + designates a forward-going wave, the superscript (i) 
designates a mode of the ideal waveguide. In each of the above equations there 
is a discrete sum over the bound modes and a continuous one, expressed as 
an integral, over the radiation modes. The quantity q in the latter represents the 
spatial frequency associated with radiation in a given direction. The expansion 
“coefficients”, a,(z) and a(z), depend on z. The expansion is based on the idea 
that the fields of interest can be expanded in the modes of a particular unper- 
turbed waveguide, the ideal waveguide, for which the modes are known and 
given by eqs. (6) ,  (lo), (50), and (51). The superscript (i) is assigned here to 
make the identification of an ideal mode as clear as possible. The form written 
in eqs. (69) and (70) assumes that each term in the expansion can be factored 
into a product that separates the x- and z-dependence. In what follows, a 
somewhat simpler notation will be used to represent the mode expansions in 
eqs. (69) and (70). Namely, a single summation symbol will be used to represent 
both the discrete and the continuous sums in the mode expansions. The 
emphasis here is on the bound modes, but Kogelnik’s formalism applies equally 
well to the radiation modes. 

An alternative expansion, the local normal mode (LNM) expansion, to be 
discussed later, is based on a different idea. At each z the fields are expanded 
in terms of the modes of the unperturbed waveguide with the local thickness. 
This means that in the LNM expansion, the modal fields depend on z, since 
the perturbed waveguide has a thickness that varies with z. The results of the 
two types of expansions do not always agree. 

KOGELNIK [ 19751 examines the problem of a guided-wave propagating 
along the z-direction, perpendicular to the “rulings” of a surface grating that 
is very nearly of the correct period for Bragg reflection (see, e.g. fig. 5) .  The 
grating is presumed to be very wide so that the fields exhibit no y-dependence. 
The development of the basic equations of the ideal-mode approach proceeds 
as follows. Consider an unperturbed waveguide with permittivity 
E ( X )  = n 2 ( x ) t o  [see eq. ( 5 ) ] .  This waveguide structure is then perturbed, by 
corrugating one interface, e.g., so that the permittivity becomes E ( X )  + Ae(x, z); 
the specific details about the corrugation are contained in A E ( x ,  z). Maxwell’s 
two curl equations for the fields of the perturbed structure are [assume 
exp ( - iwt)] 

V x E = i p w H ,  (71) 

and 

V x H = - i W ( E  + AE) E . (72) 
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Let the subscripts 1 and 2 refer to two waves, each of which is described by 
fields that satisfy eqs. (71) and (72) for either A& = 0 (the ideal waveguide) or 
A& # 0. If wave 2 propagates in the ideal waveguide and wave 1 propagates in 
the perturbed waveguide, it is straightforward to show that 

V (El x H,* + E,* x N,) = io(A&)El E,* , (73) 

where the complex conjugates of eqs. (71) and (72) have been used. 

vative on the left-hand side of the resulting equation, 
Next, integrate eq. (73) over x and separate the z-derivative from the x-deri- 

m 

* ( E , x H , * + E , * x H , ) d x = i w  

(74) 

The integration over the a/ax term vanishes if either or both of waves 1 or 2 
is a bound mode, since the fields for a bound mode vanish at x = & co. Wave 2, 
by hypothesis, has fields of the form given in eq. (1) and (2); assume for the 
moment that this is a forward-going wave: 

E, = f E z ( x )  exp[i(flz - at)] and H ,  = fH$,)(x) exp[i(flz - ot)] . (75) 

The fields for wave 1 can be expanded according to eqs. (69) and (70), the 
ideal-mode expansion, after one small change. Since E, and H ,  will both 
contain forward- and backward-going waves due to the Bragg interaction, 
terms must be added to eqs. (69) and (70) to represent the latter. The replace- 
ments 

a,+ (z) + a,+ (z) + a; (2) and a + (2; q)  + a + ( z ;  q) + a- (z; q) (76) 

in eq. (69), along with 

u,+(z)+~,+(z)  - u,(z) and a + ( z ; q ) + a + ( z ; q )  - a-(z;q) (77) 

in eq. (70), make it explicit that both forward-going ( + ) and backward-going 
( - ) waves are included, and make sure that the direction of Poynting’s vector 
E x H is correct in both cases (H,  changes sign for a backward-going wave; 
E, does not). 

The use of the orthogonality relation (recall that the bound modes are 
orthogonal to the radiation modes), eq. (35), after these substitutions in eq. (74) 
gives the result 

m 

~- da,+ ( 4  ifl,a; (z) = aio (AE)E, - { E z + } *  d x  . 
dz I- m 

(78) 
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Had wave 2 been chosen to be a backward-going wave, the result would have 
been 

00 

da' + ifima; (z) = - biw (A&),??, { E c - } *  d x  , (79) 
dz s- a, 

where the superscripts + and - designate quantities associated with forward- 
and backward-going waves. These can be further reduced by introducing the 
amplitudes A + (z) and A -(z), 

a; (z) = A; (z) exp(iflz) and a, (z) = A ,  (z) exp( - iflz) , (80) 

with the results 

and 

The transverse component of the field El  that appears on the right-hand side 
of these equation-s can be expanded in the same way as described above, using 
eqs. (69) and (76), but the z-component is handled differently in Kogelnik's 
treatment. It is easy to show that H , ,  and E l ,  are related according to 

V, x H , ,  = - i W ( &  + A&)E,,  . (83) 

H ,  , can be expanded using eqs. (70) and (77), which means that eq. (83) can 
be used to determine an expansion for E l , .  The result is 

& 
4, = __ 1 {u; (z) - a, (z)} @,(x) . 

& + A &  m 
(84) 

It is convenient to define two quantities that describe the interaction in the 
waveguide, 

and 
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The superscripts + and - have been dropped from the modal fields in 
eqs. (85) and (86), since the signs used with a,(z) [see eqs. (76) and (77)] in 
themodeexpansion ensure the proper choice of signs for forward- and backward- 
going waves. The right-hand sides of the coupled-mode equations, eqs. (8 1) and 
(82), can now be expanded according to eqs. (69), (76), and (84) to obtain 

and 

(88) 

These are the coupled-mode equations as derived by KOGELNIK [ 19751 for the 
two-dimensional case (no y-dependence). Once the perturbation A E  has been 
defined, the quantities in eqs. (85) and (86) can be determined, since the ideal 
modes are known, and the system of coupled differential equations in eqs. (87) 
and (88) can be solved, at least in principle. 

