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The exact expression of kinetic energy as a functional of the density for a system of
noninteracting fermions, which has been searched for many years, is derived based on
the direct method.

One of the greatest challenges in density functional theory of many-fermion system
is the explicit expression of the kinetic energy that is a functional of the density
of the system.}2 Since the inception of Thomas—Fermi®* statistical model of elec-
trons in atoms, the precursor of modern density functional theory, much effort has
been put to search after the kinetic energy functional. The Hohenberg-Kohn® the-
orem confirms the existence of kinetic energy functional T[n], but it cannot tell us
what the exact form of T[n] is. Although the conventional gradient expansion®®
has been explored extensively to approximate T'[n] in a systematic way and has
witnessed some success, it is essentially semiclassical.®!® The author!! has shown
that an ab tnitio gradient expansion of the kinetic energy functional is divergent.
Thus the observation!? that the conventional gradient expansion could not improve
the kinetic energy systematically is explained. In this letter, we first derive a for-
mulation for 7[n] by Taylor functional expansion, which contains unknown higher
order functional derivatives of T[n] with respect to the density n(r) for a uniform
system. We then establish relations between these functional derivatives and the
response functions whose exact expressions are available. Inserting the functional
derivatives of T[n] expressed in terms of response functions into the formulation of
T[n], we arrive at an explicit, exact expression of the kinetic energy as a functional
of density. Some possible approximations to the exact but complicated kinetic en-
ergy functional are pointed out. For brevity, we always use the term system for the
system of noninteracting fermions in the following.

PACS Nos.: 71.10.+x, 0.530.Fk, 31.20.Sy, 31.20.Lr.
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Starting with the functional Taylor expansion of T[n] at zero density, we are
able to write

T[n] = 2—1 % /-~~/C§"‘)(r1, ooy B O)n(rr) - on(r)diy o di, (1)

where C((Jm) is the mth order functional derivative of T'[n] with respect to n(r) for a
uniform system and the integration (also in the following if not explicitly indicated)
1s taken over the entire space.

After its counterpart of classical fluids, we call C(™)(x), ...  rp; [n(r)]), the
functional derivative of T[n] with respect to n(r), direct correlation function (DCF).
The DCFs of noninteracting fermions are due to the Pauli correlation.

For the uniform system, C(()m) satisfies the sum rule

0 §C(m)(r1 R )
- C(m) . ms = 0 ) ™ dim
on 0 (1‘1, , I ") / §n(l‘m+1) Tm+1
= / C((Jm+1)(r1, ey Pt N) AP (2)

This relation allows us to derive the following Taylor expansion:

m S5 m
™ (e, .., tm; 0 :Zp— n)P(an> Ci™(r1, ..., tm;n)
= 1
= Z ol / /C("H—p) oo Pmip; )
p=0 p
X df -dfm+p
0 1 .
:Z—— n(r ]P/ /C( +p) (r1, ..., Tmyp; n(ry))
p=0 p
X di - dfmyp (3)
thus transforming Eq. (1) to
Th)= Y /--./cg'">(r1,... T n(r1)) [Z
m=1 i=1
cn(r))™  Hn(ry) - n(r;)] dry - dry, . (4)

The above derivation of the expression of T[n] follows from Percus’ idea'® of the
direct method. A rigorous treatment based on the functional integral method can
be found in Ref. 14.
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The first order DCF and the second order (in k space) DCF of a d-D uniform

system with density n are well-known,'®!® namely,
Otrr
CsV(m) = .-
d 2/d
=9i-2%4 [r(§ + 1)] n?ld, (5)
Gk m) = - ~(1)1
Ry (k5 p)
k2. 1
=-E 6
b , (%)

where trr is the Thomas—Fermi kinetic energy density, Rgl)(k; 1) is the first order
response function in k space (the Lindhard function in 3D case), p is the chemical
potential, I'(«) is the gamma function, F(«, 8; v; 2) is the hypergeometric function,
and kr is determined by

d 1/d
kFZQI—I/dW1/2[F(—+1>] ’Ill/d.
2

But the expressions of higher order DCFs are not known yet and so, the kinetic
energy functional in Eq. (4) as it stands is only a formal one. To acquire an explicit
formulation of T[n], the exact higher order DCFs are required. We now show how
the DCF 1s related with the response function.

