Lab on a Chip

Cite this: Lab Chip, 2012, 12, 1638

www.rsc.org/loc

PAPER

Single line particle focusing induced by viscoelasticity of the suspending liquid:
theory, experiments and simulations to design a micropipe flow-focusert
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We perform 3D numerical simulations, heuristic modeling and microfluidic experiments to
demonstrate, for the first time, the presence of a bistability scenario for transversal migration of
particles suspended in a viscoelastic liquid flowing in a pipe. Our results show that particle migration,
either at the centerline or at the wall, can be controlled by the rheological properties of the suspending
liquid and by the relative dimensions of the particle and tube. Proper selection of these parameters can
promote strict aligning of particles on a line, i.e., 3-D focusing. Simple design rules are given to

rationally control particle focusing under flow in micropipes.

1 Introduction

In many systems, both natural and man-made, particles are
transported in flowing fluids. Understanding particle dynamics
in such heterogeneous systems is generally quite a difficult
problem. Yet, the capability to control trajectories of suspended
particles under continuous flow is in demand in a variety of
analytical and processing issues, including separation, sorting,
counting, and detection.! Cutting edge techniques are based on
microfluidic cells carefully designed for specific particle-
patterning aims.?

Patterning under flow usually requires particle migration, i.e.,
motions somehow transversal to the main-stream direction. Such
cross-flow movement can be non-invasively promoted by
applying some external field (e.g., electric or magnetic), however
this requires specific properties of the particles.® Self-patterning,
i.e., patterning based on hydrodynamics only, can also be prof-
itably obtained. For example, inertial forces have been cleverly
exploited to drive migration in confined environments.** Effi-
cient processes with this approach face several puzzling technical
issues as complex flow cells are needed, while confinement and
particle smallness tend to induce only weak inertial effects,’
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hence calling for rather large flow rates to achieve effective
migration.

Another kind of fluid-dynamically driven patterning has been
obtained, in the absence of inertia, by use of a rheologically
complex suspending liquid.® In this case, a transversal driving
force is established even in simple flow cells, because of the
viscoelasticity of the flowing suspending medium. Indeed,
focusing of microsized spheres on a plane, the so-called 2D
focusing,” has been achieved in simple microslit flows. Such
a viscoelastic focusing is promising, as the forces acting on the
particles can be finely tuned by properly tailoring the suspending
fluid rheology.

Of course, the ability to generate single-file particles (the so-
called 3D-focusing®) is important in several applications. In flow
cytometry, for example, single-line focusing of cells (achieved
with an ingenious and complex flow assembly) allows a laser
beam to efficiently interrogate them one at a time.*®

Recently, a novel approach for 3D hydrodynamic sheathless
focusing in straight channels has been proposed.'® By properly
balancing elastic and inertial forces (working in opposite direc-
tions), particle focusing along the channel centerline is achieved.
To make elastic and inertial effects comparable, the flow rate
needs to be carefully chosen. As a result, this so-called Elasto-
Inertial Focusing works in a specific range of flow rates that
depends on the geometrical parameters and fluid rheological
properties. When applied to micrometric flows, relatively high
flow rates are needed to turn on inertial effects. To our knowl-
edge, this is the first technique allowing 3D focusing in straight
channels based on hydrodynamic effects only. Recently, the
Elasto-Inertial effect has also been successfully exploited for
particle separation.'!

In this paper, we demonstrate how focusing on a single line can
be obtained through viscoelasticity-induced migration of non-
colloidal spheres in pressure-driven flows in simple cylindrical
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micropipes in a wide range of flow rates, for dilute suspensions.
The operating conditions are such that inertia is irrelevant, thus
the focusing comes from purely elastic effects. Detailed 3D
computation of the flow problem is used to guide the rheo-
engineered design of microfluidic focusing units. Experiments are
performed to show the practical feasibility of the alignment of
microspheres in a microfluidic pipe, and to validate the simula-
tion results. A simple heuristic argument is also given, which
faithfully reproduces the simulation results. On the basis of the
good quantitative agreement between experiments and simula-
tions, the heuristic model gives simple rules for effectively
designing a viscoelastic flow focuser.