Figure 14 shows a typical perturbed waveguide structure, a segment of a 
waveguide with a cosine corrugation on the upper surface. The unperturbed, 

I Ac4ual Surface 

ns 
Fig. 14. A planar optical waveguide with a corrugated upper surface. The surface grating is made 
up oftwo perturbation regions, labeled a and b. The grating depth is 2 Ah; the ratio Ah/h is taken 

to be small. The grating has a period A. 
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or ideal, waveguide is taken to be the mean waveguide of thickness h shown 
in the figure. The location of the upper surface x = d of the perturbed, or actual, 
waveguide is given by 

d = h + Ah cos(K0z), (90) 

where Ah gives the strength of the grating and KO = 2 n/A is the grating constant, 
with A the grating period. The permittivity E ( X )  = ~ ' ( X ) E ~  for the unperturbed 
waveguide appears in eq. (5). The perturbation AE(x,  z )  is the difference 
between the permittivities of the actual and ideal waveguides, 

A E  = Eo(nf - nf)  h < x < d, as for region a, 

= ~ , ( n f  - n f )  d < x < h, as for region b. (91) 

The expressions in eqs. (85) and (86) can be evaluated very simply for the case 
of a small corrugation depth and TE polarization for both the forward-going 
and backward-going waves, for which KLn(z) = 0. We find, e.g., form = n = 0, 

Kho(Z) = 2 K COS (&Z) , (92) 

where 

n Ah nf' - N 2  

1 he, N 
K = - -  ___ (TE-TE) . (93) 

In the above equations the normalization condition in eq. (24) has been used, 
along with eq. (29); K is referred to as the coupling coefficient. 

The corresponding expression for the coupling coefficient K for TM-polar- 
ized waves that emerges from Kogelnik's treatment is 

(94) 
where qc was defined in eq. (32), and the values of N and he, appropriate for 
TM modes must be used [see eq. (34)]. There is strong evidence that eq. (93) 
is correct and eq. (94) is incorrect, as will be discussed later in this chapter. It 
appears that the correct TM-TM result can be obtained by setting the quantity 
in curly brackets { 

The number of terms that must be retained in eqs. (87) and (88) to provide 
an acceptable quantitative description for a given situation is a matter of great 
importance. If we consider a waveguide that is sufficiently thin so that it 

} to unity in eq. (94). 
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supports only the lowest order TE mode, we can assume that all the amplitudes 
are zero except n = 0: 

A,+ (z) = An- (2) = 0 for n # 0 . (95) 

The coupled-mode equations then reduce to 

and 

equations that are clearly of the same form as eqs. (67) and (68), which were 
obtained in a different way. Coherent coupling between forward- and back- 
ward-going waves can only occur (in the first Bragg order) when the propa- 
gation constant and the grating constant very nearly satisfy the Bragg condition 
2f10 = KO = 2 z / A  Only those terms on the right-hand sides of eqs. (96) and 
(97) that are properly phase-matched will be significant; the rest can be 
neglected, an approximation often termed the synchronous approximation, which 
leads to 

and 

where 6 is a small detuning parameter; 26 = 28, - KO (6 = 0 when the Bragg 
condition is satisfied exactly). These coupled fist-order equations have a 
relatively simple solution for many problems of interest. It is important to 
remember, however, that the simple form of eqs. (98) and (99) is based on the 
approximation in eq. (95). In many cases of practical importance this approxi- 
mation works quite well. Before turning to the solutions of eqs. (98) and (99), 
an alternative derivation that is not limited to a two-dimensional geometry will 
be considered for the TE polarization. 
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5.2. IDEAL-MODE EXPANSION - AN ALTERNATIVE APPROACH (TE) 

The coupled-mode equations were developed in the previous section by 
starting with the full mode expansions, eqs. (69) and (70), and then mani- 
pulating them in various ways using two of Maxwell’s equations. This is in 
contrast to the method illustrated in eqs. (58) - (68), which showed, for a 
one-dimensional case, that coupled-mode equations emerge directly from the 
wave equation. Since only one spatial mode of the waveguide is important for 
most applications, the full mode expansion is an unnecessary complication. In 
what follows, the problem of a TE-guided wave propagating in the corrugated 
structure of fig. 14 will be treated, but the restriction to propagation along z, 
perpendicular to the grating “rulings” will be lifted. The theoretical develop- 
ment parallels that of eqs. (58)-(68). 

Figure 15 illustrates the first-order Bragg interaction considered here. A 
TE-guided wave propagating in a single-mode planar waveguide at angle 0 with 
respect to the z-axis interacts with the periodic structure (having a period A )  
to produce a backward-going wave. A view of the x-z plane for the corrugated 
waveguide appears in fig. 14. Once again we assume that the Bragg condition 
is very nearly satisfied, so that 6, defined below eq. (99) with p, replacing Po, 
is small. We seek a solution of the wave equation for the electric field E, 

ki E(x, y, z, 0 = 0, 1 E ( X )  + AE(x, z) 

EO 

TOP VIEW 
Z = O  Z = L  

Fig. 15. Top view of a corrugated section of length L of a planar optical waveguide. The grating 
width along y is taken to be large. A forward-going guided wave with propagation vector 8, 
oriented at angle @with respect to the z-axis, generates a backward-going guided wave by means 

of the Bragg interaction with the periodic perturbation. 
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where E,  is the permittivity of free space, k, = W / C  = 2 4 A ,  E ( X )  = n2(x)eo and 
A& are as defined in eqs. ( 5 )  and (91), and the usual time dependence, 
exp ( - iot), is assumed. We adopt the central view of the ideal-mode expansion 
by considering AE to be a perturbation on the structure of the mean, or ideal, 
waveguide of refractive index n(x) ,  as shown in fig. 14. The field E is oriented 
parallel to the y-z plane, and is written in the product form 

E(x, Y ,  4 = f(z) exp (ifl,y) ~ $ ) ( x )  . (101) 

The superscript (i) labels the lowest-order ideal mode of the unperturbed, 
single-mode waveguide [see eq. ( 6 ) ] .  This is equivalent to neglecting the 
radiation modes in the full mode expansion, acknowledging that the period of 
the corrugation is such that it provides no coupling between the bound mode 
and the radiation field. 

