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Single line particle focusing induced by viscoelasticity of the suspending liquid:
theory, experiments and simulations to design a micropipe flow-focuser†
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We perform 3D numerical simulations, heuristic modeling and microfluidic experiments to

demonstrate, for the first time, the presence of a bistability scenario for transversal migration of

particles suspended in a viscoelastic liquid flowing in a pipe. Our results show that particle migration,

either at the centerline or at the wall, can be controlled by the rheological properties of the suspending

liquid and by the relative dimensions of the particle and tube. Proper selection of these parameters can

promote strict aligning of particles on a line, i.e., 3-D focusing. Simple design rules are given to

rationally control particle focusing under flow in micropipes.
1 Introduction

In many systems, both natural and man-made, particles are

transported in flowing fluids. Understanding particle dynamics

in such heterogeneous systems is generally quite a difficult

problem. Yet, the capability to control trajectories of suspended

particles under continuous flow is in demand in a variety of

analytical and processing issues, including separation, sorting,

counting, and detection.1 Cutting edge techniques are based on

microfluidic cells carefully designed for specific particle-

patterning aims.2

Patterning under flow usually requires particle migration, i.e.,

motions somehow transversal to the main-stream direction. Such

cross-flow movement can be non-invasively promoted by

applying some external field (e.g., electric or magnetic), however

this requires specific properties of the particles.3 Self-patterning,

i.e., patterning based on hydrodynamics only, can also be prof-

itably obtained. For example, inertial forces have been cleverly

exploited to drive migration in confined environments.4–6 Effi-

cient processes with this approach face several puzzling technical

issues as complex flow cells are needed, while confinement and

particle smallness tend to induce only weak inertial effects,7
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hence calling for rather large flow rates to achieve effective

migration.

Another kind of fluid-dynamically driven patterning has been

obtained, in the absence of inertia, by use of a rheologically

complex suspending liquid.8 In this case, a transversal driving

force is established even in simple flow cells, because of the

viscoelasticity of the flowing suspending medium. Indeed,

focusing of microsized spheres on a plane, the so-called 2D

focusing,9 has been achieved in simple microslit flows. Such

a viscoelastic focusing is promising, as the forces acting on the

particles can be finely tuned by properly tailoring the suspending

fluid rheology.

Of course, the ability to generate single-file particles (the so-

called 3D-focusing9) is important in several applications. In flow

cytometry, for example, single-line focusing of cells (achieved

with an ingenious and complex flow assembly) allows a laser

beam to efficiently interrogate them one at a time.6,9

Recently, a novel approach for 3D hydrodynamic sheathless

focusing in straight channels has been proposed.10 By properly

balancing elastic and inertial forces (working in opposite direc-

tions), particle focusing along the channel centerline is achieved.

To make elastic and inertial effects comparable, the flow rate

needs to be carefully chosen. As a result, this so-called Elasto-

Inertial Focusing works in a specific range of flow rates that

depends on the geometrical parameters and fluid rheological

properties. When applied to micrometric flows, relatively high

flow rates are needed to turn on inertial effects. To our knowl-

edge, this is the first technique allowing 3D focusing in straight

channels based on hydrodynamic effects only. Recently, the

Elasto-Inertial effect has also been successfully exploited for

particle separation.11

In this paper, we demonstrate how focusing on a single line can

be obtained through viscoelasticity-induced migration of non-

colloidal spheres in pressure-driven flows in simple cylindrical
This journal is ª The Royal Society of Chemistry 2012
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micropipes in a wide range of flow rates, for dilute suspensions.