2 Modeling

In this paper we analyze particle focusing from a dilute suspen-
sion of spheres. Diluteness allows us to proceed by considering
the one body problem, ie., we consider a single rigid, non-
Brownian, inertialess, spherical particle suspended in a visco-
elastic fluid flowing in a cylindrical channel. The particle moves
due to the imposed flow, and its rigid-body motion is completely
defined by the translational velocity, denoted by V, and the
angular velocity, 2. The particle translational velocity in cylin-
drical coordinates rfz is then ¥V = (V,0, V1), with V' and Vr as
the radial and axial components, respectively. The crossflow
migration velocity, when it exists, is just Vy,.

Assuming isothermal and inertialess flow, the governing
equations for the fluid domain are:

Vv=0 (1
V-a=0 2
o=-pl+= 3)

which are the equations for the mass balance, the momentum
balance, and for the total stress. In these equations v is the
velocity, o the total stress tensor, p the pressure and I the unit
tensor. The non-Newtonian stress tensor z needs to be specified
by choosing a constitutive equation. In this work, we will
consider the Giesekus constitutive model:*?

A¥+ﬂr~r+r:2noD 4
Mo
where the symbol (Y) denotes the upper-convected time deriva-
tive,’> D = (Vv + (V»)")/2 is the rate-of-deformation tensor, and
1o the zero-shear viscosity.

The constitutive eqn (4) is prototypical, and has indeed been
used to describe a wide class of liquids encompassing polymer
solutions and melts, biological and food fluids. The Giesekus
liquid (as any viscoelastic liquid) brings to the hydrodynamics
a characteristic time scale A, measuring the fluid memory;!® stress
buildup or relaxation in the liquid takes place on this time scale,
and the Newtonian limit corresponds to A =0. The inner time A has
to be compared with the external time, i.e., the characteristic time
scale 7 of the imposed flow; we take ¢t = 2t R/ Q for the pipe flow,
with Q being the flow rate. So, quite naturally, a dimensionless
parameter arises, the so-called Deborah number De = A/t the
Newtonian limit corresponds to De = 0, since the Newtonian

liquid has no inner time, whereas, by increasing De, nonlinear
viscoelastic effects become substantial. Notice that, in this
context, the Deborah number is equivalent to the Weissenberg
number used in previous works.%!!

Under steady state simple shear flow, and at very low shear
rates, the Giesekus model predicts a constant viscosity, and first
and second normal stress differences N; and N,, i.e., elastic
stresses,’”” quadratic in the shear rate 7. By increasing the
shear rate, the viscosity and both normal stress coefficients (| =
Ni/y*and ¥, = N,/¥?) all decrease with the shear rate, ie., they
are shear thinning. In the Giesekus model, the parameter
« modulates the extent of the thinning. A limiting case is &« = 0,
corresponding to constant viscosity and normal stress coeffi-
cients, hence recovering the well-known Oldroyd-B model.*?

No-slip conditions are assumed on the channel walls, and
periodicity is prescribed between the inflow and outflow sections,
together with a flow rate Q in inflow. The boundary condition on
the particle surface is the no-slip condition plus the rigid-body
motion:

u=V+Qx(@rs—r) (5)

where r is the position of the particle center, and ry describes
a point on the spherical surface S. In eqn (5), both the trans-
lational and the angular velocities of the sphere are unknown.
They are obtained from the condition that the external forces and
torques on the particle are nil,"* because of the no-inertia
assumption. The particle position is updated by integrating the
kinematic equation:

% =V,rl,_o=ro 6)
which gives the trajectory of the particle.

The governing equations are solved by the finite element
method. Tetrahedral elements have been chosen to discretize the
computational domain. To stabilize the numerical code at
(moderately) high Deborah numbers, a DEVSS-G formulation is
adopted*®!¢ combined with the SUPG technique'” and a log-
conformation representation for the conformation tensor.'®!?
The particle motion is taken into account by using an ALE
formulation (Arbitrary Lagrangian—Eulerian),* whereby at each
time step the mesh nodes follow the particle motion and are
moved according to a mesh velocity obtained by solving an extra
equation. A detailed description of the numerical method, the
corresponding weak formulation and the time-stepping proce-
dure can be found elsewhere.'**!