The ideal mode satisfies the equation 

1 a2 
- + n2(x)k,z E$’(x)  = fl’E$’(x). [a,. 

Now, insert eq. (101) into eq. (loo), make use of eq. (102), and note that 
fl = (fly, fl,) to obtain 

[$ + j?:] f(z) E $ ) ( x )  = - pw2 A E ~ ( z )  E $ ) ( x ) ,  

where p = po = the permeability of free space. The 
eliminated from eq. (103) by first multiplying by the 

x-dependence can be 
complex conjugate of 

E,(x)* (i.e. E,(x))  integrating over all x, and using the normalization condition 
in eq. (24), with the result 

where 
m 

AE E$’ (x )  E(d“(x)* d x  , 

analogous to eq. (85). Equation (104) has the same form as eq. (58), the only 
difference being that f ( z )  is now a vector amplitude. This offers no significant 
complication, however, due to the simple form of the right-hand side of 
eq. (104). 

The same steps that led from eq. (58) to eq. (62), when applied to eq. (104) 
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give the result 

f(z) = A+(z) eipzZ + A-(z) ecipZz, (106) 

where A + ( 2 )  and A - (z) are the vector amplitudes of forward- and backward- 
going (along z)  waves. They are given by 

(107) e - i & Z '  K A + ( z )  = ~ ( ' ) f(z ')  dz' , 

and 

A - ( z )  = ~ 

cos I3 
eiflrz' K(z') f(z') dz' . 

These can be reduced to a pair of coupled, first-order equations by writing the 
vector amplitudes in terms of unit vectors e ,  according to 

A + ( z )  = A + ( z ) e +  and A-(z) = A-(z)e- , (109) 

where 

e ,  - e +  = 1 and e -  . e -  = 1 .  (1 10) 

The unit vectors specify the directions of the electric field vectors for the 
forward- and backward-going waves. We first form the dot products of 
eq. (107) and (108) with e +  and e - ,  respectively, noting that 

e ,  me- = cos(28), 

to obtain the scalar equations 

and 

dA - - iK(z) - 
dz cos0 

[ A  + cos(28) ei2pZz + A - ] . 

K(z )  was evaluated in the previous section [see eq. (92)] for a cosine grating 
of the type specified in eq. (90): K(z) = 2 IC cos(K,,z), where K is given by 
eq. (93). As with eqs. (96) and (97), we retain only the phase-matched terms 
(synchronous approximation) with the results 
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and 
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where 26 = 2/3, - KO, and 

K cos (28) 

cos 6 
K ( e )  = (TE-TE) , 

[I, I 5 

with K as given in eq. (93) for TE polarization. 
Equations (1 13) and (1 14) are in complete agreement with the coupled-mode 

equations derived earlier using Kogelnik's formalism for B = 0. They are more 
general, however, in that they apply for arbitrary angle B (see fig. 15). 
Equation (1 15) identifies the coupling coefficient ~ ( 0 )  for the TE-TE, first- 
order B r a g  reflection of guided waves. All theoretical treatments of this prob- 
lem obtain this same result for TE-guided waves for the case of a small surface 
perturbation Ah. 

5.3. SOLUTION OF THE COUPLED-MODE EQUATIONS 

The coupled-mode equations in eqs. (113) and (114) can be solved in a 
straightforward fashion after specifying the appropriate boundary conditions 
(KOGELNIK [ 19751). Here, we consider a surface-corrugation grating of finite 
length L along the z-axis, but of infinite extent along the y-axis. The upper 
surface of the perturbed waveguide is, then, given by 

d = h + Ah cos(K0z) 0 < z < L , 

= h  otherwise, 

as in fig. 15. The boundary conditions we consider are such that for perfect 
Bragg matching, 6 = 0, 

A'(z)= 1 z < O ,  

A-(z)=O z = L .  (116) 

The conditions at z = 0 and z = L yield the solutions 

(1 17) 
a cosh [a(L - z)] - i6 sinh [ a(L - z)] 

acosh(aL) - i6 sinh(aL) 
A + (z) = exp( - i6z) , 
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and 
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i @) sinh [ a(L - z)] 
A - (z)  = exp ( + i6z) , 

a cosh(aL) - i6 sinh(aL) 

43 

with 

{ ~(8 ) ’  - 6’)’’’. (119) 
We now examine the characteristics of these solutions. 

Figures 16 and 17 show plots of IA +(z)I2 and lA-(z)12 for rc(8)L = 2 for 
perfect Bragg matching (6 = 0) and an illustrative detuning (6 = 1.95/L), 
respectively. The increased detuning in fig. 17 results in a reduction in the 
amplitude of the reflected wave at z = 0 to approximately 80% and an accom- 
panying increase in the forward wave amplitude at z = L in comparison with 
the perfectly Bragg-matched case of fig. 16. The grating reflectivity R is defined 
as 

A - ( z  = 0) ’ 
= lA+(z  = Od ’ 

0.8 ’.O/ 

R 0.6 - 
v 

s 
N 

7 0.4 - 

0.2 - 

6=0 

0.0 0.2 0.4 0.6 0.8 1 .o 
Z/L 

Fig. 16. Plots ofA(z)A*(z) for forward-going ( t ) and backward-going ( - )waves for rc(0)L = 2 
and perfect Bragg matching, S = 0. 
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0.0 0.2 0.4 0.6 0.8 1 .o 
Z/L 

Fig. 17. Plots ofA(z)A*(z) for forward-going ( + ) and backward-going ( - )waves for K ( @ L  = 2 
and sample detuning 6 = 1.95/L. 

so that 

Note that the form of eq. (121) must be changed to one expressed in terms of 
sines and cosines for ~ / K ( B )  > 1. 

