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§ 1. Introduction

STEWART MILLER introduced the term “integrated optics™ in 1969 to refer
to the miniaturized optical systems he envisioned as important for the future
of optical communications. Two subsequent decades of research and develop-
ment in this area, along with major breakthroughs in the optical fiber and
semiconductor laser arenas, have led to the demonstration of many integrated
optical components, devices, and systems, and to the introduction of com-
mercial products that make use of this technology. Furthermore, interest in
integrated optics as a basic technology has broadened to include not only
telecommunications, but also other applications such as optical sensors,
information storage and processing, medical instrumentation, navigation, and
computing, to name just a few. In addition, there is a renewed emphasis on the
importance of making the technology of integrated optics compatible with that
of integrated electronics. The currently widespread use of the term “integrated
optoelectronics” is a reflection of the attitude that optics and electronics are
complementary technologies.

The central idea behind the concept of an integrated optical system is the
ability to process and manipulate light that is trapped within the confines of an
optical waveguide. Here, the term “light” is used in a loose sense. The wave-
lengths (1) of interest in both integrated and fiber optics are, for the most part,
in the near-infrared region of the spectrum, with wavelengths 0.8 < A <2 um,
rather than in the visible region. Most, but not all, optical waveguide structures
confine light by the mechanism of total internal reflection (TIR). Although there
are many specific types of optical waveguides, the most important distinction
to be drawn is based on dimensionality. A planar, or slab, optical waveguide
consists of a layer of elevated refractive index bounded above and below by
regions of lower refractive index. Such a structure provides confinement along
only one transverse coordinate axis, as illustrated in fig. 1a for a step-index,
planar optical waveguide. A geometrical optics construct that illustrates a ray
trapped by TIR between two surfaces also appears in fig. 1a. Another type of
optical waveguide provides confinement along two transverse coordinate axes
(fig. 1b). The refractive index boundaries in fig. 1 are depicted as sharp, but this
is not an essential feature of an optical waveguide. Both graded-index and
step-index structures are in common use.
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Fig. 1. (a) Planar, or slab, optical waveguide. The refractive index n¢ of the film layer of thickness

h must exceed that for each of the substrate (n,) and cover (n.) media. Refractive index barriers

appear only along the x-direction. (b) Three-dimensional optical waveguide. The refractive index

n, within the guiding structure exceeds that outside the structure along both transverse
directions.

This chapter focuses on one important structure for integrated optical/opto-
electronic systems: the waveguide diffraction grating. Since the diffraction
grating is a familiar component for conventional optical systems, it is logical
to assume that it will be for integrated optical systems as well. This has been
demonstrated by the use of waveguide gratings in integrated optics for
input/output couplers, filters, lenses, Bragg reflectors, distributed reflectors in
lasers, and as phase-matching elements for nonlinear interactions.

The fact that electromagnetic waves propagating within an optical waveguide
exhibit spatial profiles that depend on the transverse coordinates complicates
theoretical treatments of the interaction with waveguide diffraction gratings.
Despite numerous theoretical investigations, one case has proved particularly
troublesome: the Bragg reflection of a guided wave within a corrugated planar
optical waveguide. The planar waveguide supports modes with either of two
polarizations — transverse electric (TE) or transverse magnetic (TM). These are
defined later in this chapter. A guided wave of either polarization incident on
a waveguide grating generates a strong back-reflected guided wave if the Bragg
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condition is satisfied at least approximately. Almost all theoretical treatments
of this problem are in agreement when both the incident and Bragg-reflected
waves are TE waves. This is not the case, however, for TM waves, for which
theoretical treatments are in serious disagreement. Recent theoretical and
experimental efforts appear to have resolved this issue satisfactorily. This
chapter describes the essential features of the guided-wave Bragg reflection
problem that are crucial for a proper treatment of the problem. Sufficient
preliminary material on the properties of optical waveguide modes in several
structures is included to introduce the reader unfamiliar with the subject to the
more important features common to all optical waveguides. Since a full dis-
cussion of both the theoretical controversy and its resolution has not yet
appeared, sufficient theoretical detail has been included, particularly in the
later sections, to allow others to carry out the various calculations. Hence, the
introductory material is essential to make this chapter self-contained.

A qualitative review of the uses of the waveguide gratings mentioned earlier
is followed by a more quantitative review of the properties of optical
waveguides, with emphasis on the step-index planar waveguide. The step-index
planar waveguide lends itself to relatively straightforward analysis while
revealing the essential qualitative features that are common to all optical
waveguides. Finally, the interactions between guided waves and waveguide
gratings are considered from several theoretical points of view.

§ 2. Uses for Waveguide Gratings
2.1. GENERAL DISCUSSION

Waveguide diffraction gratings can be fabricated as a periodic or near-perio-
dic modulation of either the refractive index or one, or more, of the boundaries
of an optical waveguide as illustrated in fig. 2. The surface corrugation grating
is the more common, since it can be implemented in almost any solid material.
Such surface gratings are usually prepared by recording the interference
pattern, formed when the two halves of a laser beam recombine at a selected
angle, in a layer of photoresist deposited onto the substrate of interest. After
the photoresist has been developed, it serves as a mask for substrate etching
by techniques such as ion-milling or reactive ion etching. The photoresist mask
protects certain areas of the substrate while the etchant attacks the exposed
areas. In this way the mask pattern is transferred into the substrate material.
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Fig. 2. Two types of waveguide diffraction gratings with period A. (a) A periodic variation of the
refractive index near the surface. (b) A periodic surface corrugation.

A similar procedure can be used based on electron-beam lithography rather
than photolithography.

There are two main uses for waveguide gratings in integrated optics. The first
use, illustrated in fig. 3a, involves coupling between the radiation field and a
bound mode of the optical waveguide. As the bound modes use total internal
reflection, there is no exterior angle of incidence for which an external beam
of light can be made to excite a bound mode of a waveguide with flat surfaces
by refraction. Similarly, it is not possible for a guided mode to radiate in the
absence of some coupling mechanism. The grating provides the necessary
coupling when the following condition is fulfilled:

2
ﬁ=nc<9>sin0+ﬂ,
¢ A

where f§is the propagation constant (along z) of the guided wave, A is the grating
period, m is an integer, @ is the (anguiar) frequency of the optical wave, ¢ is
the speed of light in vacuum, and the angle 0 and the refractive index n_ are
identified in the figure. This type of interaction is clearly useful for coupling light
into or out of an optical waveguide.

The second use, illustrated in fig. 3b involves coupling between two waves
that are both bound modes of the optical waveguide. The grating can be used
to deflect an incident guided mode into a different direction, or to convert a
guided mode of one order into a guided wave of another order, or both. This
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Fig. 3. (a) Light incident on a corrugated section of an optical waveguide can excite a guided
mode of the structure. The grating acts as a phase-matching element to permit coupling between
a guided mode and the radiation field. (b) A corrugated section of an optical waveguide can also
provide coupling between two guided waves. In this example, a guided wave is Bragg reflected
into a different direction within the waveguide.

type of interaction can be used for “in-plane” functions, examples of which
appear in the following sections.

It is the period of the grating that determines which type of interaction takes
place. A specific example will make this clearer. Consider the waveguide
configuration in fig. 3a, but from the point of view of the guided wave interacting
with the grating to produce another optical wave. If we define the effective index
of refraction N according to

v b

2nA’

where 1 is the optical wavelength (in vacuum), then it is not difficult to show
that for guided wave propagation along z, the following first-order (m = 1)
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phenomena occur for the indicated ranges of the ratio of the grating period to
the wavelength, A/A:

Radiation into the cover medium (x > h): (N+n) '<A/AS(N-n)" L
Radiation into the substrate medium (x <0): (N +n,) " '<A/AS(N -n,)" 1,
Back reflection (first-order): AjA=02N)" L,

First-order back reflection (or Bragg reflection) occurs when a guided wave
propagating along + z interacts with the grating to produce a guided wave of
the same type propagating in the — z direction. Note that since n, < N < n,for
ng = n, a point that will be discussed later in this chapter, the smallest period
in the preceding list is required for backreflection; radiation into either the
substrate or cover media requires a period A/A > (2N)~'. There is some degree
of overlap of the range of periods that produce radiation into the two media.
For the usual case of n, > n_, this means that radiation into the cover medium
is always accompanied by radiation into the substrate, but that a range of A
exists that produces radiation into only the substrate (refractive index n = n,).

2.2. INTERACTIONS BETWEEN GUIDED WAVES

An extensive literature exists that describes various demonstrations of the
use of waveguide gratings. In one of the first such demonstrations,
PENNINGTON and KUHN [ 1971] used gratings formed in a layer of photoresist
deposited onto a planar, glass, optical waveguide to fabricate a multistage
beam-splitter. After the photoresist was developed, lines of photoresist re-
mained to serve as perturbations of the effective index of refraction of the glass
waveguide. This is illustrated in fig. 4, which shows a guided wave, incident
from the lower left, split into two beams, both still contained within the
waveguide, by means of diffraction. This process is repeated for the other two
gratings to produce a total of eight beams emerging from the grating on the right.
A similar system was reported by HANDA, SUHARA, NISHIHARA and
KovaMa [1980] that used refractive-index gratings (fig. 2a), instead of surface
gratings, made by direct electron-beam writing in arsenic trisulfide (As,S;)
waveguides.

FLANDERS, KOGELNIK, SCHMIDT and SHANK [1974] demonstrated the
spectral filtering property of a waveguide grating in the back-reflection
geometry that appears in fig. 5. A surface corrugation grating was formed in the
upper surface of a glass waveguide by first recording an interference pattern in
a layer of photoresist deposited onto the glass layer. The pattern that remained
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Fig. 4. Top view of a multistage beam-splitter fabricated in a planar optical waveguide.
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Fig. 5. Top view of the arrangement for a Bragg-reflection experiment using a planar optical
waveguide.

after developing the photoresist was then transferred into the glass layer by
means of ion-beam etching, resulting in an approximately S0 nm modulation
in the thickness of the waveguide (~0.85 pm). A tunable dye laser was used
to excite a guided wave propagating to the right (in fig. 5), which was subse-
quently back-reflected when the incident wavelength satisfied the Bragg con-
dition. They reported reflectivities greater than 752, and refiection bandwidths
less than 0.2 nm, thereby demonstrating that the grating can function as a
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narrow-band reflector for use in integrated optics. The emphasis in their work
was on narrow-band filters, although broad-band filters are also of interest
(SHELLAN, HONG and YaRrlv [1977]).

Aperiodic gratings can also be useful for the coupling of two guided waves.
LivaNos, KATZIR, YARIV and HONG [ 1977] made use of a so-called “chirped”
grating as a wavelength demultiplexer in the scheme illustrated in fig. 6. Here,
the term “chirp” refers to the nearly linear variation in the grating period along
the grating axis (z), which causes the wavelength that satisfies the Bragg
condition to vary along z. When collinear guided waves excited by two indepen-
dent sources with wavelengths A, and A, interact with the grating, the different
wavelength components are diffracted at different locations along the grating.
A glass waveguide was used in the experiment of Livanos and co-workers,
along with a surface corrugation grating made by holographic exposure of
photoresist followed by ion-beam etching, as discussed in the previous para-
graph. The grating period varied between 0.293 < A < 0.32]1 um over a dis-
tance of 6.5 mm. This produced a separation of 4 mm between diffracted waves
for A, = 0.607 pm and A, = 0.627 pm.