3 Simulation results - what we learn from the model

Three nondimensional parameters have to be chosen to specify
the geometry and the rheology of the system; they are the so
called blockage ratio 8 = a/R (the particle and the channel radii
are denoted by a and R, respectively), the purely constitutive
parameter «, and the dimensionless measure of the flow intensity
De. Fig. 1 shows the computed trajectories of particles starting at
different initial radial positions ry in the pipe, for § =0.1, « = 0.2,
and De = 2.0. These values were selected as representative of
a situation where the geometry allows for wall effects on particle
motion without severely constraining the particle, and the
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Fig. 1 Trajectories of the radial position of the sphere calculated for
De =2, and 8 = 0.1, for different initial positions. The fluid is a shear
thinning Giesekus liquid with a = 0.2. The particle position r and its axial
position z are made dimensionless with R. The cyan line r = r* is the
neutral cylindrical surface (see text). The green area is the unaccessible
channel region due to the finite particle size and the excluded volume
effect.

viscoelastic properties of the suspending liquid are well active.
Cross-flow migration is apparent in the figure, and results from
purely viscoelastic effects, as no migration at all would be
observed in a Newtonian suspending liquid, in the absence of
inertia.

Migration occurs in opposite directions depending on the
initial radial position of the particle: sufficiently close to the pipe
wall, migration is towards the wall, otherwise migration is
towards the pipe centerline. A neutral cylindrical surface r = r* is
then found, from which outward motions originate. Hence, an
instability scenario characterizes the dynamics close to r = r*;
when the particle center is at 7*, no transverse motion occurs, but
any disturbance in the radial direction triggers the migration.
This phenomenology represents the inversion of the well-known
Segré-Silberberg effect?? for migration of particles in pipe flow of
Newtonian liquids, at finite inertia. Indeed, the attracting cylin-
drical surface they found becomes a repelling one here, and their
inertia-driven migration is substituted by a viscoelasticity-driven
migration.

The main result obtained here is the alignment on a 1-D line,
i.e., the focusing of particles at the pipe centerline (3D-focusing),
which is achieved merely through the viscoelastic features of the
suspending liquid. It should be emphasized that a substantial
focusing is gained at z/R > 1 (for example, from Fig. 1, it is
z/R = 10°), which opens the way to realistic applications with
noncolloidal particles in microfluidics.

The position of the neutral surface r = r* depends on the three
dimensionless parameters of the problem. In order to maximize
the attraction of the centerline, we must understand how those
parameters influence r*. Still for the simple pipe flow, some
simulation results of systematic campaigns of variation of the
parameters are shown in Fig. 2, where the radial position of the
neutral surface r = r* is plotted versus the blockage ratio 3, at
De =2 and « = 0.2. It is apparent that the quantity of particles
eventually reaching the pipe center or the wall can be tuned by

B

Fig. 2 (a) Computed radial position r* of the neutral surface as a func-
tion of the blockage ratio @ for the Giesekus fluid with o = 0.2, at De = 2.
Particles starting above r* migrate towards the wall, while those below go
to the centerline. Notice that, for computational limitations, data below
B8 = 0.1 could not be calculated. (b) Computed radial position r* of the
neutral surface as a function of the parameter « for the Giesekus fluid,
with 8 = 0.1 at De = 2. The position of the neutral surface moves towards
the wall as the shear-thinning decreases, thus enlarging the centerline-
attractive region. The dark blue circle in both figures corresponds to the
parameters: § = 0.1, « = 0.2, De = 2. The green area is the unaccessible
channel region due to the finite particle size and the excluded volume
effect.

changing 8. The effect of « (at a fixed 8) is shown in the inset. It is
found that small s and as promote focusing at the pipe
centerline.

In physical terms, the effect of « means that pronounced shear-
thinning increases the wall attraction. At the other extreme, i.e.,
in the limiting case of « = 0 (Oldroyd-B model), an inward
migration is predicted, regardless of the particle initial position.
Finally, concerning the influence of the Deborah number (not
shown in the figure), we find that higher De values promote wall
attraction.

In the next two sections, the main findings illustrated above
will be validated through experiments.

4 Experiments
4.1 Materials and apparatus

To investigate the effects of the fluid rheology on particle
migration, two viscoelastic fluids are prepared. The first fluid is
an aqueous solution of 8% wt polyvinylpyrolidone (PVP, M,, =
360 KDa, from Sigma-Aldrich). The second fluid is a 1% water
solution of PEO (M,, = 4000 KDa, from Sigma-Aldrich). The
two fluids were selected in view of their substantial viscoelas-
ticity, and of their different shear thinning behavior.