Figure 18 shows a plot of the reflectivity R versus 6 / K ( e )  for the two cases 
K(B)L = 1 (dashed line) and K(B)L = 2 (solid line). The larger coupling 
strength produces the higher peak reflectivity, greater than 90% in this example. 
Reducing the coupling coefficient ~ ( 0 )  both decreases the maximum reflectivity 
and broadens the spectral response, as one would expect. The detuning, for a 
fixed grating period, is a measure of the wavelength (or frequency) deviation 
from the Bragg-matched value. The Bragg-matched reflectivity R takes on the 
very simple form 

R = tanh2(K(8)L) (6 = O),  (122) 

plotted in fig. 19. The reflectivity for 6 = 0 saturates at unity for products of the 
coupling coefficient and the grating length greater than - 3 .  The coupling 
coefficient, of course, depends on the angle of incidence Oaccording to eq. (1 15) 
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6 I K(e) 

Fig. 18. Plots of the grating reflectivity R,  eq. (121), as a function of 6 /x (0 )  for tc(0)L = 1 (dashed 
line) and tc(0)L = 2 (solid line). 

0 2 4 6 8 
K(e)  L 

Fig. 19. Grating reflectivity R as a function of the coupling strength K(0)L for the case ot pertect 
Bragg matching, S = 0. 
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4 

1 

ANGLE 8 ( degrees ) 

Fig. 20. Normalized absolute value of the coupling coefficient I K(O)( as a function of the angle 
0 (see fig. 15) for TE-polarized incident and diffracted guided waves (TE-TE). Note that ~(0) 

has been set to unity for simplicity. 

for TE-guided waves, a dependence that is illustrated in fig. 20 for the normali- 
zation IC = 1 at 8 = 0. The coupling coefficient vanishes at 8 = 45" and rises 
rapidly as 8- 90". Divergence of the coupling coefficient for 8 = 90" is 
expected, since this corresponds to grazing incidence for which the reflectivity 
should approach unity. 

5.4. COUPLING BETWEEN TM-GUIDED WAVES 

The coupling coefficient K (  8) contains the essential information regarding the 
strength of the interaction between the guided wave and the surface corru- 
gation. As mentioned earlier, the various theoretical approaches generally agree 
on the matter of the TE-coupling coefficient, eqs. (93) and (1 15). This was not 
the case until very recently for the TM-coupling coefficient. It is becoming clear, 
in fact, that eq. (94), the coupling coefficient obtained from the ideal-mode 
expansion, is incorrect. 

STREIFER, SCIFRES and BURNHAM [ 19761 were the first to recognize that 
calculations based on the ideal-mode expansion for TM modes in a waveguide 
with a corrugated surface led to certain difficulties. They found that various 
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formulations of the problem led to very different values of K for the case of a 
large refractive-index difference at the corrugated boundary. SIPE and 
STEGEMAN [ 19791 then reported the results of a comparison (for B = 0) of the 
coupling coefficients obtained by the ideal-mode version of coupled-mode 
theory and by “total field analysis”, a theory that attempts to satisfy the 
boundary conditions at the corrugated surface in an explicit way. They found 
agreement for the TE case but disagreement for the TM case. STEGEMAN, 
SARID, BURKE and HALL [1981] generalized the “total field analysis” to 
arbitrary B and found general disagreement with earlier extensions of the 
ideal-mode analysis to arbitrary 8 for the TM case. GRUHLKE and HALL 
[ 19841 examined (for 13 = 0) both the grating-reflection problem and the related 
problem of the radiation pattern produced by a guided wave interacting with 
a surface grating. They used a boundary perturbation technique that satisfies 
the boundary conditions at the corrugated surface to first order in the grating 
height. Again, the results agreed perfectly with those of the ideal-mode version 
of coupled-mode theory for TE  polarization but disagreed for both problems 
for the TM polarization. 

MARCUSE [ 19741 describes two different formulations of coupled-mode 
theory, one of which is based on the ideal-mode expansion we have already 
discussed, and the other based on the so-called local normal mode expansion. 
Whereas the former expands the fields of the corrugated waveguide in terms 
of the fields of the uncorrugated mean waveguide, the latter expands them in 
terms of the fields for an unperturbed waveguide with the local thickness. The 
difference between the two is that the location (but not the slope) of the 
boundary of the perturbed waveguide coincides with that of the unperturbed 
waveguide for the local normal mode expansion, but not for the ideal-mode 
expansion. MARCUSE’S [ 19741 analysis for 8 = 0 shows that these two formu- 
lations predict different coupling coefficients for the TM polarization. 

MARCUSE’S [1974] local normal mode (LNM) analysis was recently 
generalized to arbitrary angle 6 by WELLER-BROPHY and HALL [ 19881. The 
predicted coupling coefficient ~ ( 6 )  (in pm- ’) appears as the solid curve in 
fig. 21 for an illustrative choice of parameters (n, = 1.0, n, = 1.56, n, = 1.47, 
h = 0.9 pm, L = 0.8 pm). The dashed curve, shown for comparison, is the 
prediction of the ideal-mode theory of WAGATSUMA, SAKAKI and SAITO 
[ 19791. The LNM analysis is in complete agreement with those theories that 
satisfy the boundary conditions (to first order in the corrugation height). The 
most striking feature in fig. 2 1 is the zero-crossing that occurs near 8 = 20” for 
the LNM theory, but does not occur for the ideal-mode theory. This suggests 
that an experiment that examines the grating reflectivity in the vicinity of the 
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e 
Fig. 21. Angular dependence ofthe absolute value of the coupling coefficient 1 K(B) I  (in pm- ' )  
for TM-polarized incident and diffracted guided waves (TM-TM), as predicted using the local 
normal mode approximation (solid curve) and the ideal-mode approximation (dashed curve). The 
parameters used to make the plots are given in the text. The former shows a distinctive zero- 

crossing that is absent in the latter. 

zero-crossing will be a good test of the two theories, since one theory predicts 
a very small value compared with the other [see eq. (122) for the relation 
between the reflectivity R and the coupling coefficient ~ ( e ) ] .  