Itis important, however, to note that waveguide gratings used at non-normal
incidence (as in fig. 6) usually depolarize the incident wave. As will be discussed
later in this chapter, a planar optical waveguide supports waves of two polari-
zations: transverse electric (TE) and transverse magnetic (TM). FUKUZAWA
and NAKAMURA [1979] demonstrated this effect by showing that an incident
guided wave of the TE polarization produced both TE- and TM-diffracted
waves. The TE- and TM-components are spatially separated, since the Bragg
condition is slightly different for the two polarizations due to waveguide dis-
persion (the effective index of refraction N depends on the polarization, even
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Fig. 6. Spatial separation of guided waves of two wavelengths using a “chirped” grating, for which
the grating period varied along the length of the grating.
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Fig. 7. Two crossed gratings fabricated in a planar optical waveguide. Incident guided waves with
two different wavelengths are diffracted into opposite directions.

for a fixed wavelength). Therefore, although fig. 6 shows only two diffracted
components, there will, in general, be four diffracted components, because of
this polarization effect, a fact that could be important if a high degree of
wavelength discrimination is required.

It is possible to use multiple exposure techniques to create a grating that
diffracts guided waves of two wavelengths in opposite directions. The scheme
used by YI-YAN, WILKINSON and LAYBOURN [1980], illustrated in fig. 7,
makes use of crossed gratings, shown here as solid and dotted lines, on the
surface of a glass optical waveguide to achieve the greatest possible spatial
separation between the two wavelength components.

HaTtAkosHI and TANAKA [1978] pointed out that a waveguide grating can
function as a lens. They reported the use of a glass waveguide and a grating
fabricated by electron-beam writing to focus a collimated input of wavelength
A = 488 nm. Here, as shown in fig. 8, the orientation of the grating rulings is
changed along the grating to make certain that each segment of the incident light
is diffracted toward a common point.

One of the most important uses of waveguide gratings for the coupling of two
guided waves occurs in the distributed feedback (DFB) and distributed Bragg-
reflector (DBR) semiconductor lasers. The DFB laser was first discussed by
KOGELNIK and SHANK [1971, 1972], and was first implemented in a semicon-
ductor (waveguide) laser by NAKAMURA, YARIV, YEN, SOMEKH and GARVIN
[1973]. The ability of a waveguide grating to couple forward- and backward-
going guided waves was discussed in connection with fig. 5. A strong reflection
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Fig. 8. A waveguide grating lens. The grating period and orientation can be adjusted continuously
to deflect different portions of the incident wave toward a common point.

can be achieved within a narrow spectral bandwidth. The gain region of the
laser is corrugated in a DFB laser so that the coupling between forward- and
backward-going guided waves takes place throughout the laser cavity; hence,
the term “distributed feedback™. The DBR laser is somewhat similar to the
DFB laser, except that only the unpumped end regions of the laser are
corrugated in the DBR case; the gratings are used as passive reflectors. Both
approaches take advantage of the narrow Bragg bandwidth of the corrugated
waveguide to reduce the spectral width of the laser emission.

Waveguide gratings are also useful as phase-matching elements in nonlinear
optics. This seems to have first suggested by SOMEKH and YARIvV [1972]. In
the case of second-harmonic generation, for example, it is necessary that the
propagation constant of the wave at frequency 2w (nearly) equal twice that of
the wave at w. This cannot be easily achieved in all materials, but in a
corrugated waveguide the grating constant provides an extra contribution to the
phase-matching argument so that the matching condition becomes
BRw) = 2f(w) + 27/ A, in first order. The ability to vary both the grating period
and the waveguide thickness within reasonable limits allows greater control
over the phase-matching condition in a periodic waveguide than in a non-
periodic medium.

The many uses that have been found for grating-induced coupling between
guided waves makes it clear that a quantitative description of the strength of
the coupling interaction is essential. This subject constitutes the main emphasis
of this chapter.
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2.3. INTERACTIONS BETWEEN GUIDED WAVES AND THE RADIATION FIELD

Waveguide gratings can be used for the excitation of a bound mode by an
incident optical beam or to allow a bound waveguide mode to radiate. This
point was discussed earlier in this section. DAKSS, KUHN, HEIDRICH and
ScoTT [1970] appear to have been the first to use a grating to excite a guided
wave. They used photolithographic techniques to form a photoresist grating
with a period A = 0.665 pm on the surface of a planar glass optical waveguide.
Light from a helium-neon laser (A = 0.6328 um), incident as shown in fig. 3a,
was used to excite either the TE or TM modes of the waveguide for the proper
choice of source polarization. They reported an input coupling efficiency of
409;.

Input coupling efficiencies that exceed 409, are also possible. DALGOUTTE
[1973} achieved an efficiency of 709, using a photoresist grating and a glass
optical waveguide. One interesting feature of this experiment was the use of
“reverse coupling”, shown in fig. 9. In the actual experiment, light was incident
on the lower surface of the waveguide through a prism (not shown) placed in
contact with the substrate. Efficient coupling occurs when there is only one
incident beam that can couple to the guided mode of interest. As pointed out
earlier, there is a range of the grating period A for which a guided mode can
radiate into the substrate, but not into the cover medium. The guided wave can
be excited most efficiently when light is incident at this same unique angle of
radiation. In Dalgoutte’s experiment a grating period of 0.222 ym was used to
achieve this.

Many similar experimental results have been reported using different
materials, different fabrication techniques, or different types of gratings. The
use of blazed gratings has been explored by GrRuss, TAM and TAMIR [1980].
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Fig. 9. Scheme for exciting a guided wave using the reverse-coupling technique.
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The use of ion-implanted gratings has been demonstrated by KURMER and
TANG [ 1983]. The importance of absorption losses on grating performance was
considered by STONE and AUSTIN [1976]. Most recently, gratings have been
used as output-couplers to make surface-emitting semiconductor lasers
(EvaNs, HAMMER, CARLSON, EL1A, JAMES and KIRK [1986], MACOMBER,
MotT, NoLL, GALLATIN, GRATRIX, O’'DWYER and LAMBERT [1987]) and as
focusing couplers for integrated read/write heads for optical data storage
systems (SUHARA and NISHIHARA [1986]).

§ 3. Modes Supported by Planar Optical Waveguides
3.1, BOUND MODES OF THE STEP-INDEX OPTICAL WAVEGUIDE

The planar, step-index, optical waveguide (fig. 1a) supports electromagnetic
modes of two polarizations: transverse electric (TE) modes, and transverse
magnetic (TM) modes. The term “mode”, as it is used here, refers to a solution
to the wave equation that satisfies the appropriate boundary conditions. Each
such mode is an electromagnetic wave with a unique transverse field profile and
propagation constant § (MARCUSE [1974], KOGELNIK [1975], ADAMS
[1981], HALL [1987]). Optical waveguides are open structures that support
both bound modes and radiation modes. For bound modes only certain dis-
crete values of f§ are allowed. For radiation modes f§ is continuous within a
certain prescribed range of values. This section considers the bound modes.

TE modes are characterized by a single electric field component that is
oriented perpendicular to the direction of propagation. TE modes are thus
specified by an electric field E of the form

E = §E,(x)efi-o0, (1)

where the hat (*) designates a unit vector, in this case along the y-direction,
E,(x) is the TE mode function, m is an integer, § is the propagation constant
with propagation assumed in the z-direction, and w is the (angular) frequency.
TM modes are, in like manner, specified by a single transverse component of
the magnetic field H according

H = §H,(x) e 9, )

where H,,(x) is the TM mode function. Since fis discrete, it would be reason-
able to attach the mode-integer subscript m, as in f,,, but we will suppress this
subscript to S for the present to preserve simplicity of notation. When the above
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fields are inserted into the usual wave equations for each medium,

V2E + n*(w/c)?E=0, (3)
and
V2H + n*(w/c*H =0, “

with n(x) defined in piecewise fashion,
n?(x)=n2 x>h,
=n? 0<x<h,
=n? x<0, ©)
we find that the TE mode function is given by
E, (x)=E.exp[ -y(x-M] x>#h,
= E¢cos(kex — ¢) O<x<h,

=E exp(-,%) x<0, 6)

where E_, E;, and E, are constants. The remaining parameters satisfy
W =(B*-nk3)'? (=c39), (M
ki = (nf ks - )72, ®)

with k, = wfc = 2n/4, and ¢, is just the TIR phase-shift angle associated with
the lower interface; ¢, is defined by

tan¢i=f (=cs), ©

f

for the case of TE modes. The mode function for the TM modes has the similar
form

H,(x)= H exp[ - y.(x - h)] x>h,
= Hecos(kex — i) O<x<h,
= H, exp(- 7, x) x<0, 10)

where H,, H,, and H_ are constants, and the parameters are defined in the same
way for TE and TM modes. The phase-shift angle for the TM polarization is
slightly different from that in eq. (9),

2

ney;
2

niKe

tan ¢™ = i=g¢,s). (11)
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The requirement that the wave must be localized in or near the higher-index
layer (n;> ng, n.) determines that f is restricted to the range n k, < B < nek,.
It further requires that the mode functions £, ,(x) and H,,(x) exhibit exponential
decay with increasing distance from each interface. The application of the
boundary conditions on the tangential components of E and H produces a
dispersion relation given, for TE modes, by

kfh_(pc_(ps:mn' (12)

The corresponding result for TM modes is
keh — ¢ — ™ =mm, 13)

which differs from eq. (12) only in that the correct phase shifts must be used
for each polarization. The presence of the mode integer m is of central
importance in these dispersion relations. Equations (7)-(9) and (11) show that
for a given wavelength and set of refractive indices, k; and the phase shifts are
functions of the propagation constant . Each value of m in either eq. (12) or
(13), therefore, leads to a new value of 8. The allowed values of § thus form
a discrete set, not a continuum. Figure 10 shows the electric field profiles E,,,(x)
associated with the three lowest order TE modes of a typical planar waveguide.
It is clear that the mode integer m determines the number of zero crossings that
each mode exhibits. The same general behavior occurs for TM modes.

The careful reader might have noticed that the wave equations in egs. (3) and
(4) do not contain the Ve terms (¢ is the permittivity; &= gon?, with
g, = 8.85 x 10~ !2 F/m) that appear for a medium in which the refractive index
n depends on the coordinates [recall, n?(x) = &(x)/gq]. Clearly, n = n(x) for the
planar waveguide. This dependence can be made explicit by writing &(x) in the
form

&(x) = eo[nd + (nf — n2) 6(x) + (ng - n?) O(x - h)], (14)
where 6(x — a) is the unit step function, defined according to
0(x—-a)y=0 for x<a,

Ox-a)=1 for x>a, (15)

which shows explicitly the abrupt changes in ¢, and hence n?, at the boundaries
of the waveguide. The more general wave equations are

V2E + n*(x) (w/cPE = -V {E' Ve} i (16)
£
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and
V2H + n%(x) (w/c)*H = iw(E x Ve). an

When E, (x) and H,,(x) in egs. (5) and (6) are written in the style of eq. (14),
it is not difficult to show that the previous solutions do indeed satisfy egs. (16)
and (17) as well as eqs. (3) and (4), as long as the boundary conditions on the
tangential components of E and H are satisfied. More specifically, the delta-
function terms generated by the V2 operator and by Ve can be made either to
cancel or to vanish separately by applying the boundary conditions. The
right-hand side of eq. (16), for example, vanishes for the TE modes of the planar
waveguide, since the dot product E- Ve = 0.

It is conventional to introduce the effective index of refraction N, defined
according to

N=ﬁ/k0, (18)

where, again, ky, = w/c = 27/A. One of the central properties of an optical
waveguide is its ability to transport energy in a given direction, chosen to be
the z-direction here. Since f is the z-component of the propagation constant,
guided waves with field profiles such as those shown in fig. 10 can be said to
propagate along z, treating the waveguide as a medium of refractive index M.
It is easy to show that N is restricted to the range

ng< N <ng, 19)

for bound modes, where it has been assumed that the substrate has the larger
refractive index of the two outer media in fig. 1a: n, > n,. This refractive index
convention will be adopted throughout this chapter. The effective index can be
related to the propagation angle 6, defined in a ray-optics model (see fig. 1a)
as the angle between the ray and the normal, by the relation N = n;sin 6, from
which it is clear that the lower limit in eq. (19) represents the minimum value
of @ that provides total internal reflection at both interfaces. The upper limit
in eq. (19) represents the natural limit @ = 3n. The dispersion relations in
egs. (12) and (13) can now be regarded as transcendental equations that
determine N for guided waves of the TE and TM polarizations.