The rheological properties of the fluids are measured in
a rotational rheometer (ARG2, TA Instruments), with plate-
plate and cone-plate geometries and with diameters of 40 mm.
Fig. 3a and Fig. 3c show the dependence of the steady state
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Fig. 3 (a) Measured steady shear viscosity 7 (white squares) for the aqueous 8% wt PVP solution. The solid line is a guide for the eye. (b) Measured
elastic modulus @ (black circles) and loss modulus G” (white circles) for the aqueous 8% wt PVP solution. The slopes indicate the frequency dependence
expected in the terminal region for a viscoelastic fluid. (c) Measured steady shear viscosity n (white squares) for the PEO solution. The solid line is a guide
for the eye. (d) Measured elastic modulus G’ (black circles) and loss modulus G” (white circles) for the PEO solution.

viscosity on the shear rate. In the case of PVP, the viscosity
remains essentially constant over three decades of shear rate,
with the appearance of a very weak shear-thinning effect at the
highest shear rates. Linear viscoelasticity measurements in
Fig. 3b show the frequency dependence of the viscoelastic
moduli G and G’ of PVP solution. Both moduli display the
terminal behavior of a viscoelastic liquid, with G’ « w? and G”
o« w. The data require a spectrum of relaxation times to be
adequately fitted. This implies that we should consider a multi-
mode version of the constitutive equation. To simplify the
computations, we estimate the characteristic relaxation time by
the cross of the moduli trends. The estimate gives A in the range
of 2 x 103 s = A =3 x 107 s, which is in good agreement
with the value A = 2.3 x 107* s obtained by Yang et al.'® with
Caber measurements. The rheological characterization shows
that the PVP solution is a good realization of an Oldroyd-B
fluid, i.e., a Giesekus liquid with & = 0 that shows a constant
viscosity.

We remark that the measured viscosity is constant up to
a shear rate of about 200-300 s~!. We calculated the maximum
shear rate (at the wall) achieved in the channel for the highest
flow rate considered in the experiments by solving the flow in
a tube for a fluid with the same viscosity trend of the PVP. We
found that the maximum shear rate is around 150 s~' that allows
us to consider a viscosity-constant model.

The steady state viscosity of PEO solution in Fig. 3c shows
a Newtonian plateau followed by a pronounced shear-thinning
behaviour at large shear rates. The power law dependence of the
shear thinning region is around —0.5. The frequency dependence
of the viscoelastic moduli G’ and G”' reported in Fig. 3d displays
a strong elastic component, though the terminal region is not
visible in the investigated frequency range. The intersection of
the linear moduli roughly gives a characteristic relaxation time
around A = 4 x 1072 s. The PEO solution can be assimilated to
a Giesekus fluid with a non-zero «.

On the basis of the simulations, we have designed simple
focusing microfluidic apparatus for particles of a few microns
diameter. As focusing implies that the vast majority of particles

should migrate towards the channel centerline, a relatively low
blockage ratio and a suspending liquid with a low degree of
shear-thinning should be preferred, in order to achieve alignment
within a reasonable length of the micro-pipe (a few centimeters,
say). The PVP solution is then selected as the suspending liquid
because of its very weak shear-thinning effect. On the other hand,
the strongly shear thinning PEO solution will be used to highlight
the bistability scenario.

Flow focusing experiments are carried out in a glass
cylindrical capillary (inner radius R = 25 pum, outer diameter
of 80 um, length L = 10 cm, from Vitrocom). The capillary is
glued to one end of a feeding silicon microtube with an inner
radius of 125 pm and a length of about 30 cm. The other end
of the silicon tube is immersed in a vial containing the
polystyrene (PS) particles suspended in the viscoelastic fluid at
a volume fraction ¢ = 0.1%. Before each experiment the
suspension is stirred for one hour and sonicated for about
three minutes. The particles are synthesized using a standard
seed emulsion polymerization technique®® allowing us to
obtain monodisperse spherical particles with an average
diameter 2a of about 4 um, as measured from microscopy.
The polystyrene particles have a density of 1.05 g ml™,
whereas we can safely assume that the PVP as well as PEO—
water solutions have a density of 1 g ml™!. A simple estima-
tion of the sedimentation velocity from the Stokes law shows
that for our particle size and liquid zero-shear viscosity, this
density mismatch cannot induce any relevant particle
displacement in our experimental timescales.