WELLER-BROPHY and HALL [ 19871 reported the results of such an experi- 
ment. The waveguide and grating parameters were chosen so that, for the 
experimental conditions, the ideal-mode theory predicted a 100% reflectivity 
for both the TE and the TM cases, whereas the LNM theory predicted a 100% 
reflectivity for TE and a 13% reflectivity for TM. The comparison with experi- 
ment is summarized in table 1. 

TABLE 1 
Comparison of measured and predicted grating reflectivities (in % ). 

~ 

Theory Experiment 

Ideal mode Local normal mode 

TE-TE 100 
TM-TM 100 

100 
13 

75 
9 
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The measured reflectivities agree better with the LNM result. Neither calcu- 
lation included the effects of propagation losses in the waveguide, so the 
difference between the measured and calculated LNM values is not considered 
significant. The large difference between the measuredTE and TM reflectivities, 
however, lends strong support to the LNM version of coupled-mode theory as 
the more correct analysis. It appears, not surprisingly, that the boundary 
conditions on the corrugated surface must be handled carefully. 

5.5. LOCAL NORMAL MODE EXPANSION AND COUPLED-MODE EQUATIONS 

(TM) 

The success of the local normal mode (LNM) expansion over the ideal-mode 
expansion in predicting the results of the measurement described in the 
previous section for the TM polarization raises the question of the essential 
difference between the two approaches to the grating reflection problem. Both 
Marcuse's original derivation for 0 = 0 (MARCUSE [ 19741) and the extension 
of this work to arbitrary 0 (WELLER-BROPHY and HALL [ 19881) are rather 
cumbersome, however. More importantly, the derivations are sufficiently 
different so that the connection with that for the ideal-mode approach can be 
difficult to make. Here, we make use of a new treatment of the LNM approxi- 
mation that, hopefully, makes the comparison easier. The theoretical develop- 
ment in this section parallels that for the TE polarization presented in 
eqs. (loo)-( 115). 

We begin with the wave equation in eq. (loo), repeated here for convenience, 

and consider the same geometry that appears in fig. 15. As before, A E  describes 
the perturbation [see eq. (91)] introduced into the structure of the mean (or 
ideal) waveguide, as in fig. 14. Motivated by the earlier treatment of the TE 
problem, we write the field E in the form 

E ( x ,  y ,  z,  t )  = f(z) e'fl1.Y E,(x, z )  e-'"', 

where E,(x ,  z )  gives the x-dependence of the electric field profile at a given 
position z in the perturbed waveguide. In the LNM approximation, E,(x, z )  is 
taken to be the field profile for the mode of an uncorrugated waveguide with 
the local (L) thickness, i.e. that for a given z.  As before, we rearrange the wave 
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equation so that the perturbation term appears on the right 

(V2 + $ tki) E(x, y,  z, t )  = -~ k,Z E(x, y,  Z, t )  . (125) 
60 

At this point, eq. (125) still contains the spirit of the ideal-mode expansion, 
since the permittivity E ( X ,  z) = E ( X )  + As(x, z) has been split into two parts - 
that for the ideal waveguide [ E ( x ) ]  and that for the perturbation [AE(x ,  z)]. The 
chosen form for the field in eq. (124), however, does not make use of the field 
profile appropriate for the ideal, uncorrugated waveguide. The essence of the 
LNM approximation, as treated here, is that the field E is treated differently 
on the left- and right-hand sides of eq. (125). In particular, the z-dependence 
in E,(x, z )  is neglected on the left-hand side, but is retained on the right-hand 
side. The right-hand side of eq. (125) drives the differential equation, and so 
great care must be taken to model it as well as possible. This means that the 
approximate fields in the perturbed regions must be handled carefully. We will 
return to this point soon. Since it is assumed from the beginning that the 
perturbation is relatively small, the propagation of the forward- and backward- 
propagating waves should not be very different for the corrugated and uncorru- 
gated waveguides. Therefore, we treat E,(x, z) on the left as independent of z, 
and indistinguishable from the field profile for the ideal [superscript (i)] wave- 
guide. With this approximation on the left, eq. (125) becomes 

E"'(x) [ 7 :z2 + p,' ] f ( z )  x - k: r?) f(z)EL(x, z )  , (126) 

where we have assumed that E,(x, z )  - E(')(x) satisfies eq. (102), consistent 
with the approximation. 

Next, we integrate the x-dependence out of eq. (126) by first forming the field 

The quantities E$)(x) and @ ) ( x )  are the components of E(')(x) for a forward- 
going wave propagating along z (& = 0); designates a unit vector. The dot 
product in eq. (127) is positive (negative) for forward- (backward-) going waves. 
The amplitudef(z) consists of forward- and backward-going waves, as we have 
seen earlier in this chapter. The construction in eq. (127) allows us to project 
the forward-going field onto a backward-going ideal mode, and the backward- 
going field onto a forward-going ideal mode, to examine their mutual coupling. 
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We accomplish this by forming the dot product of eq. (126) with the complex 
conjugate of eq. (127) and then integrating over x, and obtain 

where K(z) has the familiar form 

K(z) = ;iw A E ( x ,  Z) E,(x, Z) * {E$’(x)} * d x  , (129) ’ S_a_ 
and IN is a normalization integral given by 

OCI 

IN = 1 E“’(x) {E$’(x)} * d x  . (130) 
--uo 

The normalization integral I, is similar to that for TE modes, eq. (24). In fact, 
the normalization for TM modes given in eq. (25) implies that I, - 2p0w/fi 
for the lowest-order TM mode. (For most cases IN rarely differs from 2p0w/B 
by more than 1 % for the lowest-order TM mode, primarily because the integral 
is dominated by the term involving the transverse components of the fields.) 
Equation (128) becomes 

which has the same form as that in eq. (104) for TE modes. 
From this point, the analysis proceeds just as before. The Green function 

technique is used to develop coupled-mode equations, which are then solved 
using the synchronous approximation [see above eq. (1 13)]. The all-important 
coupling coefficient is obtained by writing K ( z )  = 2 K cos (Koz), so that 

where we recall that the factor l/cos(8) is contributed by the Green function, 
since it is proportional to 1//?,. 