The operating conditions are such that inertia is irrelevant, thus

the focusing comes from purely elastic effects. Detailed 3D

computation of the flow problem is used to guide the rheo-

engineered design of microfluidic focusing units. Experiments are

performed to show the practical feasibility of the alignment of

microspheres in a microfluidic pipe, and to validate the simula-

tion results. A simple heuristic argument is also given, which

faithfully reproduces the simulation results. On the basis of the

good quantitative agreement between experiments and simula-

tions, the heuristic model gives simple rules for effectively

designing a viscoelastic flow focuser.
2 Modeling

In this paper we analyze particle focusing from a dilute suspen-

sion of spheres. Diluteness allows us to proceed by considering

the one body problem, i.e., we consider a single rigid, non-

Brownian, inertialess, spherical particle suspended in a visco-

elastic fluid flowing in a cylindrical channel. The particle moves

due to the imposed flow, and its rigid-body motion is completely

defined by the translational velocity, denoted by V, and the

angular velocity, U. The particle translational velocity in cylin-

drical coordinates rqz is then V ¼ (VM,0,VT), with VM and VT as

the radial and axial components, respectively. The crossflow

migration velocity, when it exists, is just VM.

Assuming isothermal and inertialess flow, the governing

equations for the fluid domain are:

V$v ¼ 0 (1)

V$s ¼ 0 (2)

s ¼ �pI + s (3)

which are the equations for the mass balance, the momentum

balance, and for the total stress. In these equations v is the

velocity, s the total stress tensor, p the pressure and I the unit

tensor. The non-Newtonian stress tensor s needs to be specified

by choosing a constitutive equation. In this work, we will

consider the Giesekus constitutive model:12

ls
V þ al

h0

s$sþ s ¼ 2 h0D (4)

where the symbol (V) denotes the upper-convected time deriva-

tive,12 D ¼ (Vv + (Vv)T)/2 is the rate-of-deformation tensor, and

h0 the zero-shear viscosity.

The constitutive eqn (4) is prototypical, and has indeed been

used to describe a wide class of liquids encompassing polymer

solutions and melts, biological and food fluids. The Giesekus

liquid (as any viscoelastic liquid) brings to the hydrodynamics

a characteristic time scale l, measuring the fluid memory;13 stress

buildup or relaxation in the liquid takes place on this time scale,

and theNewtonian limit corresponds to l¼ 0.The inner time lhas

to be compared with the external time, i.e., the characteristic time

scale tf of the imposed flow; we take tf¼ 2pR3/Q for the pipe flow,

with Q being the flow rate. So, quite naturally, a dimensionless

parameter arises, the so-called Deborah number De ¼ l/tf; the

Newtonian limit corresponds to De ¼ 0, since the Newtonian
This journal is ª The Royal Society of Chemistry 2012
liquid has no inner time, whereas, by increasing De, nonlinear

viscoelastic effects become substantial. Notice that, in this

context, the Deborah number is equivalent to the Weissenberg

number used in previous works.10,11

Under steady state simple shear flow, and at very low shear

rates, the Giesekus model predicts a constant viscosity, and first

and second normal stress differences N1 and N2, i.e., elastic

stresses,12 quadratic in the shear rate _g. By increasing the

shear rate, the viscosity and both normal stress coefficients (J1¼
N1/ _g

2and J2 ¼ N2/ _g
2) all decrease with the shear rate, i.e., they

are shear thinning. In the Giesekus model, the parameter

a modulates the extent of the thinning. A limiting case is a ¼ 0,

corresponding to constant viscosity and normal stress coeffi-

cients, hence recovering the well-known Oldroyd-B model.12

No-slip conditions are assumed on the channel walls, and

periodicity is prescribed between the inflow and outflow sections,

together with a flow rateQ in inflow. The boundary condition on

the particle surface is the no-slip condition plus the rigid-body

motion:

u ¼ V + U � (rs � r) (5)

where r is the position of the particle center, and rs describes

a point on the spherical surface S. In eqn (5), both the trans-

lational and the angular velocities of the sphere are unknown.

They are obtained from the condition that the external forces and

torques on the particle are nil,14 because of the no-inertia

assumption. The particle position is updated by integrating the

kinematic equation:

dr

dt
¼ V ; rjt¼0 ¼ r0 (6)

which gives the trajectory of the particle.