The vial containing the suspension is closed in a pressure
controlled pump (Mitos P-Pump, Dolomite Microfluidics). This
system allows variation of the pressure drop Ap in the capillary
from 0.001 to 10 bar.

Particles flowing in the capillary are observed through
a microscope (Reichert-Jung) with an overall magnification of
125x. Image sequences of the flowing solution are collected
with a fast camera (IGV-B0620M, Imperx) at a frame rate of
260 fps. All the experiments are performed at room tempera-
ture (7= 21 °C + 1).

This journal is © The Royal Society of Chemistry 2012
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4.2 Experimental results - theory validation

The centerline attraction is demonstrated by use of the PVP
solution. We vary the applied pressure drop Ap from 0.1 to 6 bar,
corresponding to measured flow rates Q ranging from about
0.0075 to 0.75 pl min~"'. These flow rates give a Deborah number
varying from 0.004 to 0.4. Notice that, at the highest flow rate, we
estimate a Reynolds number of order of magnitude 1073
assuring that inertial effects are in fact irrelevant. For Ap <2 bar,
we do not observe particle alignment within the length of the
channel. The situation changes as Ap is increased. For Ap = 2
bar, corresponding to Q = 0.15 ul min~' and De = 0.06, we find
that the particle radial distribution strongly depends on the
distance from the inlet L,. This is shown in Fig. 4 where we report
snapshots of particle positions at three different distances from
the inlet (the corresponding movies are available as Supple-
mentary Materialt). At 2.5 cm from the inlet (L,/R = 10*) we find
that the particles are still randomly distributed along the radial
direction, as shown in Fig. 4a. However, at 3.5 cm from the inlet
(LJ/R = 1.4 x 10%, the particles are already confined within
a narrow band around the channel centerline, as reported in
Fig. 4b. Finally, at 4.5 cm from the inlet (L,/R = 1.8 x 10%), we
observe strict particle focusing along the central streamline, see
Fig. 4c.

To validate the numerical predictions, we compare the
experimental particle radial distributions with the simulated ones
obtained in the same conditions. The experimental radial distri-
butions of the particles are calculated starting from the velocities
of the particles along the flow direction. After measuring the
horizontal particle velocities V't and assuming a parabolic flow
profile within the channel cross-section (an assumption justified
by the constancy of the viscosity of the PVP solution), we
calculate the particle radial position r as:

VT(V)

=R /1-
g VT.max

@)

where VT max is the velocity of a particle flowing in the center of
the channel. We measure Vra.x from the velocities of the
particles far away from the inlet, i.e. L, = 5 cm. Indeed, as shown

! S—
| o] ——
—_— —

Fig. 4 Experimental particle distribution in a straight cylindrical
micropipe at different distances from the inlet with water solution at 8%
PVP. The applied pressure drop is Ap = 2 bar, corresponding to a flow
rate Q = 0.15 pl min~' and a Deborah number De = 0.06. At 2.5 cm from
the inlet (a) no alignment is observed and the particles are still randomly
distributed. At a distance of 3.5 cm from the inlet (b) the particles are
confined within a narrow band around the centerline. At 4.5 cm from the
inlet (¢) 3D focusing on a line is achieved.

in Fig. 4, at those distances all the particles move along the
channel centerline. Notice that, in writing eqn (7), we assume that
the particle moves at the same local velocity as the fluid. For the
blockage ratio considered here, this approximation introduces an
error lower than 0.5%.*

To calculate the fraction of particles in a certain band at
a distance r from the center, we subdivide the cross-section of the
tube in an inner circle of radius r = 2a (denoted by an index k =
1) and in concentric annular rings with thickness Ar = 2a
(denoted progressively by indices k = 2,3,... moving from the
center towards the channel wall). The normalized fraction f;(L.)
of particles in the radial band k is then calculated as:

=iV ®)

where n,(L.) is the number of particles flowing in the band k at
a fixed distance L. from the inlet, and A4; and v, are the cross-
sectional area and the average velocity of the band k, respec-
tively. Such a definition is dictated by the fact that: i) along the
radial direction, bands with the same thickness Ar have different
areas Ay, meaning that a higher number of particles is expected
for bands at larger radial distances, ii) the average velocity of
each band decreases as r increases. As, for a uniform particle
distribution measured within a finite time of observation, the
frequency of faster particles is higher than that of slower parti-
cles, eqn (8) embodies the necessary correction, by dividing n; by
the velocity of the band k.