Applying variational principle of Hohenberg and Kohn to the studied system,
we reach the Euler-Lagrange equation

0T [n]
on

+V(E)=4p, ()

where V(r) is the external potential and p the chemical potential. v
By functional differentiating Eq. (7) and noting that the chemical potential is
fixed for uniform system, we obtain immediately

_ 6"“1V(r1)
dn(rsg) -+ én(ry,)

C(()m)(rlx <o Iy, ’Il) =

(8)

n(r)=n
The response function is defined as

_ §mn(ry)
T 6V(ry) -6V (rm)’ ©

R(m)(rl, ey T [V
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and their expressions for 1, 2, and 3D uniform systems have already been
derived:'""19

k ! [o o] [o o] [o o]
Rgm):(_l)ml‘“_m/ " / / jo(kpsi)ds, ---dsp, ifd=1,
T"_ R, Jsn, s

T

k m+1
R = (1™ an'i‘z/ / J](kFER coshs,)dsl cdsmyr, ifd=2,

m k2 ! ke ST R
Ry = (caym ot dlr s R gy g

LS CLOL | it Rj ’

where Ry = |rit1 — ri|, Rm41 = |r1 — I'm41], and J; is the spherical Bessel function.
With the chain rule of functional differentiation, there yields from the definitions
of DCF and response function:?°

/C(Z)(rl, ro; [Tl])R(l)(I‘z, r3; [V])dry = —6(r; —r3). (10)

For uniform system, Eq. (10) reads

1

CPk; n) = -
R$D(k; )

(11)

in k space, which is a well-known result from linear response theory.

Employing the chain rule of functional differentiation repeatedly, we obtain the
third and fourth order DCFs:

c® = —///Rff)(% rs, 16)Cy (x4, 11)

C§B(xs, 13)C) (v6, r3)diadrsdrs (12)
084) == //// Rf)a)(rsa Is, I'7, rs)C(()z)(rs) l'l)C(gz)(l‘s, 1‘2)0(()2)(1'7, 1'3)
. ng)(rs, r4)dfsdf6df7df8 — ///R(()z)(rs, rGy 1‘7) [083)(1.57 ry, 1'4)
. C(()Z)(rs, rz)C(()z)(n, r3) + C((]a)(rs, rs, r4)C(()2)(r5, rl)C(()z)(rG, r3)

+ CEer v, r)CED e, 1D e, )] . 1

If we define the Fourier transform of the DCF as

é(()m)(kl, ...,km_l)z/'--/CSm)(rl, ,l'm)

~exp[—ik1 . (l‘2 —r1) - —lkm ‘(l'm —rl)]d7_‘2 "'dTm,

(14)



Ezxact Kinetic Energy Functional of Noninteracting Fermions 1197

where m > 2, then in k space, the relation between the DCF and the response
function becomes simple:

CP(ky1, ko) = — R (ky, k2)C5P (k1) CP (ko) CS? (ki + ka) (15)
C{Y(ky, ky, k) = —REP(k1, k)[CSP(ky + ko, ks) + C5P(ky + k3, ky)
+ CO(ks + ks, k)] — BP(ky, ko, k3)C8? (ky + ko + k)
O (k1) CP (k2)CE (ko) (16)

For the 1D system, we can write down the explicit higher order DCF explicitly.
For example, the third order one reads

CP = —m[f(m) f(m +n2) + F(r)F(m + n2) — F(m) F(m2)], (17)
with
1

In 14z

f(:l:) = ’ (18)

l1—-=z

and m = k1/(2kr) and 12 = k2 /(2kF).

Other DCFs of homogeneous system are easily determined in the same way,
and they are expressed as functionals of the response functions and the lower order
DCFs.

Substituting the DCFs derived above into Eq. (4), we obtain an exact expression
of the kinetic energy functional.

Starting with the integral form of the virial theorem?!