K ( z )  must be evaluated carefully. E,(x,  z) is the model field of an 
uncorrugated waveguide with the local thickness, whereas E(’)(x) is described 
in terms of the modes of the ideal (mean) waveguide. This means that each field 
must be placed in the correct medium, a point made in the paper by STEGEMAN, 
SARID, BURKE and HALL [ 19811. Table 2 attempts to make the distinction 
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TABLE 2 
Comparison of ideal-mode and local normal mode treatments for the TM-TM interaction 

(P = perturbed; U = unperturbed). 

Ideal mode* Local normal mode* 

h A& = &,(n: - n:) 

Ept(x, Z) n = n,, Ep,(x,  z )  x E?(h) n = n,, E,,(x, z )  x E f ) ( h )  

E&, zf n = ncr Ep,(x,  z) x (n,/n,)’E$)(h) n = n,, E,,(x, z )  x Ej“(h)  

Ept(x, Z )  n = n r .  E,,(x, z )  PZ El i ) (h )  n = no. Ept (x ,  z )  x E!’)(h) 

E p A  Z) n = n,, E, , (x , z )  PZ (n,/n,)*E$)(h) n = n,, E,,(x, z )  x E$)(h)  

t and z designate the transverse and z-components of the vector fields. 

between the ideal-mode and local normal mode approaches clear. For regions 
d > h, for which the actual surface of the perturbed waveguide extends beyond 
the mean surface at x = h, the field is approximated by that of a waveguide with 
constant thickness dusing n = n,. The same is true ford < h, except that n = n,. 
The correct refractive index is assigned to each perturbation region for the 
purpose of determining the field. The ratios n,/n, and n,/n, that appear in the 
expressions for the z-components of the fields in table 2 for the ideal mode case 
are the result of assigning a refractive index other than the actual one to each 
perturbation region. When evaluated properly, eq. ( 132) becomes 

n Ah n , Z - N 2  1 

1 he* N 40 
(TM - TM) , 

_ _ _ _ _ -  

.(O) = 
cos 0 
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for the cosine surface grating of eq. (90). Note that qc was defined in eq. (32), 
and all quantities should be evaluated for the lowest-order TM mode. 
Equation (133) is in complete agreement with that obtained by WELLER- 

BROPHY and HALL [1988], and is also in agreement with that obtained by 
STEGEMAN. SARID, BURKE and HALL [ 19811 after a few minor algebraic 
corrections are made. A comparison with Kogelnik’s result, eq. (94), for 8 = 0 
shows agreement, provided the quantity in curly brackets in eq. (94) is set to 
unity, as mentioned earlier. Indeed, it is eq. (133) that is plotted in fig. 21 (solid 
line) and has so far shown good agreement with experimental results (WELLER- 
BROPHY and HALL [ 19871). Equation (1 15) is obtained when the method 
discussed in this section is applied to the TE-TE Bragg reflection problem; 
thus, the method is both straightforward and reliable. 

The ideal mode approach to the grating reflection problem differs from the 
treatment given in this section in two ways. First, the LNM approach does not 
weight the z-component of E differently from the transverse components of E, 
as is the case for the ideal-mode approximation. This follows as a natural 
consequence of the assumption that E,(x, z )  is evaluated as the mode of an 
ideal waveguide with the local thickness. Second, the net etrect of treating 
E , ( x ,  z) this way is that products of the field components in eq. (129) contain 
one field for each medium, the cover and the film, a feature not present in the 
ideal-mode approach. The success of the various versions of the LNM approxi- 
mation highlights the importance of treating the field very carefully in the 
perturbation term in the wave equation. 

5.6. SUMMARY OF COUPLED-MODE TREATMENTS 

The previous sections reveal several important points about coupled-mode 
formulations. First, derivations of the coupled-mode equations, eq. (1 13) and 
(1 14), often make use of a slowly varying envelope approximation, in which the 
second derivatives of both the forward- and backward-wave amplitudes with 
respect to z are neglected. This is a completely unnecessary approximation. 
Both the Green function approach and other formulations arrive at the proper 
equations without invoking such an approximation. Second, some researchers 
have asserted that the case of non-normal incidence to the grating “rulings” 
cannot be treated by solving the wave equation directly (POPOV and MASHEV 
[ 1985a,b]). They argue that one must begin the analysis at a low level, so to 
speak, with Maxwell’s curl equations. The Green function method discussed 
here demonstrates that this statement is incorrect. Third, the flaw in the 
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reasoning behind the ideal-mode expansion treatment of the grating-reflection 
problem was revealed to be an improper treatment of the fields in the region 
of the surface corrugation. The wave equation contains a perturbation term 
proportional to ( A E )  E, in which E must be considered to be a field in the actual 
medium for the perturbed structure, one for which the permitivity is 
E ( X )  t AE(x,  z). The ideal-mode expansion violates this to produce two errors, 
an improper treatment of the z-component of the field [see eq. (84)] and an 
improper evaluation of the field within each perturbation region in the coupling 
coefficient. The LNM expansion suffers from neither of these difficulties, since 
the boundary for the local normal mode E,(x,  z )  occurs at the same location 
as, but with different slope than, that for the actual waveguide field. Previous 
derivations of the LNM results (MARCUSE [ 19741, WELLER-BROPHY and 
HALL [ 19881) obtain the correct coupled-mode equations and coupling 
coefficients for both the TE-TE and TM-TM cases, but the Green function 
technique obtains the same results for the lowest-order (m = 0) modes with 
much less labor and in a more direct manner from the wave equation. 