We measure f;(L.) for distances L. from the inlet varying from
2.5 cm to 5.0 cm. The index k ranges from 1 to 3 since, even for
L. = 2.5 cm, we do not observe particles flowing between the
external band (k = 3) and the cylinder wall. At each distance
from the channel inlet we take a minimum of 5 different movies
each of 1 s. Since in each movie we find about 15-20 particles, our
statistic at each distance from the inlet is based over about 100
particles.

The observed distributions are now compared to simulation
results generated with a Giesekus fluid with « = 0, to mimic the
shear rheology of the suspending PVP solution. The relaxation
time is chosen as A = 2.3 x 1073 s, as reported in section 4.1 and
in Yang et al.,'* and the blockage ratio is set to 8 = 0.08 as in the
experiments.

The calculated distributions are obtained by repeatedly
running single particle simulations (in view of the low particle-
loading in the experiments), and assuming radial uniformity of
the particle initial positions. More specifically, we use the
following procedure: 1) we find the two trajectories passing
through the internal and external boundaries of a band k (for k =
1 we only need the external boundary); 2) we determine the initial
radial positions rg;, and ;o Of such trajectories; 3) the
normalized fraction fi(L.) is calculated as: fi(L.) = (r%.out — %.in)/
R%. Of course, for k =1, ry 3, = 0.

Fig. 5 shows the comparison of the calculated (bars) and the
experimentally measured (symbols) distribution function of
particles at different axial positions along the pipe. A progressive
crowding around the pipe centerline is apparent, and a complete
3D focusing is eventually achieved within a few centimeters.
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Fig. 5 Comparison of measured and predicted radial distribution f; at
various axial positions L.. At each axial position the bars are the calcu-
lated particle fraction within r < 2a (cyan), 2a < r < 4a (green), and 4a < r
< 6a (red); symbols are the corresponding measured fractions.

Good quantitative agreement is found between predictions and
experiments.

We observe that larger pressure drops (Ap > 2) promote
focusing, i.e., alignment is obtained at smaller axial distances
from the inlet section. We remark that no particle is detected near
to the channel wall, in agreement with the simulation results,
because of the virtual absence of shear-thinning of the sus-
pending fluid.

According to the simulation results, wall attraction becomes
effective when shear-thinning of the suspending liquid is
substantial. We tested such a prediction by using the robustly
shear-thinning water solution of PEO. Experimental results with
PEO solution do confirm the numerical simulations, as shown in
Fig. 6, where the coexistence of particles flowing at the pipe
centerline and particles flowing at the wall is observed, thus
demonstrating the bistability scenario.

5 Design criteria for 3D-focusing in micropipes

We have just demonstrated the possibility of obtaining the
focusing on a single line in a pressure-driven straight microfluidic
cylindrical channel by exploiting the viscoelasticity of the sus-
pending medium. We remark again that the focusing mechanism
under consideration is a purely elastic effect.

It is worth mentioning that this kind of focusing mechanism is
found to be effective over a wide range of flow rates: for the
channel length used in the experiments flow focusing is observed
over an interval of flow rates spanning more than one order of

Fig. 6 Experimental particle distribution in a straight cylindrical
microchannel at 8 cm from the inlet for 1% water solution of PEO. The
applied pressure drop is Ap = 0.2 bar, corresponding to a flow rate Q =
44 x 107* pl min~! and a Deborah number De = 0.03. A bistability
scenario is apparent, with some particles flowing at the wall.

magnitude. Thus, the viscoelastic flow-focuser is extremely flex-
ible. Some care, however, must be taken in choosing the sus-
pending liquid, as the rheological properties may drive the
particles towards the channel wall for the bistability behavior
discussed above. In this sense, the flow focuser must be accu-
rately rheo-engineered.