Figure 11 shows illustrative plots of the effective index N as a function of the
film thickness 4 for both the m = 0 and m = 1 TE modes for a typical asym-
metric geometry {(n, # n.). The parameters used for the plot are given in the
figure caption. Typically, for a fixed wavelength and choice of refractive indices,
there is a minimum thickness required to support a given mode of order m. For
TE modes, for example, it is easy to show from eq. (12) that the minimum value
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Fig. 11. Plots of the effective index of refraction N as a runction of the layer thickness A for the
m=0 and m =1 modes of a sample optical waveguide, for which n, = 1.46, n;= 1.7, and
n, =1

of the ratio A/4, the so-called cutoff value, for a guided wave of order m is given
by

(g) _mn+tan~'{,/a} 20)

s
A 2n/n} - n?
where

2 _ 2
a="2"" @1)

n¢ — n2

Inspection of eq. (20) shows that higher-order modes require thicker wave-
guides for propagation. Equation (20) also shows that for the case of a symmet-
ric waveguide, for which n, = n, and a = 0, the ratio (4/1),,;, = 0. This
means that there is no nontrivial cutoff for the m = 0 mode of the symmetric
optical waveguide. Equation (20) holds only for TE modes, but one obtains the
same conclusion for TM modes. A symmetric waveguide of arbitrary nonzero
thickness will support the m = 0 mode of both polarizations. This is analogous
to the case of an optical fiber, a structure with refractive index confinement in
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both transverse dimensions (x, y) and cylindrical symmetry, for which the
lowest order mode also has no nontrivial cutoff.

One of the most important features to note in fig. 11 is that for a given
waveguide with a given thickness A, the effective index N is different for the
m = 0 and the m = 1 modes, even though the wavelength A is the same for both
modes. This is of central interest for efforts in the field of integrated optics,
which attempts to define optical components such as lenses, gratings, switches,
and modulators in or on optical waveguides. The effective index N determines
the way in which a guided wave interacts with a component. If some of the
incident energy in the waveguide is carried in each of the m=0 and m =1
modes, then each mode will interact with the component in a different way to
produce two different effects. In the case of a lens, for example, this means that
there will be two different focal lengths. Other components have similar
problems. It is for this reason that integrated optics is usually considered to be
restricted to the use of single-mode waveguides. The presence of only one mode
(of each polarization) in the waveguide permits a more precise definition of the
operation of the components that make up an integrated optical or optoelec-
tronic system.

A convenient normalization for the bound modes of the planar waveguide
makes use of a power normalization. For the time dependence assumed here,
exp( - iwt), the time-averaged Poynting vector § can be written as

S = 1Re{E x H*}, (22)

where Re designates the real part of the bracketed quantity and the asterisk
designates the complex conjugate. The standard normalization sets to unity the
power per unit width carried by the guided wave:

J S-2dx=1, (23)

where the hat (*) designates a unit vector. For TE modes this reduces to
b J E, (x)EX(x)dx=1 (TE), (24)
2000 J - oo

whereas for TM modes,

B [* H0HA)

=1 (T™M),
10 ) . w® (TM) 25

where &(x) is as in eq. (14). The size of the planar waveguide is assumed to be
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very large along the y-direction so that its size places no restrictions on the field
distributions that can propagate. For this reason the integration in eq. (23) is
carried out over only the x-dimension, and the result is referred to as the
“power per unit width (along p)”. In reality, eq. (23) is just a normalization
condition.

The boundary conditions lead to relationships between the amplitude con-
stants that appear in eqgs. (6) and (10). For the TE case, for example, one
obtains the following formulas

2 _ N2
EZ= B} L (TE), (26)
f = e
and
2 _ N2
E2=E} ’:2 5 (TD). @7)
£ s

These reduce the number of amplitude constants in eq. (6) from three to one,
i.e. E,. When eq. (6) is inserted into the normalization integral in eq. (24), E;
is then obtained in terms of the various waveguide parameters

1/2
=Y (8—) E?hg (TE), (28)
4 \po
where
1 1
hy=h+—+— (TE) (29)
Yo Vs

is termed the effective waveguide thickness. Equation (28) determines the value
of E, subject to the normalization condition in eq. (23).

The TM result is a bit more complicated, but of the same form. The boundary
conditions give

2 2 _ a2
ot ("_2) "N gz w, (30)
qc \ig ng — ne
and
2 2 _ a2
wp- L (Z) 12w aw, o)
qs \ng ng = ng
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where
gG=Wny + Nin) +1 (i=c5), (32)

and the preceding notation follows that of KOGELNIK [1975]. The normali-
zation integral, in turn, gives

1y 1/2
1=4= (“—) H?hg (TM), (33)
AN
where
1
hog=h+—+ (TM). (34)

Teds Y54

The mode functions also satisfy a useful orthogonality relation. For real
refractive indices this relation is given by

J. {E,,(x) x H¥(x)} - 2dx=0 form+#n, (35)
where the subscript t designates the transverse component of the vector field.
Equation (35) can be applied to electric and magnetic fields of the forms given
in egs. (1) and (2), as long as one of them vanishes at x = + o0. If one or both
of them is a bound mode, this is certainly the case, not only for modes of the
step-index planar waveguide, but also for more complicated structures such as
planar, graded-index optical waveguides. It is only necessary that egs. (1) and
(2) describe the fields and that they behave properly at x = + o0.

3.2. BOUND MODES OF THE GRADED-INDEX OPTICAL WAVEGUIDE

One often encounters optical waveguides for which the refractive index is a
continuous function of at least one of the spatial coordinates. Such waveguides
are called graded-index waveguides. A sketch of the simplest type of a planar,
graded-index waveguide, for which n; depends on the single coordinate x,
appears in fig. 12. Note that x increases downward from the upper waveguide
surface in fig. 12, in contrast to fig. 1. In this structure the refractive index n.(x)
is greatest at x = 0 and diminishes with increasing x until it reaches some
constant value. In practice, waveguides of this type are often made by diffusing
some species into a host crystal. The result is a region typically a few microns
thick for which the average refractive index exceeds the ambient value in the
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Fig. 12. The geometry for a typical graded-index optical waveguide. The refractive index is
highest at the surface and decreases with depth toward the ambient value of the most material.

host crystal. This higher-index region can confine light in much the same way
as the step-index structure.

The qualitative features of the bound modes of the graded-index waveguide
are not significantly different from those of the step-index waveguide. Electric
and magnetic fields of the form given in egs. (1) and (2) solve the wave
equations in egs. (16) and (17), subject to the appropriate boundary conditions.
The graded-index waveguide supports both TE and TM modes, but the mode
functions E,,(x) and H,, (x) are more complicated than those for the step-index
waveguide. It is usually the case that both the mode functions and the dis-
persion relations can only be determined by numerical techniques. A discussion
of these techniques is outside the scope of this chapter, but the reader can
consult the published literature for further information. (CoNWELL [1973],
KOGELNIK [1975], KOROTKY and ALFERNESS [1987], HOCKER and BURNS
[1975]).

3.3. BOUND MODES OF THE NONLINEAR OPTICAL WAVEGUIDE

Certain materials exhibit a type of nonlinear response that leads to a refrac-
tive index that depends on the intensity of the optical wave propagating in the
medium. If the wave has a nonuniform spatial profile, it produces an index
gradient that, in turn, modifies the properties of the propagating wave. The
self-focusing of a laser beam in a nonlinear medium is perhaps the most familiar
example of this process.

A layer of this nonlinear material, bounded by linear media, is capable of
supporting guided waves. An exhaustive discussion of this subject is beyond
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the scope of this chapter, but one example will be examined here. Equation (36)
gives the refractive index configuration for this example,

n?(x)=nZ x>h,
=n2+A4+nlE? O<x<h,

= n? x<0. 36)

L3

Here, n, is the nonlinear coefficient that describes the (real) magnitude of the
nonlinear term in the refractive index of the layer and 41is a small, negative (real)
number. For E = 0, the refractive index of the layer is smaller than that of the
substrate (n, ), which means that the layer cannot serve as an optical waveguide
in the conventional sense, since the total internal reflection condition cannot
be satisfied at both interfaces. As E grows, the nonlinear term wili first equal,
then exceed 4, and one expects bound modes of some sort to appear.
The wave equation for TE modes can be solved using the familiar form

E=3G(x)e'Pe-on, 37
where
G(x)= E e »*-" x>h,
= Egsech{ki(x - x4)} O<x<h,
= E e™* x<0. (38)

is the mode profile. Application of the boundary conditions on the tangential
components of the electric and magnetic fields leads to the dispersion relation

ke(ye + %)

2

tanh (kch) =
ki + Y ¥s

(39

It is convenient at this point to introduce a few new parameters in terms of
which to discuss some interesting features of these nonlinear guided waves. The
parameters V, D, and a are defined according to

2
V= <i"> 4172, (40)
A
”2Ef2 X
= -1,
214 . (41)

(2= nd)

4] (42)
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The original parameters can be expressed in terms of the new ones as:

ke=ko{l4] (1 + D)}, 43)
Ve = ko {141 (D + a)}'2, (44)
% = ko(14] D)2 (45)

The dispersion relation can therefore be written in the form

tanh {V /1 +D}=V11:§(+\/\?B+\[VD D:a"). (46)

The exponential decay rates in eqgs. (44) and (45) must be positive to assure
proper behavior at x = + co0. This is only possible for D > 0, which means that
the minimum power the wave must carry is determined from the condition

(Efg)minimum = (47)

which is a condition that ultimately determines the required minimum intensity
of the source used to excite the nonlinear guided wave. The larger the nonlinear
coefficient, the smaller the required intensity. The effective index of refraction
N = B/(w/c), introduced earlier, is “power dependent” for the nonlinear wave
and is given by

N = (n2 + |4|D)'>. (48)

As in the discussion of the step-index waveguide, N must exceed n,, which
follows immediately from eq. (48) and the condition D > 0. This suggests a
connection with the normal internal reflection mechanism that is at work in the
step-index case.

The dispersion relation provides the allowed values of N for a given structure
and choice of wavelength or frequency. Figure 13 shows a plot of the dispersion
relation from eq. (46), plotted as N versus V, since D determines N according
to eq. (48), for a symmetric structure (@ = 0). It is significant that for a given
V, i.e. a given structure, there are two distinct solutions for N, and hence for
D, for a given value of V. This result means that two different nonlinear guided
waves can, in principle, be supported by a particular nonlinear waveguide at
two different power levels.

There are other structures that support nonlinear guided waves. For example,
a nonlinear waveguide can be formed by depositing a layer of a linear material
onto a nonlinear substrate, or by sandwiching a linear layer between two
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Fig. 13. Plot of the effective index N as a function of the parameter V¥ for the nonlinear optical
waveguide.

nonlinear media. Furthermore, important issues such as the stability of the
nonlinear waves and the means of exciting these waves remain the subjects of
very active investigation. The reader is referred to the extensive literature on
nonlinear waveguides for more exhaustive treatments of the subject
(STEGEMAN, BURKE and SEATON [1987]).

34. RADIATION MODES OF THE STEP-INDEX WAVEGUIDE

The previous sections described the bound modes that are supported by
planar optical waveguide structures of various kinds, with emphasis on the
step-index waveguide. The TE and TM modes were described by electric and
magnetic fields of the form

E=§E/(x)e'#7~) and H =§H/(x)e'Fz-en, (49)

which vanishes at + oo, and for which n (w/c) < B < ni(w/c). The wave
equations also admit solutions of the form given in eq. (49) for other values of
(real) B, but they are not localized near the waveguide layer. These solutions
are termed radiation modes and correspond to oscillating fields in at least two
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of the three media in fig. 1a. Since they have the form of eq. (49), the radiation
modes of the step-index waveguide are orthogonal to the bound modes of the
same waveguide, according to eq. (35), although they cannot be normalized by
the simple prescription in eq. (23). Only the essential characteristics of the
radiation modes will be described here.