The governing equations are solved by the finite element

method. Tetrahedral elements have been chosen to discretize the

computational domain. To stabilize the numerical code at

(moderately) high Deborah numbers, a DEVSS-G formulation is

adopted15,16 combined with the SUPG technique17 and a log-

conformation representation for the conformation tensor.18,19

The particle motion is taken into account by using an ALE

formulation (Arbitrary Lagrangian–Eulerian),20 whereby at each

time step the mesh nodes follow the particle motion and are

moved according to a mesh velocity obtained by solving an extra

equation. A detailed description of the numerical method, the

corresponding weak formulation and the time-stepping proce-

dure can be found elsewhere.14,21
3 Simulation results - what we learn from the model

Three nondimensional parameters have to be chosen to specify

the geometry and the rheology of the system; they are the so

called blockage ratio b ¼ a/R (the particle and the channel radii

are denoted by a and R, respectively), the purely constitutive

parameter a, and the dimensionless measure of the flow intensity

De. Fig. 1 shows the computed trajectories of particles starting at

different initial radial positions r0 in the pipe, for b¼ 0.1, a¼ 0.2,

and De ¼ 2.0. These values were selected as representative of

a situation where the geometry allows for wall effects on particle

motion without severely constraining the particle, and the
Lab Chip, 2012, 12, 1638–1645 | 1639
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Fig. 1 Trajectories of the radial position of the sphere calculated for

De ¼ 2, and b ¼ 0.1, for different initial positions. The fluid is a shear

thinning Giesekus liquid with a¼ 0.2. The particle position r and its axial

position z are made dimensionless with R. The cyan line r ¼ r* is the

neutral cylindrical surface (see text). The green area is the unaccessible

channel region due to the finite particle size and the excluded volume

effect.

Fig. 2 (a) Computed radial position r* of the neutral surface as a func-

tion of the blockage ratio b for the Giesekus fluid with a¼ 0.2, atDe¼ 2.

Particles starting above r* migrate towards the wall, while those below go

to the centerline. Notice that, for computational limitations, data below

b ¼ 0.1 could not be calculated. (b) Computed radial position r* of the

neutral surface as a function of the parameter a for the Giesekus fluid,

with b¼ 0.1 atDe¼ 2. The position of the neutral surface moves towards

the wall as the shear-thinning decreases, thus enlarging the centerline-

attractive region. The dark blue circle in both figures corresponds to the

parameters: b ¼ 0.1, a ¼ 0.2, De ¼ 2. The green area is the unaccessible

channel region due to the finite particle size and the excluded volume

effect.
viscoelastic properties of the suspending liquid are well active.

Cross-flow migration is apparent in the figure, and results from

purely viscoelastic effects, as no migration at all would be

observed in a Newtonian suspending liquid, in the absence of

inertia.

Migration occurs in opposite directions depending on the

initial radial position of the particle: sufficiently close to the pipe

wall, migration is towards the wall, otherwise migration is

towards the pipe centerline. A neutral cylindrical surface r¼ r* is

then found, from which outward motions originate. Hence, an

instability scenario characterizes the dynamics close to r ¼ r*;

when the particle center is at r*, no transverse motion occurs, but

any disturbance in the radial direction triggers the migration.

This phenomenology represents the inversion of the well-known

Segr�e–Silberberg effect22 for migration of particles in pipe flow of

Newtonian liquids, at finite inertia. Indeed, the attracting cylin-

drical surface they found becomes a repelling one here, and their

inertia-driven migration is substituted by a viscoelasticity-driven

migration.

The main result obtained here is the alignment on a 1-D line,

i.e., the focusing of particles at the pipe centerline (3D-focusing),

which is achieved merely through the viscoelastic features of the

suspending liquid. It should be emphasized that a substantial

focusing is gained at z/R [ 1 (for example, from Fig. 1, it is

z/R y 103), which opens the way to realistic applications with

noncolloidal particles in microfluidics.