In order to properly design a viscoelasticity-based flow-
focuser, we develop a simple heuristic argument, which is able
to describe the essential features of the viscoelasticity induced
cross-flow migration in micro-pipes. We consider the local flow
field around the particle in terms of local shearings, namely, an
upper and a lower (i.e., along the radius) shear rate that have
to account for the actual particle translational velocity in the
main flow direction. In view of the non-Newtonian nature of
the liquid, an elastic transverse force on the particle results
from such local shear rates. Indeed, different shear rates
around the particle give different local radial components 1., of
the stress. Such stress components give forces of the order 7.,.a%,
hence a net transverse force to be balanced (in inertia-less
situations) by a drag force Fp = —6mnoaly, with V7 the
cross-flow migration velocity.

The translational horizontal velocity of the particle V(r) is
needed to estimate how the local shear rate v differs, in confined
flows, from the velocity v(r) of the unperturbed liquid at the same
height in the channel.? Indeed, the particle can either lead or lag
the flow, i.e., V(r) = v(r) + Vi(r) with V(r) (positive or negative,
respectively) the so-called slip velocity. By considering that, in
the limit of small De values, the normal stress is given as 7, =
(W, + 2W,)¥%2¢ the above mentioned force balance gives:

. IIJI +21112 azQZ R4 VS (V):|

Vm (r) e )

Mo R} aQ
where, coherently with the low De assumption, we used the
Newtonian result y(r) = —Q/R*. Eqn (9) predicts viscoelas-
ticity-induced migration for a pressure-driven flow. The slip
velocity in eqn (9) must be evaluated in the Newtonian limit. It
was shown by Higdon and Muldowney?* that it is always nega-
tive, and grows in absolute value with increasing r, ie., the
particle always lags the fluid. Around the centerline, the term in
square brackets turns out to be positive, hence, the migration
velocity is negative there, i.e., towards r = 0. On the other hand,
a radial position r = r* exists, beyond which the migration
velocity is towards the pipe wall. The neutral surface corresponds
to Vm(r*) = 0. It should be remarked that, if the effective shear
rate is evaluated by neglecting the particle disturbance to the flow
field (i.e., by neglecting the slip velocity), the bistability is not
captured.

Even though eqn (9) has been deduced by a simple heuristic
argument, it correctly reproduces the simulation results. To
illustrate this point, let us consider its predictions close to the
pipe centerline, i.e., where the square brackets is unity. Indeed,
within this limit eqn (9) reads:

r{lJr

VM (V)Oc qu 5 r
R2

with ¥1/n in eqn (9) giving the liquid relaxation time A entering
De. The linearity in De directly comes from the perturbative
nature of the heuristic argument. On the other hand, the
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Fig. 7 Dimensionless particle migration velocity as a function of the
blockage ratio computed by numerical simulations (symbols) at 7/R =
0.1. The solid line is the best-fit curve —m@3*> with m obtained by consid-
ering the data up to § = 0.11. Deviations from the quadratic trend are
observed for higher $-values. To give an idea of the range of §-values
investigated, the relative dimensions of the particle and the channel are
shown for three different values of the blockage ratio.

predicted dependence on the blockage ratio is verified in Fig. 7
where the migration velocity simulation data at r/R = 0.1 are
successfully fitted with a parabolic law up to at least § = 0.12.

We are now in the position of deriving a simple tool for
designing the flow-focusing micro-pipe. Let us define an align-
ment length L, as the distance from the channel inlet needed to
focus particles within a region of radius r around the centerline.
This latter quantity is in fact a measure of the aligning efficiency.
A design equation must then give L, once a desired efficiency is
prescribed with a given ro value. Of course, the relationship
between La and rp will depend on the fluid and geometrical
parameters.

The two non-zero components of the particle equation of
motion are:

40000 O r/(R-a) = 0.022 ()
10000 O r/(R-a) =0.11
A r/(R-a)=0.22
5000 |
[+
=
= 2000
1000 |
500 |
200
0.005 001 0.2 0.05 0.1 0.2

dz

=T (11)
d
é: Vaa (1) (12)

For the sake of simplicity, the horizontal velocity V(r) in eqn
(11) is approximated by its average value Q/(R?. For the
migration velocity Vy(r) we take the expression given by eqn
(10), assuming that the second normal stresses are negligible.
After integrating eqn (12) over the accessible channel cross
section, and with some straightforward manipulation, we end up
with:

’
L A log(R—ja) (13)
R~ 8> De
where A4 is a constant.