5.7. PERTURBATIVE TREATMENT 

The previous treatments of the problem of guided waves interacting with a 
surface-corrugation grating have considered the coupling per unit length 
between the incident and Bragg-reflected waves to be weak. This is implied in 
the restriction that the ratio Ah/h or Ah/A is small, which allows the coupling 
coefficient ~ ( 0 )  to be expressed in a relatively compact form. These same 
treatments, however, allow the total interaction to be large so that the depletion 
of the incident wave cannot be neglected. The weak coupling between the 
forward- and backward-going waves that occurs within any single period of the 
corrugated waveguide can build up coherently when the Bragg condition is at 
least nearly satisfied. In this way, even a weak interaction can produce a nearly 
100% conversion between the two waves in a finite, but sufficiently long, 
structure. Thus we see that the coupling coefficient describes the interaction per 
unit length, whereas the coupled amplitude equations describe the relative 
amplitudes of the forward- and backward-going waves. 

A few authors have attempted to reduce the complexity of the waveguide 
grating problem by separating the two main parts of the problem (STEGEMAN, 
SARID, BURKE and HALL [ 19811). First, the coupling coefficient is determined 
in the weak-scattering limit in which one ignores the depletion of the incident 
wave. The coupling coefficient is subsequently inserted into a pair of coupled- 
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mode equations to obtain the full solution including depletion. This approach 
offers the advantage that ~ ( 6 )  can be determined, in principle, to arbitrary 
precision by using a power-series expansion in, e.g., Ahlh. It has the disadvan- 
tage, however, that the coupled-mode equations must be obtained separately, 
a process that has led to errors in the past when these equations have been 
obtained rather intuitively (STEGEMAN, SARID, BURKE and HALL [ 198 11). The 
technique for obtaining the coupling coefficient for one such perturbation 
approach is illustrated in this section. 

TUAN [ 19731, TUAN and Ou  [ 19731, and TSAI and TUAN [ 19741 used a 
surface-perturbation theory formulated by CHEN [ 19681 to examine the 
scattering of guided waves by a single groove or deformation in the surface of 
an otherwise unperturbed planar optical waveguide. The technique is based on 
an expansion of the scattered field and the boundary conditions in power series 
in the parameter Ahlh, which is presumed to be small. Their theoretical work 
does not treat the grating problem explicitly, although it also applies to that 
case. This discussion will assume that the surface-corrugation waveguide 
grating in fig. 14 is the structure of ultimate interest. HALL [ 19801 has shown 
that for the problem of a guided wave that radiates due to the interaction with 
a surface structure, the first-order (in Ah/h) boundary perturbation method 
leads to the same result as the coupled-mode theory of MARCUSE [ 19741 for 
the TE polarization, but to different results for the TM polarization (GRUHLKE 
and HALL [ 19841). Again, the disagreement for the TM case is due to the same 
shortcoming on the part of the ideal-mode expansion, discussed in the previous 
section. The boundary-perturbation method gives the correct result. 

The boundary-perturbation theory was originally formulated in two dimen- 
sions, but was later extended to three dimensions (HALL [ 19811). Since this 
section merely aims to outline the methodology, the simpler two-dimensional 
case will be considered; i.e., we will examine the Bragg reflection of a guided 
wave incident on a grating at normal incidence (0 = 0 in fig. 15). The grating 
length L is taken to be sufficiently small so that depletion of the incident wave 
can be neglected. The more difficult TM-TM case will be considered here to 
make a strong connection with the content of the previous section, although 
the theory also works well for the TE polarization. The basic geometry is shown 
in fig. 9. 

The upper surface x = d of the waveguide is taken to be of the form 

d = h { l  + qp(z)} f o r O < z < L ,  (134) 

and uncorrugated with d = h, otherwise. The parameter is small, and p(z) 
describes the surface perturbation. The magnetic field for the TM polarization 
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is oriented along the y-direction, 

H = yHy. (135) 

The field Hy is expanded as the sum of two parts, 

Hy = Hy, inc + Hy. scatt * (136) 

The incident fields, labeled "inc", are taken to be those given in eq. (lo), the 
fields for the unperturbed waveguide of thickness h, for a forward-going wave 
according to 

Hy, inc = Hm(x) ~ X P  [~(Pz  - (1 37) 

The scattered field in medium j is expanded in a power series in the small 
parameter q, 

where H,, is the nth-order scattered field, and j = s, f, or c in the substrate, 
film, or cover regions, respectively. For a surface grating of the form of interest 
here, p(z) = cos(K,z) and 

The boundary conditions on the tangential components of E and H can both 
be expressed in terms of H by using the unit normal un to the corrugated 
surface. Both H,, and ( ~/E)u, * VHy must be continuous across the corrugated 
interface between the cover and film media. This is difficult to accomplish 
exactly, but the boundary conditions can be expanded in a power series in q 
and satisfied up to a specified order in q. The operator u, V can be written 
in terms of the surface profile as 

= Ah/h.  

When the boundary conditions are satisfied through first order in q, we obtain 

Hs'(h ,  Z) - Hif!(h, Z) = hp(z)  {H$!)iinc(~, Z) - H:),,.(X, z)l]lx=h 3 M,(z) 3 

(140) 

and 
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where 

As before, the superscripts (c) and (f) on the incident fields designate the 
medium in which eq. (137) will be evaluated. The bottom surface of the wave- 
guide at x = 0 is taken to be unconugated, of course, so that the first-order 
boundary conditions produce the much simpler requirements 

Hi?(O, z )  = H??(O, z )  , (143) 

and 

Equations ( 140)-( 144) can be solved for the unknown first-order scattered 
fields by introducing plane-wave expansions for H,,  in all three media. We write 

m 

Hi?(x, 2) = - [V1(t)ei'rx + V2(()e-iCfX] e"'dt, (146) 
2 A  --Q) 

where 

These reduce eqs. (140)-( 144) to a set of algebraic equations that can be solved 
for the amplitudes U, V , ,  V,, and W. 