The position of the neutral surface r ¼ r* depends on the three

dimensionless parameters of the problem. In order to maximize

the attraction of the centerline, we must understand how those

parameters influence r*. Still for the simple pipe flow, some

simulation results of systematic campaigns of variation of the

parameters are shown in Fig. 2, where the radial position of the

neutral surface r ¼ r* is plotted versus the blockage ratio b, at

De ¼ 2 and a ¼ 0.2. It is apparent that the quantity of particles

eventually reaching the pipe center or the wall can be tuned by
1640 | Lab Chip, 2012, 12, 1638–1645
changing b. The effect of a (at a fixed b) is shown in the inset. It is

found that small bs and as promote focusing at the pipe

centerline.

In physical terms, the effect of ameans that pronounced shear-

thinning increases the wall attraction. At the other extreme, i.e.,

in the limiting case of a ¼ 0 (Oldroyd-B model), an inward

migration is predicted, regardless of the particle initial position.

Finally, concerning the influence of the Deborah number (not

shown in the figure), we find that higher De values promote wall

attraction.

In the next two sections, the main findings illustrated above

will be validated through experiments.
4 Experiments

4.1 Materials and apparatus

To investigate the effects of the fluid rheology on particle

migration, two viscoelastic fluids are prepared. The first fluid is

an aqueous solution of 8% wt polyvinylpyrolidone (PVP, Mw ¼
360 KDa, from Sigma-Aldrich). The second fluid is a 1% water

solution of PEO (Mw ¼ 4000 KDa, from Sigma-Aldrich). The

two fluids were selected in view of their substantial viscoelas-

ticity, and of their different shear thinning behavior.

The rheological properties of the fluids are measured in

a rotational rheometer (ARG2, TA Instruments), with plate-

plate and cone-plate geometries and with diameters of 40 mm.

Fig. 3a and Fig. 3c show the dependence of the steady state
This journal is ª The Royal Society of Chemistry 2012
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Fig. 3 (a) Measured steady shear viscosity h (white squares) for the aqueous 8% wt PVP solution. The solid line is a guide for the eye. (b) Measured

elastic modulusG0 (black circles) and loss modulusG0 0 (white circles) for the aqueous 8% wt PVP solution. The slopes indicate the frequency dependence

expected in the terminal region for a viscoelastic fluid. (c) Measured steady shear viscosity h (white squares) for the PEO solution. The solid line is a guide

for the eye. (d) Measured elastic modulus G0 (black circles) and loss modulus G0 0 (white circles) for the PEO solution.
viscosity on the shear rate. In the case of PVP, the viscosity

remains essentially constant over three decades of shear rate,

with the appearance of a very weak shear-thinning effect at the

highest shear rates. Linear viscoelasticity measurements in

Fig. 3b show the frequency dependence of the viscoelastic

moduli G0 and G0 0 of PVP solution. Both moduli display the

terminal behavior of a viscoelastic liquid, with G0 f u2 and G0 0

f u. The data require a spectrum of relaxation times to be

adequately fitted. This implies that we should consider a multi-

mode version of the constitutive equation. To simplify the

computations, we estimate the characteristic relaxation time by

the cross of the moduli trends. The estimate gives l in the range

of 2 � 10�3 s # l # 3 � 10�3 s, which is in good agreement

with the value l ¼ 2.3 � 10�3 s obtained by Yang et al.10 with

Caber measurements. The rheological characterization shows

that the PVP solution is a good realization of an Oldroyd-B

fluid, i.e., a Giesekus liquid with a ¼ 0 that shows a constant

viscosity.

We remark that the measured viscosity is constant up to

a shear rate of about 200–300 s�1. We calculated the maximum

shear rate (at the wall) achieved in the channel for the highest

flow rate considered in the experiments by solving the flow in

a tube for a fluid with the same viscosity trend of the PVP. We

found that the maximum shear rate is around 150 s�1 that allows

us to consider a viscosity-constant model.