Eqn (13) is the required design equation. We note that eqn (13)
correctly predicts the asymptotic behaviors: i) for De = 0, i.e. for
a Newtonian fluid, L is infinite, i.e. no alignment is possible (in
the inertialess case); ii) for 6 — 0, L, — o, since the gradient of
normal stresses around the particle reduces as the particle size is
smaller. Notice further that the logarithmic dependence in eqn
(13) stems from the linearity in » of eqn (10).

In view of the quantitative agreement between simulations and
experiments, we rely on the numerical tool to validate the
heuristic eqn (13), and to evaluate the constant 4. In Fig. 8a-b,
the simulation results for L,/R are used to verify the De~' and
log(r4) scalings predicted from eqn (13), the validity of the §*
scaling was in fact demonstrated in Fig. 7.

So it appears that both scalings are fully obeyed by simulation
data, and thus eqn (13) can be safely applied for designing
purposes. Then, the value of the parameter A is readily estimated
to be 0.34. It seems worth mentioning that for r /(R — @) =0.17,
corresponding to the blue symbols/bars in Fig. 5, the alignment
length is Ly = 4.1 cm. For LA/(R — a) = 0.35, corresponding to
the sum of the blue and green symbols/bars in Fig. 5, we estimate
LA = 2.6 cm. Both numbers are in very good agreement with the

14000

[0 De=0.0125 (b)

< De=0.025
A De=0.05

12000

10000

8000

L,/R

6000

4000
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0 . ) ) .
0.005 0.01 0.02 0.05 0.1 0.2

r,/(R-a)

Fig. 8 (a) Dimensionless critical length as a function of the Deborah number for three values of the dimensionless critical radius. The solid curves are
fits of the simulation data (symbols) through an hyperbola. The fit procedure is performed by using the data up to De = 0.1. For higher De values
deviations are observed. (b) Dimensionless critical length as a function of the dimensionless critical radius for three values of the Deborah number. The
solid curves are fits of the simulation data (symbols) through a logarithmic function.
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Box 1. Design rules for viscoelastic focusing

Provided that the following assumptions hold:
e Dilute suspension (¢ < 0.1%-0.2%)
e Negligible inertia (Re < 0.1)
e Weak shear-thinning fluid
e Relatively small blockage ratio (8 = 0.15)

the channel length L , required to focus particles within a circular cross-section of radius r4 around the channel centerline is:

27rAlog(R

ik

L,=—

with 4 = 0.34.

Li=-—

In terms of pressure drop Ap, the previous equation reads as:

IMMMM%Q_)N

2N0)

where 7 is the zero-shear viscosity and L., is the total channel length.

a?AAp

experimental results. Designing recipes stemming from eqn (13)
together with the assumptions required for its validity are
summarized in Box 1.

6 Conclusions

We have shown that 3D focusing of particles (i.e., focusing on
a line) in simple pipe flow can be attained by exploiting visco-
elastic forces in flowing suspending liquids. Full 3D fluid
dynamic simulations demonstrate that focusing can be finely
tuned with proper rheo-engineerization of both the flow cell and
the properties of the suspending liquid. Typical time and spatial
scales for transversal migration make focusing attainable in
microfluidic applications. Experimental results confirm visco-
elasticity-induced migration of particles. Quantitative agreement
between predictions and experiments is found. Simulation results
support scalings deduced by a heuristic argument. Simple design
criteria are then proposed to realize actual applications.

Contrarily to focusing techniques based on inertial (or inertio-
elastic) effects, the viscoelastic focusing is found to work at both
low and high flow rates. The lower limit is dictated by the
available length of the channel whereas a reduction of the
focusing efficiency at high flow rates may be induced by
the arising of inertial effects. However, our experimental data
shows that, in a few centimeters of channel length, one can tune
the flow rate over two order of magnitude, making the visco-
elastic focusing extremely flexible.

Part of our future work will be the extension of the design
formula to strong shear-thinning fluids. The effect of inertia on
the focusing efficiency will be also investigated.
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