The two types of radiation modes for the geometry in fig. 1a are substrate
radiation modes and substrate-cover radiation modes. Retaining the usual
convention that n, > n_, for the substrate radiation modes, fis restricted to the
range n.k, < < nyk,. The field profiles for the TE and TM substrate modes
are

E (x)= E e 70—M x>h,
= E;cos{gi(x — W) + ¢} O<x<h,
= E cos(g,x + ) x<0, (50)
and
H/(x)= H e »C—h x>h,
= Hcos{ge(x — h) + ¢"™} O<x<h,
= H, cos(g,x + ¢'™) x<0, (51)

where each is in a form consistent with that used by KOGELNIK [1975]. It is
clear from the field profiles and the range of § considered that a substrate
radiation mode has total internal reflection at the cover/film boundary (x = ),
but not at the substrate/film boundary (x = 0). In fact, egs. (50) and (51) are
precisely the fields one obtains by solving the Fresnel reflection problem for the
case of a plane wave incident on the film layer from the substrate at an angle
greater than or equal to 8 = arcsin (n_/n, ), measured with respect to the normal.
It is important to note that § is continuous within its prescribed range for
radiation modes, as one might expect given the analogy with the Fresnel
reflection problem.

The situation is more complicated for the substrate-cover radiation modes,
for which 0 € § < n_k,. There are two sets of these radiation modes, which can
be understood by noting that for a symmetrical waveguide the field profiles will
possess even or odd symmetry. For the asymmetric wavegnide one set of
radiation modes must possess even symmetry and the other, odd symmetry, in
the limit n, — n_. The field profiles for the TE and TM substrate-cover modes



28 WAVEGUIDE DIFFRACTION GRATINGS [1,§3

are of the form

E(x)= EX “ {qx - +c®} x>h,

sin
=B % {gx - u®) O<x<h,
sin
- Ex c:j (g x - 5) x<0, (52)
and
Hy(x) = H °% {g(x = B) + ¢} x> h,
sin
= H¢ C(_)S {gex — o™} 0O<x<h,
sin
- H: C:: (gox — s™) x<0, (53)

where, in each expression, e and m label TE- and TM-related quantities, + and

— designate even and odd modes, respectively, and cosine is used for even (+)
modes, sine is used for odd (- ) modes. Physically, these modes correspond
to spatially oscillating fields in all three media. They can be viewed as properly
phased superpositions of the solutions to the Fresnel reflection problem for the
cases of plane waves incident upon the layer of thickness 4 from above and
below.

Although this will not be discussed in detail at this point, the bound and
radiation modes of the step-index planar optical waveguide constitute a com-
plete set of orthogonal functions. The bound modes make up the discrete
spectrum, and the radiation modes make up the continuous spectrum. It is
often convenient to use a mode expansion based on these functions when
analyzing interactions in optical waveguides that have been perturbed in some
fashion. A typical example is a waveguide with one corrugated surface. The
periodic surface perturbation can provide a mechanism for converting forward-
going waves into backward-going waves, or for coupling the bound modes with
the radiation field, as might be exploited for input or output coupling.

Since the major emphasis in this chapter, the interaction between bound
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modes and waveguide gratings, does not require a deep understanding of the
radiation modes, no further details about them are given here. The interested
reader is referred to the works of KOGELNIK [1975] and MARCUSE [1974].

§ 4. Nonplanar Optical Waveguides

The waveguide geometries so far considered in this chapter provide confine-
ment along only a single coordinate axis. Waveguides that provide confinement
along two axes are required for several applications. The circularly cylindrical
optical fiber is the most familiar example, but other types are in common use
as well. Unfortunately, numerical techniques are needed to analyze these
structures in detail, but their qualitative features are easy to infer from those
obtained earlier for planar waveguides.

The fields associated with the bound modes of the three-dimensional
waveguide are of the general form

E(x, y,2,1) = §E,,,,(x, y) e/ Pz =D (54)
and
H(x,y,2,1) = §H,,,(x, y) Pz =0 (55)

for assumed propagation along the z-direction. Note that the propagation
constant ff now depends on the two mode integers m and n, and that the field
amplitudes depend on both the x- and y-coordinates. When the size of the
waveguide is sufficiently small along each of the two transverse directions, a
standing wave is set up within the guiding region much like the case for
one-dimensional confinement. This leads to field distributions much like those
shown in fig. 10 along each transverse direction. Only one integer label was
needed in the case of the planar waveguide, an integer that specifies the number
of zeros of the field. Two such integers are needed for confinement along two
axes, since the number of zero-crossings need not be the same in both
directions. Strictly speaking, the x- and y-dependences in eqs. (54) and (55) are
not separable, although it is sometimes a useful approximation to write

E,..(x, ) = f,.(x) £.(y), (56)

and likewise for the magnetic field.
The modes satisfy a dispersion relation that involves the two mode integers
m and n. They also satisfy an orthogonality relation given by

j j {E,..(x) x H% (x)}-2dxdy=0 form#nandq#s, (57)
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where the subscript t, again, designates the transverse component(s) of the field,
just as in eq. (35) for planar waveguides. The notation (three subscripts) is
somewhat cumbersome, but eq. (57) is just the natural extension of the earlier
result.

This chapter does not make use of the detailed forms of the modes supported
by the two-dimensional waveguide, so no further discussion of them is included
here. The interested reader can consult the references for further information
(ApaMs [1981], KoGELNIK [1988]).

§ 5. Coupling Between Guided Waves

The problem of a guided-wave propagating in a periodic medium can be
formulated in a variety of ways. Of particular interest is the case for which the
propagation constant § (along z) very nearly satisfies the Bragg condition. The
most popular theoretical technique develops a pair of coupled-mode equations
that connect the amplitudes of the forward- and backward-propagating waves.
These equations can be extracted directly from the one-dimensional wave
equation, as demonstrated below.

Consider the following one-dimensional differential equation:

2
[;7 + ﬂz] ) = 2K (@) f(2), (58)

where the specific choice of constants on the right-hand side has been chosen
for convenience. The important feature of the right-hand side of the equation
is the product form; K(z) is simply some function of z. A particular solution
of eq. (58) can be written in terms of a Green function g(z, z') for the one-
dimensional Helmholtz equation according to

f@) = j g(z,2') [ - 2BK(z') f(z')] dz’, (59)
where g(z, z') for the one-dimensional Helmholtz equation is known to be
()= (60)
z,2') = .
d 2ip

subject to the requirement that only outgoing waves appear at z— + oo. [Recall
the time dependence used here is exp( —iwt).]
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To simplify what follows it is convenient to define the right-hand side of
eq. (58) as Q(2),

Q@) = -2BK(2) f(2) . (61)

The absolute value in eq. (60) makes it clear that eq. (59) can be written as the
sum of two terms, one for z’ > z and one for z’ < z,

f@)=A4*(@)ef* + A (2) e, (62)

where A* and A~ are the z-dependent amplitudes of forward-going and
backward-going waves, respectively, given by

A*(2) = 2—:—B J_zw e % 0(z')dz (63)
and
A (@)= ﬁ J;w ef” Q(z’)dz . (64)

It is now easy to show that egs. (63) and (64) correspond to a set of coupled,
first-order differential equations that determine the amplitudes 4+ and 4.
First, differentiate egs. (63) and (64) to obtain

dd* 1 i
= ifz , 65
% —2iﬁe 0(2) (65)
and
d4- _ 1 i 66
e —2iﬁ e 0(2). (66)

Next, substitute eqs. (61) and (62) into eqgs. (65) and (66). The results have the
simple form

d4~

—iK() A" (2) + iK(2) A~ () e~ 125 | (67)
4
and
d;i - K@) A* (D) e — K@) A (2). (68)
z

These are the coupled-amplitude, or coupled-mode, equations.



32 WAVEGUIDE DIFFRACTION GRATINGS [1,§5

Equation (58) contains no dependence on the transverse coordinates,
something that is essential for a proper description of interactions in an optical
waveguide. The wave equation, however, often reduces to that in eq. (58) within
some convenient approximation that allows integration over the transverse
coordinate(s). As soon as such an integration becomes possible, coupled
equations of the form given in eqs. (67) and (68) can be expected to emerge from
the analysis.

Several treatments of the problem of grating coupling between guided waves
will be presented and discussed here. Not all of these start with the wave
equation, but coupled amplitude equations of the form that appears in egs. (67)
and (68) nevertheless emerge from all these analyses.

5.1. IDEAL-MODE EXPANSION AND COUPLED-MODE EQUATIONS

Most of the published coupled-mode formulations of the problem of the
interaction of a guided wave with a waveguide grating have been based on the
so-called ideal-mode expansion. Slightly different versions of this approach to
the grating problem have been used by YARIV [1973], MARCUSE [1974],
KOGELNIK [1975], STREIFER, SCIFRES and BURNHAM [1975], WAGATSUMA,
SAKAKI and SaITo [1979], and others (YAMAMOTO, KAMIYA and YANAI
[1978}, LiN, ZHou, CHANG, FOUOUHAR and DELAvAUx [1981]). All
versions of the theory provide a good description for TE-polarized guided
waves, but there is evidence that the approach fails for the TM polarization.
KOGELNIK’s [1975] treatment is particularly instructive, and is included here
to illustrate the ideal-mode technique. Only planar waveguides are considered.

The transverse (to z) components of the waveguide mode functions form a
complete set of orthonormal functions that can serve as the basis set for an
expansion of the fields of interest. This is true strictly for real refractive indices
and real values of the propagation constant B. The expansion includes both
bound and radiation modes. If E, and H, represent the transverse components
of the fields of interest for a forward-going wave (propagating in the +:
direction), the mode expansion can be written as

[ &)

E} =) a7 (2) Ef}(x) + j a*(z;9) EP(x; g)dq, (69)

4]
and

[=.o)

H =3 a/(2) HSZ(x)JrJ a*(z;q) HP(x; q)dg. (70)

o]
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The superscript + designates a forward-going wave, the superscript (i)
designates a mode of the ideal waveguide. In each of the above equations there
is a discrete sum over the bound modes and a continuous one, expressed as
an integral, over the radiation modes. The quantity g in the latter represents the
spatial frequency associated with radiation in a given direction. The expansion
“coeflicients”, a,,(z) and a(z), depend on z. The expansion is based on the idea
that the fields of interest can be expanded in the modes of a particular unper-
turbed waveguide, the ideal waveguide, for which the modes are known and
given by eqs. (6), (10), (50), and (51). The superscript (i) is assigned here to
make the identification of an ideal mode as clear as possibie. The form written
in egs. (69) and (70) assumes that each term in the expansion can be factored
into a product that separates the x- and z-dependence. In what follows, a
somewhat simpler notation will be used to represent the mode expansions in
egs. {69) and (70). Namely, a single summation symbol will be used to represent
both the discrete and the continuous sums in the mode expansions. The
emphasis here is on the bound modes, but Kogelnik’s formalism applies equally
well to the radiation modes.

An alternative expansion, the local normal mode (LNM) expansion, to be
discussed later, is based on a different idea. At each z the fields are expanded
in terms of the modes of the unperturbed waveguide with the local thickness.
This means that in the LNM expansion, the modal fields depend on z, since
the perturbed waveguide has a thickness that varies with z. The results of the
two types of expansions do not always agree.