The steady state viscosity of PEO solution in Fig. 3c shows

a Newtonian plateau followed by a pronounced shear-thinning

behaviour at large shear rates. The power law dependence of the

shear thinning region is around �0.5. The frequency dependence

of the viscoelastic moduli G0 and G0 0 reported in Fig. 3d displays

a strong elastic component, though the terminal region is not

visible in the investigated frequency range. The intersection of

the linear moduli roughly gives a characteristic relaxation time

around l y 4 � 10�2 s. The PEO solution can be assimilated to

a Giesekus fluid with a non-zero a.

On the basis of the simulations, we have designed simple

focusing microfluidic apparatus for particles of a few microns

diameter. As focusing implies that the vast majority of particles
This journal is ª The Royal Society of Chemistry 2012
should migrate towards the channel centerline, a relatively low

blockage ratio and a suspending liquid with a low degree of

shear-thinning should be preferred, in order to achieve alignment

within a reasonable length of the micro-pipe (a few centimeters,

say). The PVP solution is then selected as the suspending liquid

because of its very weak shear-thinning effect. On the other hand,

the strongly shear thinning PEO solution will be used to highlight

the bistability scenario.

Flow focusing experiments are carried out in a glass

cylindrical capillary (inner radius R ¼ 25 mm, outer diameter

of 80 mm, length L ¼ 10 cm, from Vitrocom). The capillary is

glued to one end of a feeding silicon microtube with an inner

radius of 125 mm and a length of about 30 cm. The other end

of the silicon tube is immersed in a vial containing the

polystyrene (PS) particles suspended in the viscoelastic fluid at

a volume fraction f x 0.1%. Before each experiment the

suspension is stirred for one hour and sonicated for about

three minutes. The particles are synthesized using a standard

seed emulsion polymerization technique23 allowing us to

obtain monodisperse spherical particles with an average

diameter 2a of about 4 mm, as measured from microscopy.

The polystyrene particles have a density of 1.05 g ml�1,

whereas we can safely assume that the PVP as well as PEO–

water solutions have a density of 1 g ml�1. A simple estima-

tion of the sedimentation velocity from the Stokes law shows

that for our particle size and liquid zero-shear viscosity, this

density mismatch cannot induce any relevant particle

displacement in our experimental timescales.

The vial containing the suspension is closed in a pressure

controlled pump (Mitos P-Pump, Dolomite Microfluidics). This

system allows variation of the pressure drop Dp in the capillary

from 0.001 to 10 bar.

Particles flowing in the capillary are observed through

a microscope (Reichert–Jung) with an overall magnification of

125�. Image sequences of the flowing solution are collected

with a fast camera (IGV-B0620M, Imperx) at a frame rate of

260 fps. All the experiments are performed at room tempera-

ture (T ¼ 21 �C � 1).
Lab Chip, 2012, 12, 1638–1645 | 1641
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4.2 Experimental results - theory validation

The centerline attraction is demonstrated by use of the PVP

solution. We vary the applied pressure drop Dp from 0.1 to 6 bar,

corresponding to measured flow rates Q ranging from about

0.0075 to 0.75 ml min�1. These flow rates give a Deborah number

varying from 0.004 to 0.4. Notice that, at the highest flow rate, we

estimate a Reynolds number of order of magnitude 10�3,

assuring that inertial effects are in fact irrelevant. For Dp < 2 bar,

we do not observe particle alignment within the length of the

channel. The situation changes as Dp is increased. For Dp ¼ 2

bar, corresponding to Qy 0.15 ml min�1 and Dey 0.06, we find

that the particle radial distribution strongly depends on the

distance from the inlet Lz. This is shown in Fig. 4 where we report

snapshots of particle positions at three different distances from

the inlet (the corresponding movies are available as Supple-

mentaryMaterial†). At 2.5 cm from the inlet (Lz/R¼ 104) we find

that the particles are still randomly distributed along the radial

direction, as shown in Fig. 4a. However, at 3.5 cm from the inlet

(Lz/R ¼ 1.4 � 104), the particles are already confined within

a narrow band around the channel centerline, as reported in

Fig. 4b. Finally, at 4.5 cm from the inlet (Lz/R ¼ 1.8 � 104), we

observe strict particle focusing along the central streamline, see

Fig. 4c.