The procedure is rather tedious, but the integral expressions for the fields are 
versatile. The radiation fields can be determined very easily in the far-field by 
applying the method of steepest descents. The field for the reflected field in the 
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waveguide can be obtained by noting that the integrals contain simple poles at 
5 = p. The pole at < = - p gives the field for the “backscattered” guided 
wave. Again, the process is rather tedious, but the result is quite simple. For 
example, the first-order scattered field within the waveguide layer is obtained 
from eqs. (138) and (146) to be 

(149) 

where H,,,(x) refers to the field in the film region 0 c x < h [see eq. (lo)]. A 
comparison with eq. (133) reveals that the quantity in square brackets is just 
the coupling coefficient ~ ( 0 )  evaluated for O =  0, as required by the two- 
dimensional geometry (implied normal incidence) considered here. The field is, 
then, just 

This means that the back-reflected wave has the same spatial profile as the 
incident wave, and has strength proportional to K(O)L. ~ ( 0 )  can, therefore, be 
interpreted as the fraction per unit length of the incident field coupled from the 
forward-going incident wave into the backward-going reflected wave, consis- 
tent with the interpretation earlier in the chapter. 

The agreement between ~ ( 0 )  in eq. (150) and eq. (133) is illuminating. The 
former was obtained by satisfying the boundary conditions to first order in the 
presumed small parameter Ah/h. The latter was obtained from coupled-mode 
theory, which typically makes no explicit use of the boundary conditions. The 
afore-mentioned agreement gives some confidence that eq. (133) can be relied 
upon, provided Ah/h is small. 

5.8. TE-TM MODE CONVERSION 

The previous sections focused on the issue of a correct formulation of the 
TE-TE and TM-TM Bragg interactions in a corrugated optical waveguide. 
These are not the only possibilities, however, since for non-normal incidence 
TE-TM mode conversion also occurs in an optical waveguide. That is, for 
incident angle fIi # 0, a TE- or TM-guided wave incident on a corrugated 
section of an optical waveguide can, in first order, generate a TM- or TE- 
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reflected guided wave if the B r a g  condition 

is at least nearly satisfied. In this case the incident and reflected guided waves 
will propagate at the different angles Bi and 0, with respect to the grating normal, 
since the effective index of refraction (NTE) for the TE polarization differs from 
that (NTM) for the TM polarization in a given waveguide, even though both are 
of the same vacuum wavelength 1. The local normal mode approximation also 
can be used to give a satisfactory result for this case (WELLER-BROPHY and 
HALL [ 19881). Only the result for the coupling coefficient is given here (note 
the dependence on two angles), 

where we have used the notation of WELLER-BROPHY and HALL [ 19881 so that 

There is no TE-TM mode conversion for normal incidence ei = 0, = 0. 

5 6. Summary 

This chapter has considered the interaction between the modes of a planar 
optical waveguide and a periodic surface corrugation, which is an important 
interaction in many applications. The specific case of the grating-induced 
coupling between two guided waves in a planar waveguide structure received 
the principal emphasis here, since it has been the subject of some controversy 
over the last ten years, a controversy that has only recently been resolved. The 
physical nature of the interaction is well understood, namely, as being due to 
Bragg scattering. The quantitative details are complicated, however, by the 
mode structure characteristic of even an elementary planar optical waveguide. 
Approximations that work very well and lead to excellent agreement with each 
other for TE-polarized guided waves disagree with each other significantly for 
TM-polarized guided waves. A recent experiment was able to distinguish 
between classes of theories. Those theories based on the familiar ideal-mode 
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expansion discussed in several textbooks and monographs disagree with the 
measured results for the TM polarization. Those theories based on either the 
local normal mode expansion or boundary perturbation techniques agree well 
with each other and with the experiments. The local normal mode theory makes 
no explicit consideration of the boundary conditions at the corrugated inter- 
face. The boundary perturbation techniques, in contrast, satisfy the boundary 
conditions up to a desired order in the grating height. It is interesting that two 
such different approaches should agree so well. 

After examining the fundamental principles of importance for a variety of 
optical waveguides, discussion turned to the various techniques used to attack 
the problem of a guided wave interacting with a waveguide diffraction grating. 
An attempt was made to formulate the various approaches to enable a compari- 
son among the various treatments. It emerged that the deficiency in theories 
based on the ideal-mode expansion can be attributed to an improper treatment 
of the electric field in the perturbation regions. In essence, these theories ascribe 
the wrong polarization (in the dipole sense) to the perturbation regions by 
consistently embedding the approximate fields in the wrong media. A new, very 
direct formulation of the local normal mode approximation avoided the com- 
plexities of earlier versions of the theory and make it relatively easy to identify 
the principal features of the approximation that make it so successful. We now 
appear to have at our disposal a theoretical description of the guided-wave 
Bragg-reflection problem that can be relied upon, at least for the case of shallow 
surface corrugations. Equally importantly, our understanding of the way in 
which the problem must be treated has improved. This will likely be of benefit 
in future treatments of scattering problems in optical waveguides, particularly 
those that involve TM-polarized guided waves. 

List of Symbols 

asymmetry parameter 
forward-wave amplitude 
backward-wave amplitude 
speed of light in vacuum 
power parameter 
electric field 
electric field profile 
transverse component of E,(x) 
field profile for ideal waveguide 
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local normal mode 
E,(x) at x = h 
E,(x)  at x = 0 
maximum value of E, (x )  
unit vectors 
nonlinear field profile 
Green function 
waveguide thickness 
effective waveguide thickness 
magnetic field 
magnetic field profile 
transverse component of H,(x)  
H,(x)  at x = h 
H,,(x) at x = 0 
maximum value of H,(x) 
field profile for ideal waveguide 
normalization integral 
coupling integral 
transverse- and z-parts of K,,,(z) 
grating constant ( 2 4 A )  
field profile parameter 
length of corrugated region 
mode integer or polarization index 
effective index of refraction 
substrate refractive index 
cover refractive index 
film refractive index 
x-dependent refractive index 
nonlinear coefficient 
TE mode effective index 
TM mode effective index 
TM mode parameters 
reflectivity 
time-averaged Poynting vector 
unit surface normal 
nonlinear waveguide parameter 

B propagation constant 
Yc,  Ys field decay constants 
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detuning parameter 
index offset parameter 
permittivity perturbation 
surface grating amplitude 
x-dependent permittivity 
permittivity of free space 
surface height parameter 
propagation angle 
designates unit vector 
coupling coefficient 
wavelength in vacuum 
grating period 
permeability of free space 
surface profile 
TIR half-phase shifts (TE) 
TIR half-phase shifts (TM) 
(angular) optical frequency 
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