KOGELNIK [1975] examines the problem of a guided-wave propagating
along the z-direction, perpendicular to the “rulings” of a surface grating that
is very nearly of the correct period for Bragg reflection (see, e.g. fig. 5). The
grating is presumed to be very wide so that the fields exhibit no y-dependence.
The development of the basic equations of the ideal-mode approach proceeds
as follows. Consider an unperturbed waveguide with permittivity
e(x) = n*(x)e, [see eq. (5)]. This waveguide structure is then perturbed, by
corrugating one interface, e.g., so that the permittivity becomes &(x) + Ae(x, z);
the specific details about the corrugation are contained in Ae(x, z). Maxwell’s
two curl equations for the fields of the perturbed structure are [assume
exp( —iwt)]

VY xE=ipwH, (71)
and

VXxH-=-iw(s+ Ag)E. (72)
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Let the subscripts 1 and 2 refer to two waves, each of which is described by
fields that satisfy eqs. (71) and (72) for either Ae = 0 (the ideal waveguide) or
Ae # 0. If wave 2 propagates in the ideal waveguide and wave 1 propagates in
the perturbed waveguide, it is straightforward to show that

V-(E, x H¥ + E¥ x H,) = io(Ae)E, - E¥ , (73)

where the complex conjugates of egs. (71) and (72) have been used.
Next, integrate eq. (73) over x and separate the z-derivative from the x-deri-
vative on the left-hand side of the resulting equation,

j (x LI 3)4}5, xH;+E;le)dx=iwj (A9)E, - Ef dx.

Cw ox oz -

(74)

The integration over the 8/0x term vanishes if either or both of waves 1 or 2
is a bound mode, since the fields for a bound mode vanish at x = + c0. Wave 2,
by hypothesis, has fields of the form given in eq. (1) and (2); assume for the
moment that this is a forward-going wave:

E, = JEQ(x)expli(fz — wf)] and H, = §HX(x)expli(fz - w)]. (75)

The fields for wave 1 can be expanded according to egs. (69) and (70), the
ideal-mode expansion, after one small change. Since E, and H, will both
contain forward- and backward-going waves due to the Bragg interaction,
terms must be added to egs. (69) and (70) to represent the latter. The replace-
ments

a; (z)-a;(2)+a,;(z2) and a*(z;q)—~a"(z;9)+a (z;9)  (76)
in eq. (69), along with

a;(z)—a(z)-a,(z) and a*(z;9)—a*(z;9)~a (z;9) )

in eq. (70), make it explicit that both forward-going ( + ) and backward-going
(- ) waves are included, and make sure that the direction of Poynting’s vector
E x H is correct in both cases (H, changes sign for a backward-going wave;
E, does not).

The use of the orthogonality relation (recall that the bound modes are
orthogonal to the radiation modes), eq. (35), after these substitutions in eq. (74)
gives the result

da,, (2)

o iB.a, (2) =%in‘w (Ae)E, - {(ED+}*dx. (78)
z

-
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Had wave 2 been chosen to be a backward-going wave, the result would have
been

dac'i;_(z)ﬂﬂma,; @) = —iiwr (AQE, « {EQ)™}* dx, (79)
z - a0

where the superscripts + and — designate quantities associated with forward-
and backward-going waves. These can be further reduced by introducing the
amplitudes 4 * (z) and 4~ (2),

a,(2) = A, ()exp(ifz) and a,(z) = A, (2)exp(~ipz), (80)

with the results

dAm(Z)=iin~ (AS)EI'{EE,?*}*dX, 81)
dZ RS
and
“a —%iwj (AQ)E, - {EQ"}* dx. (®2)
V4 -0

The transverse component of the field E, that appears on the right-hand side
of these equations can be expanded in the same way as described above, using
eqs. (69) and (76), but the z-component is handled differently in Kogelnik’s
treatment. It is easy to show that H,, and E,, are related according to

V.x Hy = ~iw(e+ Ae)E,, . (83)

H,, can be expanded using eqs. (70) and (77), which means that eq. (83) can
be used to determine an expansion for E,_. The result is

E, = : an ; (a2 (D) - a5 (@)} EO(x) . (84)

It is convenient to define two quantities that describe the interaction in the
waveguide,

Kpn(2) = %wj (A ES), - {EQ}* dx, (85)
and
' * [ eAe . .
K;,(2) =0 ——JEG), - {E{)}*dx. (86)
_w \&+ At
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The superscripts + and — have been dropped from the modal fields in
eqs. (85) and (86), since the signs used with a,(z) (see egs. (76) and (77)] in
themode expansion ensure the proper choice of signs for forward- and backward-
going waves. The right-hand sides of the coupled-mode equations, egs. (81) and
(82), can now be expanded according to egs. (69), (76), and (84) to obtain

da;

=i Y (A} (Kl + KZy) €8P0 4 42 (KE - KZ,) e~ P+ Bz]

(87)

and

A . .
e U 147 (K~ K) €085 4 A (K 4 Ki) €10~ 007],
2z m

(88)

These are the coupled-mode equations as derived by KOGELNIK [1975] for the
two-dimensional case (no y-dependence). Once the perturbation Ae has been
defined, the quantities in egs. (85) and (86) can be determined, since the ideal
modes are known, and the system of coupled differential equations in egs. (87)
and (88) can be solved, at least in principle.

Figure 14 shows a typical perturbed waveguide structure, a segment of a
waveguide with a cosine corrugation on the upper surface. The unperturbed,

Actual Surface

Fig. 14. A planar optical waveguide with a corrugated upper surface. The surface grating is made
up of two perturbation regions, labeled a and b. The grating depth is 2 Ah; the ratio Aa/h is taken
to be small. The grating has a period A.
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or ideal, waveguide is taken to be the mean waveguide of thickness 4 shown
in the figure. The location of the upper surface x = d of the perturbed, or actual,
waveguide is given by

d=h+ Ahcos(K,z), (90)

where Ah gives the strength of the grating and K, = 2 n/A is the grating constant,
with A the grating period. The permittivity &(x) = n?(x)¢, for the unperturbed
waveguide appears in eq.(5). The perturbation Ag(x, z) is the difference
between the permittivities of the actual and ideal waveguides,

Ae = ¢o(nf - n?) h<x<d, asfor region a,
=go(n? — n?) d<x<h, as for region b. 91

The expressions in egs. (85) and (86) can be evaluated very simply for the case
of a small corrugation depth and TE polarization for both the forward-going
and backward-going waves, for which K7, ,(z) = 0. Wefind, e.g.,form = n = 0,

Ko(z) = 2Kk cos(K,y2) , (92)
where
2 _ N2
_m AR =N TR, (93)
Ahg N

In the above equations the normalization condition in eq. (24) has been used,
along with eq. (29); « is referred to as the coupling coefficient.

The corresponding expression for the coupling coefficient k for TM-polar-
ized waves that emerges from Kogelnik’s treatment is

2 a2 2 2 2 N2
oo T AR =N [{i (ﬁ + ’i)} (N— Ty 1)] (TM-TM),
Ahg N 29, \nZ2 n} ng g

(94)

where g, was defined in eq. (32), and the values of N and A4 appropriate for
TM modes must be used [see eq. (34)]. There is strong evidence that eq. (93)
is correct and eq. (94) is incorrect, as will be discussed later in this chapter. It
appears that the correct TM-TM result can be obtained by setting the quantity
in curly brackets { } to unity in eq. (94).

The number of terms that must be retained in eqs. (87) and (88) to provide
an acceptable quantitative description for a given situation is a matter of great
importance. If we consider a waveguide that is sufficiently thin so that it
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supports only the lowest order TE mode, we can assume that all the amplitudes
are zero except n = 0:
A (z)=4,(@)=0 forn#0. 95)

The coupled-mode equations then reduce to

AG .
ddq _ iAg Ko + 145 K, e~ 12k (%6)
dz
and
A§ ) . ,
ddo = —14g Ko €% — idg K, 7
z

equations that are clearly of the same form as eqgs. (67) and (68), which were
obtained in a different way. Coherent coupling between forward- and back-
ward-going waves can only occur (in the first Bragg order) when the propa-
gation constant and the grating constant very nearly satisfy the Bragg condition
2By = Ko = 27n/A. Only those terms on the right-hand sides of eqs. (96) and
(97) that are properly phase-matched will be significant; the rest can be
neglected, an approximation often termed the synchronous approximation, which
leads to

A§ _
d4 =ikd, e”i2%7 (98)
dz

and
Mo ikag e, (99)
dz

where 9 is a small detuning parameter; 26 = 28, — K, (6 = 0 when the Bragg
condition is satisfied exactly). These coupled first-order equations have a
relatively simple solution for many problems of interest. It is important to
remember, however, that the simple form of egs. (98) and (99) is based on the
approximation in eq. (95). In many cases of practical importance this approxi-
mation works quite well. Before turning to the solutions of egs. (98) and (99),
an alternative derivation that is not limited to a two-dimensional geometry will
be considered for the TE polarization.
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5.2. IDEAL-MODE EXPANSION - AN ALTERNATIVE APPROACH (TE)

The coupled-mode equations were developed in the previous section by
starting with the full mode expansions, egs. (69) and (70), and then mani-
pulating them in various ways using two of Maxwell’s equations. This is in
contrast to the method illustrated in egs. (58) — (68), which showed, for a
one-dimensional case, that coupled-mode equations emerge directly from the
wave equation. Since only one spatial mode of the waveguide is important for
most applications, the full mode expansion is an unnecessary complication. In
what follows, the problem of a TE-guided wave propagating in the corrugated
structure of fig. 14 will be treated, but the restriction to propagation along z,
perpendicular to the grating “rulings” will be lifted. The theoretical develop-
ment parallels that of egs. (58)—(68).

Figure 15 illustrates the first-order Bragg interaction considered here. A
TE-guided wave propagating in a single-mode planar waveguide at angle 6 with
respect to the z-axis interacts with the periodic structure (having a period A)
to produce a backward-going wave. A view of the x—z plane for the corrugated
waveguide appears in fig. 14. Once again we assume that the Bragg condition
is very nearly satisfied, so that , defined below eq. (99) with B, replacing j,,
is small. We seek a solution of the wave equation for the electric field E,

[vz ¢ B+ Aex2) ng E(x, 3,20 =0, (100)
&o
TOP VIEW
Z2=0 Z=L
A
~
o[/ z
oi\| +1
‘,/
v

Fig. 15. Top view of a corrugated section of length L of a planar optical waveguide. The grating

width along y is taken to be large. A forward-going guided wave with propagation vector §,

oriented at angle 8 with respect to the z-axis, generates a backward-going guided wave by means
of the Bragg interaction with the periodic perturbation.
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where &, is the permittivity of free space, k, = w/c = 27/A, &(x) = n*(x)¢, and
Ae are as defined in eqs. (5) and (91), and the usual time dependence,
exp( - iwt), is assumed. We adopt the central view of the ideal-mode expansion
by considering A to be a perturbation on the structure of the mean, or ideal,
waveguide of refractive index n(x), as shown in fig. 14. The field E is oriented
parallel to the y-z plane, and is written in the product form

E(x, y,2) = f(z) exp(iB,y) EP(x) . (101)

The superscript (i) labels the lowest-order ideal mode of the unperturbed,
single-mode waveguide [see eq. (6)]. This is equivalent to neglecting the
radiation modes in the full mode expansion, acknowledging that the period of
the corrugation is such that it provides no coupling between the bound mode
and the radiation field.

The ideal mode satisfies the equation

[;— + n2<x)k3] EQ() = FPEPR). (102)

Now, insert eq. (101) into eq. (100), make use of eq. (102), and note that
B = (B,. B.) to obtain

0’ . .