T[n] = -% /n(r)r V(= V(D)) (19)

Kugler?? was able to derive an exact hierarchy for the kinetic energy functional

Thl= 3 (;1731'"'_“ /.../C(m(rl, oyt [0]) [ In(rdr] . (20)

i=1

Although Egs. (4) and (20) look similar, there is an essential difference between
them: in the former, only the expression of the DCF for the uniform system is
required but in the latter, the form of the DCF for general system is required. Ob-
viously, the practical value of Kugler’s kinetic energy functional is strongly limited
since we do not know the DCF for nonhomogeneous systems. Moreover, Kugler’s
theory is tedious too. To derive the explicit form of T[n] by Kugler’s method, we
need the information of the DCF of any order, or all the functional derivatives of
T'[n] with respect to n(r), which is not necessary. In fact, the knowledge of the first
order DCF is sufficient to help us derive T'[n] itself by direct functional integration
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along a linear path,?2 which is the idea of escalation method.'® Simple calculation
yields

T[n] = / n(r) / 5T['(’:; drdF

= /n(r)/; CW(x, [na])dAdr, (21)

where ny(r) = An(r). Hence, if the expression of the first order DCF were known,
an exact kinetic energy would immediately be formed.

Let us apply the formulation (4) to the uniform system. Suppose that the density
of a uniform system is ng. We consider the kinetic energy of a part of this system,
which is confined in a volume 2. From Eq. (4), we find

T[no]:i i%//.../C(()"‘)(rl)...,rm;O)n{,"dy'-l...dFm

m=1 i=1 m 0

e -1 m+1 m -
:Z(—%—no"‘/n/'n/Cé )(rl,...,rm;O)dF1~--drm, (22)

m=1 )

where the integration of function of r; is taken over €. In deriving 22, we used the

identity
i 1 m—i (_1)m+1
m .

|
m.
i=1

Via the sum rule applied to Eq. (22), one has

m+1 -1
Tlng] = Z % / o ——— C(no)dr . (23)

m=1

Thus, one gets the kinetic energy density

o) = 3o S S 6 ()

Replacing C((,l) on the RHS by Eq. (5), we obtain

d 2/d
t[ng]:21_2/dw[r(§+l)] n2l (1 4.9), (25)

where

_ = (=)™l 2 (2 2
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Therefore, the final result reads

d 27 d 2/d 2/d
t[no] = s m[l‘<§ + 1)] 2l (26)

which is the correct kinetic energy density.

Although the uniform system is a trivial model, the demonstration that verifies
the internal consistency of the formulation is not. Moreover, the newly derived
kinetic energy functional may help us to work out nontrivial results. Certainly,
because of the complexity of DCF, it is difficult to implement our exact formulation
of T'[n] in practice. However, some rational approximation is possible. For instance,
keeping jth and lower order exact DCFs, one can use the following ansatz

(rm —Tm-1) (27)
n(r)=n

to approximate higher order DCFs. An approximate kinetic energy functional is
then obtained:

. n(rl)m_”ln(rg) . 'n(r,-)J dry---drpy,

‘Y [ (G2s) " e, rinien) [z;mj'

()™ n(ry) - -n(rj)"‘—j] dry - dFj . (28)

The approximate kinetic energy functional is nonlocal except for the case of j
being chosen as one. In the latter situation, one rediscovers the Thomas—Fermi
model. It i1s expected that the bigger j in this scheme one chooses, the more
accurate kinetic energy functional will be obtained and the more complicated T'[n]
will become at the same time. Therefore, one has to make a reconciliation between
accuracy and complexity when dealing with T'[n].

The gradient expansion can be introduced into the exact formulation of T[n].
Taking the spread density n(r;) (i > 2) as a series in V from Taylor expansion, i.e.

1

(1':)—"1'1)4'2 7c_ [(ri = r1) - V]*n(r)), (29)

then substituting into Eq. (4), we may identify the coefficient function of any order
term in V for the kinetic energy density. Since all the odd order terms in V of the
kinetic energy density vanish, then the kinetic energy functional can be written as

Thl = Y Tuilnl, (30)
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where T5; stands for the part of kinetic energy resulted from 2ith order in V.
One can show that 7j is Thomas—Fermi kinetic energy and that

(1 1\ [Vn(r)]?
= (5~ 132) n 1)

which is equivalent to the result by the conventional gradient expansion.'® On the
RHS of Eq. (31), a Laplacian term that does not contribute to the total energy is
neglected. However, unlike the conventional or semiclassical theory, our gradient
expansion shows that the higher order terms in V of the kinetic energy density have
infinite coefficients besides that of the 2D system. For a 2D system, the gradient
expansion of kinetic energy functional results in only one term, the Thomas—Fermi

kinetic energy, which is confirmed by both our ab initio method and the semiclassical
one.
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