[6—5 + ﬂﬁ] SJ@EP(x) = —pw? Ae f(z) EP(x), (103)
z

where p = p, = the permeability of free space. The x-dependence can be

eliminated from eq. (103) by first multiplying by the complex conjugate of

Eq(x)* (i.e. Eo(x)) integrating over all x, and using the normalization condition

in eq. (24), with the result

[a—azg + ﬂf] f(2) = -2BK(2) f(2), (104)
where
K@) = iij A EP(x) EP(x)*dx, (105)

analogous to eq. (85). Equation (104) has the same form as eq. (58), the only
difference being that f(z) is now a vector amplitude. This offers no significant
complication, however, due to the simple form of the right-hand side of
eq. (104).

The same steps that led from eq. (58) to eq. (62), when applied to eq. (104)
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give the result

f@) =A*(@) e+ A (z)e A7, (106)

where A" (z) and A~ (z) are the vector amplitudes of forward- and backward-
going (along z) waves. They are given by

A*(Z)=;Jz e B K(2') fl2')dzZ, (107)
cosl J - »
d

an
A (2= L fw e’ K(z') f(z')dz . (108)
cosf J.

These can be reduced to a pair of coupled, first-order equations by writing the
vector amplitudes in terms of unit vectors e, according to

A*(z)=A*(z)e, and A (z)=A (2)e_, (109)
where
e, e, =1 and e_-e_=1. (110)

The unit vectors specify the directions of the electric field vectors for the
forward- and backward-going waves. We first form the dot products of
eq. (107) and (108) with e, and e_, respectively, noting that

e, -e_=cos(20),

to obtain the scalar equations

d4* _iK(@) [A* + A~ cos(20) e 12F=], (111)
dz cos @
and
dd” _ -iK(@) [A* cos(20) ei2P + 47 ]. (112)
dz cos@

K(z) was evaluated in the previous section [see eq. (92)] for a cosine grating
of the type specified in eq. (90): K(z) = 2k cos(K,z), where x is given by
eq. (93). As with egs. (96) and (97), we retain only the phase-matched terms
(synchronous approximation) with the results

d4a~

z

=ik(f) A~ e 125 (113)
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and

d4-

z

= —ik(B) 4" ei2®, (114)

where 26 = 28, — K, and

_ kcos(26)

k(0) = (TE-TE), (115)

COos

with x as given in eq. (93) for TE polarization.

Equations (113) and (114) are in complete agreement with the coupled-mode
equations derived earlier using Kogelnik’s formalism for 8 = 0. They are more
general; however, in that they apply for arbitrary angle 8 (see fig. 15).
Equation (115) identifies the coupling coefficient k(8) for the TE-TE, first-
order Bragg reflection of guided waves. All theoretical treatments of this prob-
lem obtain this same result for TE-guided waves for the case of a small surface
perturbation A#h.

5.3. SOLUTION OF THE COUPLED-MODE EQUATIONS

The coupled-mode equations in eqs. (113) and (114) can be solved in a
straightforward fashion after specifying the appropriate boundary conditions
(KOoGELNIK [1975]). Here, we consider a surface-corrugation grating of finite
length L along the z-axis, but of infinite extent along the y-axis. The upper
surface of the perturbed waveguide is, then, given by

d=h+ Ahcos(Ky2z) 0<z<L,
=h otherwise ,

as in fig. 15. The boundary conditions we consider are such that for perfect
Bragg matching, 6 = 0,

A*(2)=1 250,
A (2)=0 z=1L. (116)
The conditions at z = 0 and z = L yield the solutions

_ acosh{a(L — 2)] - idsinh[a(L - z)]

A +
@) acosh(aL) — id sinh(aL)

exp( —idz), (117)
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and
—¢n_ ix(0) sinh[a(L - z)] )
47@) = acosh(al) — id sinh(aL) exp(+id2), (L18)
with
a = {k(6)* - 6}/, (119)

We now examine the characteristics of these solutions.

Figures 16 and 17 show plots of |4 *(z)|2 and |4 ~(2)|? for k(@)L = 2 for
perfect Bragg matching (5 = 0) and an illustrative detuning (6 = 1.95/L),
respectively. The increased detuning in fig. 17 results in a reduction in the
amplitude of the reflected wave at z = 0 to approximately 80%, and an accom-
panying increase in the forward wave amplitude at z = L in comparison with
the perfectly Bragg-matched case of fig. 16. The grating reflectivity R is defined
as

A (z=0)?
= _(___) , (120)
A*(z=0)
T T T T T
10} J
08} 4
T 06F i
<
N
< o04f g
02} .
0.0} 4
1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

zZ/L

Fig. 16. Plots of A(z) A*(z) for forward-going ( + ) and backward-going ( — ) waves for x(6)L = 2
and perfect Bragg matching, = 0.



44 WAVEGUIDE DIFFRACTION GRATINGS [, §5

8=1.95/L

0.8

06

A{z)A*(z)

0.4 r

O»o _{

1 L 1 1 ] .

0.0 0.2 0.4 0.6 0.8 1.0
ZL

Fig. 17. Plots of A(z)A*(z) for forward-going ( + ) and backward-going ( - ) waves for k(@)L = 2
and sample detuning § = 1.95/L.

so that

sinh? {x(8)L /1 - [8/x(6)])*}
- . (121)
cosh?{k(8)L /1 — [5/k(O)F} - (3/k)?

Note that the form of eq. (121) must be changed to one expressed in terms of
sines and cosines for §/x{6) > 1.

Figure 18 shows a plot of the reflectivity R versus 0/x(6) for the two cases
k(6)L = 1 (dashed line) and x(6)L = 2 (solid line). The larger coupling
strength produces the higher peak reflectivity, greater than 90, in this example.
Reducing the coupling coefficient x(8) both decreases the maximum reflectivity
and broadens the spectral response, as one would expect. The detuning, for a
fixed grating period, is a measure of the wavelength (or frequency) deviation
from the Bragg-matched value. The Bragg-matched reflectivity R takes on the
very simple form

R = tanh?(x(8)L) (5 =0), (122)

plotted in fig. 19. The reflectivity for = 0 saturates at unity for products of the
coupling coefficient and the grating length greater than ~3. The coupling
coefficient, of course, depends on the angle of incidence faccording to eq. (115)
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Fig. 18. Plots of the grating reflectivity R, eq. (121), as a function of §/x(6) for x(8)L = 1 (dashed
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Fig. 19. Grating reflectivity R as a function of the coupling strength x(8)L for the case of pertect

Bragg matching, 6 = 0.
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0 20 40 60 80
ANGLE 6 (degrees)

Fig. 20. Normalized absolute value of the coupling coefficient | x(6)| as a function of the angle
0 (see fig. 15) for TE-polarized incident and diffracted guided waves (TE-TE). Note that x(0)
has been set to unity for simplicity.

for TE-guided waves, a dependence that is illustrated in fig. 20 for the normali-
zation k¥ = 1 at 8 = 0. The coupling coefficient vanishes at 6 = 45° and rises
rapidly as 8- 90°. Divergence of the coupling coefficient for 8= 90° is
expected, since this corresponds to grazing incidence for which the reflectivity
should approach unity.

5.4. COUPLING BETWEEN TM-GUIDED WAVES

The coupling coefficient k(6) contains the essential information regarding the
strength of the interaction between the guided wave and the surface corru-
gation. As mentioned earlier, the various theoretical approaches generally agree
on the matter of the TE-coupling coefficient, eqs. (93) and (115). This was not
the case until very recently for the TM-coupling coefficient. It is becoming clear,
in fact, that eq. (94), the coupling coefficient obtained from the ideal-mode
expansion, is incorrect.

STREIFER, SCIFRES and BURNHAM [1976] were the first to recognize that
calculations based on the ideal-mode expansion for TM modes in a waveguide
with a corrugated surface led to certain difficulties. They found that various
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formulations of the problem led to very different values of « for the case of a
large refractive-index difference at the corrugated boundary. SIPE and
STEGEMAN [ 1979] then reported the results of a comparison (for 6 = 0) of the
coupling coefficients obtained by the ideal-mode version of coupled-mode
theory and by “total field analysis”, a theory that attempts to satisfy the
boundary conditions at the corrugated surface in an explicit way. They found
agreement for the TE case but disagreement for the TM case. STEGEMAN,
SARID, BURKE and HALL [1981] generalized the “total field analysis” to
arbitrary 6 and found general disagreement with earlier extensions of the
ideal-mode analysis to arbitrary 6 for the TM case. GRUHLKE and HALL
[1984] examined (for 6 = 0) both the grating-refiection problem and the related
problem of the radiation pattern produced by a guided wave interacting with
a surface grating. They used a boundary perturbation technique that satisfies
the boundary conditions at the corrugated surface to first order in the grating
height. Again, the results agreed perfectly with those of the ideal-mode version
of coupled-mode theory for TE polarization but disagreed for both problems
for the TM polarization.

MARCUSE [1974] describes two different formulations of coupled-mode
theory, one of which is based on the ideal-mode expansion we have already
discussed, and the other based on the so-called local normal mode expansion.
Whereas the former expands the fields of the corrugated waveguide in terms
of the fields of the uncorrugated mean waveguide, the latter expands them in
terms of the fields for an unperturbed waveguide with the local thickness. The
difference between the two is that the location (but not the slope) of the
boundary of the perturbed waveguide coincides with that of the unperturbed
waveguide for the local normal mode expansion, but not for the ideal-mode
expansion. MARCUSE’s [ 1974] analysis for 8 = 0 shows that these two formu-
lations predict different coupling coefficients for the TM polarization.

MARCUSE’s [1974] local normal mode (LNM) analysis was recently
generalized to arbitrary angle # by WELLER-BROPHY and HALL [1988]. The
predicted coupling coefficient x(6) (in pm ~!) appears as the solid curve in
fig. 21 for an illustrative choice of parameters (n, = 1.0, n; = 1.56, n, = 1.47,
h=09um, A = 0.8 pum). The dashed curve, shown for comparison, is the
prediction of the ideal-mode theory of WAGATSUMA, SAKAKI and SAITO
[1979]. The LNM analysis is in complete agreement with those theories that
satisfy the boundary conditions (to first order in the corrugation height). The
most striking feature in fig. 21 is the zero-crossing that occurs near § = 20° for
the LNM theory, but does not occur for the ideal-mode theory. This suggests
that an experiment that examines the grating reflectivity in the vicinity of the
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)

Fig. 21. Angular dependence of the absolute value of the coupling coefficient | k(6)| (in pm ")

for TM-polarized incident and diffracted guided waves (TM-TM), as predicted using the local

normal mode approximation (solid curve) and the ideal-mode approximation (dashed curve). The

parameters used to make the plots are given in the text. The former shows a distinctive zero-
crossing that is absent in the latter.

zero-crossing will be a good test of the two theories, since one theory predicts
a very small value compared with the other [see eq. (122) for the relation
between the reflectivity R and the coupling coefficient x(6)].

WELLER-BROPHY and HALL [1987] reported the results of such an experi-
ment. The waveguide and grating parameters were chosen so that, for the
experimental conditions, the ideal-mode theory predicted a 1009, reflectivity
for both the TE and the TM cases, whereas the LNM theory predicted a 1009
reflectivity for TE and a 139, reflectivity for TM. The comparison with experi-
ment is summarized in table 1.

TABLE |
Comparison of measured and predicted grating reflectivities (in ).

Theory Experiment
Ideal mode Local normal mode
TE-TE 100 100 75

T™-TM 100 13 9
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The measured reflectivities agree better with the LNM result. Neither calcu-
lation included the effects of propagation losses in the waveguide, so the
difference between the measured and calculated LNM values is not considered
significant. The large difference between the measured TE and TM reflectivities,
however, lends strong support to the LNM version of coupled-mode theory as
the more correct analysis. It appears, not surprisingly, that the boundary
conditions on the corrugated surface must be handled carefully.

5.5. LOCAL NORMAL MODE EXPANSION AND COUPLED-MODE EQUATIONS
(TM)

The success of the local normal mode (LNM) expansion over the ideal-mode
expansion in predicting the results of the measurement described in the
previous section for the TM polarization raises the question of the essential
difference between the two approaches to the grating reflection problem. Both
Marcuse’s original derivation for 8 = 0 (MARCUSE [1974]) and the extension
of this work to arbitrary § (WELLER-BROPHY and HALL [1988]) are rather
cumbersome, however. More importantly, the derivations are sufficiently
different so that the connection with that for the ideal-mode approach can be
difficult to make. Here, we make use of a new treatment of the LNM approxi-
mation that, hopefully, makes the comparison easier. The theoretical develop-
ment in this section parallels that for the TE polarization presented in
eqs. (100)-(115).

We begin with the wave equation in eq. (100), repeated here for convenience,

[\72 4 Bx) + Adlx, 2) kg} E(x,y.20=0, (123)
o

and consider the same geometry that appears in fig. 15. As before, Ae describes
the perturbation [see eq. (91)] introduced into the structure of the mean (or
ideal) waveguide, as in fig. 14. Motivated by the earlier treatment of the TE
problem, we write the field E in the form

E(x,y.z,1) = f(z) e'#” Ey(x,2) e 71", (124)

where E, (x, z) gives the x-dependence of the electric field profile at a given
position z in the perturbed waveguide. In the LNM approximation, E, (x, z) is
taken to be the field profile for the mode of an uncorrugated waveguide with
the local (L) thickness, i.e. that for a given z. As before, we rearrange the wave
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equation so that the perturbation term appears on the right

Ae(x, 2)

€o

kEE(x,p,2,1). (125)

<V2 + &(x) kg) E(x,y,z,0)= —

o

At this point, eq. (125) still contains the spirit of the ideal-mode expansion,
since the permittivity &(x, z) = &(x) + Ae(x, z) has been split into two parts —
that for the ideal waveguide [&(x)] and that for the perturbation [Ag(x, z)]. The
chosen form for the field in eq. (124), however, does not make use of the field
profile appropriate for the ideal, uncorrugated waveguide. The essence of the
LNM approximation, as treated here, is that the field E is treated differently
on the left- and right-hand sides of eq. (125). In particular, the z-dependence
in E, (x, ) is neglected on the left-hand side, but is retained on the right-hand
side. The right-hand side of eq. (125) drives the differential equation, and so
great care must be taken to model it as well as possible. This means that the
approximate fields in the perturbed regions must be handled carefully. We will
return to this point soon. Since it is assumed from the beginning that the
perturbation is relatively small, the propagation of the forward- and backward-
propagating waves should not be very different for the corrugated and uncorru-
gated waveguides. Therefore, we treat E; (x, z) on the left as independent of z,
and indistinguishable from the field profile for the ideal [ superscript (i)] wave-
guide. With this approximation on the left, eq. (125) becomes

Ae(x, 2)

2
EO(x) [% + ﬂf} J@O)=~ -k§ < )f(Z)EL(x, 2), (126)

&

where we have assumed that E, (x, z) ~ E%(x) satisfies eq. (102), consistent
with the approximation.
Next, we integrate the x-dependence out of eq. (126) by first forming the field

EP(x) = RED(x) + {9 (%) - 2(p- 2/3)} EP(x). (127)

The quantities £8(x) and E®)(x) are the components of E®(x) for a forward-
going wave propagating along z (8, = 0); " designates -a unit vector. The dot
product in eq. (127)is positive (negative) for forward- (backward-) going waves.
The amplitude f(z) consists of forward- and backward-going waves, as we have
seen earlier in this chapter. The construction in eq. (127) allows us to project
the forward-going field onto a backward-going ideal mode, and the backward-
going field onto a forward-going ideal mode, to examine their mutual coupling.
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We accomplish this by forming the dot product of eq. (126) with the complex
conjugate of eq. (127) and then integrating over x, and obtain

[d—z ¥ /33] fz) = - (ﬂ‘—“’) K@ /@), (128)
dz? 1

N

where K(z) has the familiar form

K@ =10 J ” Ae(x,z) E\(x, 2) - {EP(x)} * dx, (129)

— 0

and I is a normalization integral given by

Iy = J‘oo E®(x)- {EP(x)}*dx. (130)

The normalization integral I is similar to that for TE modes, eq. (24). In fact,
the normalization for TM modes given in eq. (25) implies that Iy ~ 2u,w/f
for the lowest-order TM mode. (For most cases I rarely differs from 2u,w/B
by more than 1%, for the lowest-order TM mode, primarily because the integral
is dominated by the term involving the transverse components of the fields.)
Equation (128) becomes

2
[;7 + ﬂz] 1) = ~2BK() f(2), (131)

which has the same form as that in eq. (104) for TE modes.

From this point, the analysis proceeds just as before. The Green function
technique is used to develop coupled-mode equations, which are then solved
using the synchronous approximation [see above eq. (113)]. The all-important
coupling coefficient is obtained by writing K(z) = 2k cos(K,z), so that

’

K

k(8) = (132)

b
cos @

where we recall that the factor 1/cos(8) is contributed by the Green function,
since it is proportional to 1/8,.

K(z) must be evaluated carefully. E;(x,z) is the model field of an
uncorrugated waveguide with the local thickness, whereas E®(x) is described
in terms of the modes of the ideal (mean) waveguide. This means that each field
must be placed in the correct medium, a point made in the paper by STEGEMAN,
SARID, BURKE and HALL [1981]. Table 2 attempts to make the distinction
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TABLE 2
Comparison of ideal-mode and local normal mode treatments for the TM~TM interaction
(P = perturbed; U = unperturbed).

Coupling integral: K(z) = J Aelx, z) Ep(x, 2) - {E@(x)}* dx.

Ideal mode* Local normal mode*

A = go(nf - n?)

h
Ep(x2) n=ne, Ep(xz2)=EP(h) n=ng, Epfx2)~ EQ(h)
Ep.(x,2) n=ng, Ep(x,z)x(n/n ES(R) n=ne, Epix 2}z EV%)

A = go(n? — n})

Epy(x,2) n=ng Ep(x,z)~ EP() n=n,, Ep(x,z)~E®®h)
Ep,(x,2) n=ng, Ep,(x,2)x (ngn Y EO(h) n=n, Ep,(x,2)xEH)

® t and z designate the transverse and z-components of the vector fields.

between the ideal-mode and local normal mode approaches clear. For regions
d > h, for which the actual surface of the perturbed waveguide extends beyond
the mean surface at x = 4, the field is approximated by that of a waveguide with
constant thickness dusing n = n. The sameis true ford < 4, except thatn = n_.
The correct refractive index is assigned to each perturbation region for the
purpose of determining the field. The ratios n_/n, and n¢/n, that appear in the
expressions for the z-components of the fields in table 2 for the ideal mode case
are the result of assigning a refractive index other than the actual one to each
perturbation region. When evaluated properly, eq. (132) becomes

2 _ N2 2 N2
hid éﬁ ne = N° i I:N_ - (___ 1) cos(20):|
}' heﬂ' N qc nf2 c2
k(8) = (TM -TM),
cosf

(133)
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for the cosine surface grating of eq. (90). Note that g, was defined in eq. (32),
and all quantities should be evaluated for the lowest-order TM mode.
Equation (133) is in complete agreement with that obtained by WELLER-
BropPHY and HALL [1988], and is also in agreement with that obtained by
STEGEMAN, SARID, BURKE and HALL [1981] after a few minor algebraic
corrections are made. A comparison with Kogelnik’s result, eq. (94), for 6§ = 0
shows agreement, provided the quantity in curly brackets in eq. (94) is set to
unity, as mentioned earlier. Indeed, it is eq. (133) that is plotted in fig. 21 (solid
line) and has so far shown good agreement with experimental results (WELLER-
BroPHY and HALL [1987]). Equation (115) is obtained when the method
discussed in this section is applied to the TE-TE Bragg reflection problem;
thus, the method is both straightforward and reliable.

The ideal mode approach to the grating reflection problem differs from the
treatment given in this section in two ways. First, the LNM approach does not
weight the z-component of E differently from the transverse components of E,
as is the case for the ideal-mode approximation. This follows as a natural
consequence of the assumption that E, (x, z) is evaluated as the mode of an
ideal waveguide with the local thickness. Second, the net effect of treating
E| (x, z) this way is that products of the field components in eq. (129) contain
one field for each medium, the cover and the film, a feature not present in the
ideal-mode approach. The success of the various versions of the LNM approxi-
mation highlights the importance of treating the field very carefully in the
perturbation term in the wave equation.

5.6. SUMMARY OF COUPLED-MODE TREATMENTS

The previous sections reveal several important points about coupled-mode
formulations. First, derivations of the coupled-mode equations, eq. (113) and
(114), often make use of a slowly varying envelope approximation, in which the
second derivatives of both the forward- and backward-wave amplitudes with
respect to z are neglected. This is a completely unnecessary approximation.
Both the Green function approach and other formulations arrive at the proper
equations without invoking such an approximation. Second, some researchers
have asserted that the case of non-normal incidence to the grating “rulings”
cannot be treated by solving the wave equation directly (Porov and MASHEV
[1985a,b}). They argue that one must begin the analysis at a low level, so to
speak, with Maxwell’s curl equations. The Green function method discussed
here demonstrates that this statement is incorrect. Third, the flaw in the
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reasoning behind the ideal-mode expansion treatment of the grating-reflection
problem was revealed to be an improper treatment of the fields in the region
of the surface corrugation. The wave equation contains a perturbation term
proportional to (A¢) E, in which E must be considered to be a field in the actual
medium for the perturbed structure, one for which the permitivity is
&(x) + Ae(x, z). The ideal-mode expansion violates this to produce two errors,
an improper treatment of the z-component of the field [see eq. (84)] and an
improper evaluation of the field within each perturbation region in the coupling
coeflicient. The LNM expansion suffers from neither of these difficulties, since
the boundary for the local normal mode E; (x, z) occurs at the same location
as, but with different slope than, that for the actual waveguide field. Previous
derivations of the LNM resuits (MARCUSE [1974], WELLER-BROPHY and
HaLL [1988]) obtain the correct coupled-mode equations and coupling
coefficients for both the TE-TE and TM-TM cases, but the Green function
technique obtains the same results for the lowest-order (m = 0) modes with
much less labor and in a more direct manner from the wave equation.

5.7. PERTURBATIVE TREATMENT

The previous treatments of the problem of guided waves interacting with a
surface-corrugation grating have considered the coupling per unit length
between the incident and Bragg-reflected waves to be weak. This is implied in
the restriction that the ratio Ah/h or Ah/A is small, which allows the coupling
coefficient x(8) to be expressed in a relatively compact form. These same
treatments, however, allow the rotal interaction to be large so that the depletion
of the incident wave cannot be neglected. The weak coupling between the
forward- and backward-going waves that occurs within any single period of the
corrugated waveguide can build up coherently when the Bragg condition is at
least nearly satisfied. In this way, even a weak interaction can produce a nearly
100%, conversion between the two waves in a finite, but sufficiently long,
structure. Thus we see that the coupling coefficient describes the interaction per
unit length, whereas the coupled amplitude equations describe the relative
amplitudes of the forward- and backward-going waves.

A few authors have attempted to reduce the complexity of the waveguide
grating problem by separating the two main parts of the problem (STEGEMAN,
SARID, BURKE and HALL [ 1981]). First, the coupling coefficient is determined
in the weak-scattering limit in which one ignores the depietion of the incident
wave. The coupling coefficient is subsequently inserted into a pair of coupled-
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mode equations to obtain the full solution including depletion. This approach
offers the advantage that x(6) can be determined, in principle, to arbitrary
precision by using a power-series expansion in, e.g., AA/h. It has the disadvan-
tage, however, that the coupled-mode equations must be obtained separately,
a process that has led to errors in the past when these equations have been
obtained rather intuitively (STEGEMAN, SARID, BURKE and HALL[1981]). The
technique for obtaining the coupling coefficient for one such perturbation
approach is illustrated in this section.

TuaN [1973], TuaN and Ou [1973], and TsAl and TUAN [1974] used a
surface-perturbation theory formulated by CHEN [1968] to examine the
scattering of guided waves by a single groove or deformation in the surface of
an otherwise unperturbed planar optical waveguide. The technique is based on
an expansion of the scattered field and the boundary conditions in power series
in the parameter Ah/h, which is presumed to be small. Their theoretical work
does not treat the grating problem explicitly, although it also applies to that
case. This discussion will assume that the surface-corrugation waveguide
grating in fig. 14 is the structure of ultimate interest. HALL [1980] has shown
that for the problem of a guided wave that radiates due to the interaction with
a surface structure, the first-order (in Ah/h) boundary perturbation method
leads to the same result as the coupled-mode theory of MARCUSE [1974] for
the TE polarization, but to different results for the TM polarization (GRUHLKE
and HALL [ 1984]). Again, the disagreement for the TM case is due to the same
shortcoming on the part of the ideal-mode expansion, discussed in the previous
section. The boundary-perturbation method gives the correct result.

The boundary-perturbation theory was originally formulated in two dimen-
sions, but was later extended to three dimensions (HALL [1981]). Since this
section merely aims to outline the methodology, the simpler two-dimensional
case will be considered; i.e., we will examine the Bragg reflection of a guided
wave incident on a grating at normal incidence (6 = 0 in fig. 15). The grating
length L is taken to be sufficiently small so that depletion of the incident wave
can be neglected. The more difficult TM-TM case will be considered here to
make a strong connection with the content of the previous section, although
the theory also works well for the TE polarization. The basic geometry is shown
in fig. 9.

The upper surface x = d of the waveguide is taken to be of the form

d=h{1+np(z)} forO<:z<L, (134)

and uncorrugated with d = A, otherwise. The parameter 7 is small, and p(z)
describes the surface perturbation. The magnetic field for the TM polarization
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is oriented along the y-direction,

H=%H,. (135)
The field H, is expanded as the sum of two parts,

H,=H, .+ H, scau - (136)

y,inc

The incident fields, labeled “inc”, are taken to be those given in eq. (10), the
fields for the unperturbed waveguide of thickness 4, for a forward-going wave
according to

Hy, inc = Hm(x) exp[i(ﬂz - (Ot)] . (137)

The scattered field in medium j is expanded in a power series in the small
parameter #,

Hy = Z‘ mHP, (138)
where H,, is the nth-order scattered field, and j = s, f, or ¢ in the substrate,
film, or cover regions, respectively. For a surface grating of the form of interest
here, p(z) = cos(Kyz) and n = Ah/h.

The boundary conditions on the tangential components of E and H can both
be expressed in terms of H by using the unit normal u, to the corrugated
surface. Both H,, and (1/e)u, * VH, must be continuous across the corrugated
interface between the cover and film media. This is difficult to accomplish
exactly, but the boundary conditions can be expanded in a power series in #
and satisfied up to a specified order in . The operator u,+ V can be written
in terms of the surface profile as

- Qgﬂ”qi_ @@E} 9
u,-v {1+<nh . o nh 3 ol (139)

When the boundary conditions are satisfied through first order in », we obtain

H(h,z) - H)(h, 2) = hP(Z)[ {HDine(x, 2) = Hpo(x, Z)}:I =M,(2),
x=h
(140)
and
(<) (f)
[i OHH(x,2) 1 O, z)] = My(2), (141)
n2 dx n? dx x=h
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where
1 02H®,_(x,z) 1 3*HY) (x,z)]
M h 2 9 lymete 2] 0 Y Hyineths 2
2(2) = hp(z )[ ™ o B2 -

(142)

, 4 [1 OH (7)1 BHDilx, z)]

dz Ln? 0z n,? 0z

x=h

As before, the superscripts (c) and (f) on the incident fields designate the
medium in which eq. (137) will be evaluated. The bottom surface of the wave-
guide at x = 0 is taken to be uncorrugated, of course, so that the first-order
boundary conditions produce the much simpler requirements

H0,2) = HE(0, 2), (143)
and
(f) (s)
1 BHG}(x, 2) _1 OHY(x, 2) . (144)
nfz 9x  le-o ns2 ax  ly-o

Equations (140)—(144) can be solved for the unknown first-order scattered
fields by introducing plane-wave expansions for A, in all three media. We write

H%(x,z) = %t :jooo U(§) eiseier d¢, (145)

HO(x,2) = %{ Z [V1(8) € + Vy(E) e 6] eitr dE, (146)

HE)(x,2) = 51— Z W(E) eiér e 16 dg, (147)
where

g = {nﬁ (‘c—") - 52}”2 (=cfs). (148)

These reduce eqs. (140)-(144) to a set of algebraic equations that can be solved
for the amplitudes U, V,, V,, and W.

The procedure is rather tedious, but the integral expressions for the fields are
versatile. The radiation fields can be determined very easily in the far-field by
applying the method of steepest descents. The field for the reflected field in the
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waveguide can be obtained by noting that the integrals contain simple poles at
&= + B The pole at ¢ = ~ B gives the field for the “backscattered” guided
wave. Again, the process is rather tedious, but the result is quite simple. For
example, the first-order scattered field within the waveguide layer is obtained
from eqs. (138) and (146) to be

2 A2 2 g2 .
Qi (ZE NN T ) | L) e,
Xheﬁ' N dc nfz' 2

C

(149)

where H,,(x) refers to the field in the film region 0 < x < & [see eq. (10)]. A
comparison with eq. (133) reveals that the quantity in square brackets is just
the coupling coefficient x(f) evaluated for 6 = 0, as required by the two-
dimensional geometry (implied normal incidence) considered here. The field is,
then, just

HE, = ik(0) LH, (x) e~ im0, (150)

This means that the back-reflected wave has the same spatial profile as the
incident wave, and has strength proportional to x(6)L. x(0) can, therefore, be
interpreted as the fraction per unit length of the incident field coupled from the
forward-going incident wave into the backward-going reflected wave, consis-
tent with the interpretation earlier in the chapter.

The agreement between k(0) in eq. (150) and eq. (133) is illuminating. The
former was obtained by satisfying the boundary conditions to first order in the
presumed small parameter Ah/h. The latter was obtained from coupled-mode
theory, which typically makes no explicit use of the boundary conditions. The
afore-mentioned agreement gives some confidence that eq. (133) can be relied
upon, provided Ah/h is small.

5.8. TE-TM MODE CONVERSION

The previous sections focused on the issue of a correct formulation of the
TE-TE and TM-TM Bragg interactions in a corrugated optical waveguide.
These are not the only possibilities, however, since for non-normal incidence
TE-TM mode conversion also occurs in an optical waveguide. That is, for
incident angie 6, # 0, a TE- or TM-guided wave incident on a corrugated
section of an optical waveguide can, in first order, generate a TM- or TE-
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reflected guided wave if the Bragg condition
2
(%) cos(8,) + (2—"Nﬂ> cos(8,) = =%, (151)
A A A

is at least nearly satisfied. In this case the incident and reflected guided waves
will propagate at the different angles 6, and 6, with respect to the grating normal,
since the effective index of refraction (N ) for the TE polarization differs from
that (N ) for the TM polarization in a given waveguide, even though both are
of the same vacuum wavelength A. The local normal mode approximation also
can be used to give a satisfactory result for this case (WELLER-BROPHY and
HaLL [1988]). Only the result for the coupling coefficient is given here (note
the dependence on two angles),

2 _ 12)172 §in(6. + 6
k8., 8.) = i/Cre /Crm (Nim = né)'™ sin(0i+8)  rp My, (152)

qé/znc cos (01')

where we have used the notation of WELLER-BROPHY and HALL [ 1988} so that

2 _ N2
=’1‘ hAh "—f% (m = TE, TM).. (153)
eff, m m

m

There is no TE-TM mode conversion for normal incidence 6, = §, = 0.

§ 6. Summary

This chapter has considered the interaction between the modes of a planar
optical waveguide and a periodic surface corrugation, which is an important
interaction in many applications. The specific case of the grating-induced
coupling between two guided waves in a planar waveguide structure received
the principal emphasis here, since it has been the subject of some controversy
over the last ten years, a controversy that has only recently been resolved. The
physical nature of the interaction is well understood, namely, as being due to
Bragg scattering. The quantitative details are complicated, however, by the
mode structure characteristic of even an elementary planar optical waveguide.
Approximations that work very well and lead to excellent agreement with each
other for TE-polarized guided waves disagree with each other significantly for
TM-polarized guided waves. A recent experiment was able to distinguish
between classes of theories. Those theories based on the familiar ideal-mode
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expansion discussed in several textbooks and monographs disagree with the
measured results for the TM polarization. Those theories based on either the
local normal mode expansion or boundary perturbation techniques agree well
with each other and with the experiments. The local normal mode theory makes
no explicit consideration of the boundary conditions at the corrugated inter-
face. The boundary perturbation techniques, in contrast, satisfy the boundary
conditions up to a desired order in the grating height. It is interesting that two
such different approaches should agree so well.

After examining the fundamental principles of importance for a variety of
optical waveguides, discussion turned to the various techniques used to attack
the problem of a guided wave interacting with a waveguide diffraction grating.
An attempt was made to formulate the various approaches to enable a compari-
son among the various treatments. It emerged that the deficiency in theories
based on the ideal-mode expansion can be attributed to an improper treatment
of the electric field in the perturbation regions. In essence, these theories ascribe
the wrong polarization (in the dipole sense) to the perturbation regions by
consistently embedding the approximate fields in the wrong media. A new, very
direct formulation of the local normal mode approximation avoided the com-
plexities of earlier versions of the theory and make it relatively easy to identify
the principal features of the approximation that make it so successful. We now
appear to have at our disposal a theoretical description of the guided-wave
Bragg-reflection problem that can be relied upon, at least for the case of shallow
surface corrugations. Equally importantly, our understanding of the way in
which the problem must be treated has improved. This will likely be of benefit
in future treatments of scattering problems in optical waveguides, particularly
those that involve TM-polarized guided waves.

List of Symbols

a asymmetry parameter

A*(2) forward-wave amplitude

A~ {2) backward-wave amplitude

¢ speed of light in vacuum

D power parameter

E electric field

E,(x) electric field profile

E,.(x) transverse component of E, (x)

E8Q(x) field profile for ideal waveguide
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H{)(x)

IN

K(2), K,,,,(2)
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local normal mode
E,(x)atx=h

E,(x)atx=0

maximum value of E,, (x)

unit vectors

nonlnear field profile

Green function

waveguide thickness

effective waveguide thickness
magnetic field

magnetic field profile
transverse component of H, (x)
H,(x)atx=h

H,(x)atx=10

maximum value of H,,(x)

field profile for ideal waveguide
normalization integral

coupling integral

transverse- and z-parts of X, ,(z)
grating constant (27/A)

field profile parameter

length of corrugated region
mode integer or polarization index
effective index of refraction
substrate refractive index

cover refractive index

film refractive index
x-dependent refractive index
nonlinear coefficient

TE mode effective index

TM mode effective index

TM mode parameters
reflectivity

time-averaged Poynting vector
unit surface normal

nonlinear wavegnide parameter

propagation constant
field decay constants
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o detuning parameter

4 index offset parameter

Ae permittivity perturbation

Ah surface grating amplitude

&(x) x-dependent permittivity

£ permittivity of free space

f surface height parameter

0 propagation angle

~ designates unit vector

K coupling coefficient

A wavelength in vacuum

A grating period

Ko permeability of free space

p(2) surface profile

¢, O, TIR half-phase shifts (TE)
S TIR half-phase shifts (TM)

w (angular) optical frequency
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