To validate the numerical predictions, we compare the

experimental particle radial distributions with the simulated ones

obtained in the same conditions. The experimental radial distri-

butions of the particles are calculated starting from the velocities

of the particles along the flow direction. After measuring the

horizontal particle velocities VT and assuming a parabolic flow

profile within the channel cross-section (an assumption justified

by the constancy of the viscosity of the PVP solution), we

calculate the particle radial position r as:

r ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� VTðrÞ

VT;max

s
(7)

where VT,max is the velocity of a particle flowing in the center of

the channel. We measure VT,max from the velocities of the

particles far away from the inlet, i.e. Lz$ 5 cm. Indeed, as shown
Fig. 4 Experimental particle distribution in a straight cylindrical

micropipe at different distances from the inlet with water solution at 8%

PVP. The applied pressure drop is Dp ¼ 2 bar, corresponding to a flow

rateQ¼ 0.15 ml min�1 and a Deborah numberDey 0.06. At 2.5 cm from

the inlet (a) no alignment is observed and the particles are still randomly

distributed. At a distance of 3.5 cm from the inlet (b) the particles are

confined within a narrow band around the centerline. At 4.5 cm from the

inlet (c) 3D focusing on a line is achieved.

1642 | Lab Chip, 2012, 12, 1638–1645
in Fig. 4, at those distances all the particles move along the

channel centerline. Notice that, in writing eqn (7), we assume that

the particle moves at the same local velocity as the fluid. For the

blockage ratio considered here, this approximation introduces an

error lower than 0.5%.24

To calculate the fraction of particles in a certain band at

a distance r from the center, we subdivide the cross-section of the

tube in an inner circle of radius r ¼ 2a (denoted by an index k ¼
1) and in concentric annular rings with thickness Dr ¼ 2a

(denoted progressively by indices k ¼ 2,3,. moving from the

center towards the channel wall). The normalized fraction fk(Lz)

of particles in the radial band k is then calculated as:

fk ðLzÞ ¼
nk ðLzÞ
Ak vkP
k

nk ðLzÞ
Ak vk

(8)

where nk(Lz) is the number of particles flowing in the band k at

a fixed distance Lz from the inlet, and Ak and �vk are the cross-

sectional area and the average velocity of the band k, respec-

tively. Such a definition is dictated by the fact that: i) along the

radial direction, bands with the same thickness Dr have different

areas Ak, meaning that a higher number of particles is expected

for bands at larger radial distances, ii) the average velocity of

each band decreases as r increases. As, for a uniform particle

distribution measured within a finite time of observation, the

frequency of faster particles is higher than that of slower parti-

cles, eqn (8) embodies the necessary correction, by dividing nk by

the velocity of the band k.

We measure fk(Lz) for distances Lz from the inlet varying from

2.5 cm to 5.0 cm. The index k ranges from 1 to 3 since, even for

Lz ¼ 2.5 cm, we do not observe particles flowing between the

external band (k ¼ 3) and the cylinder wall. At each distance

from the channel inlet we take a minimum of 5 different movies

each of 1 s. Since in each movie we find about 15–20 particles, our

statistic at each distance from the inlet is based over about 100

particles.

The observed distributions are now compared to simulation

results generated with a Giesekus fluid with a ¼ 0, to mimic the

shear rheology of the suspending PVP solution. The relaxation

time is chosen as l ¼ 2.3 � 10�3 s, as reported in section 4.1 and

in Yang et al.,10 and the blockage ratio is set to b ¼ 0.08 as in the

experiments.

The calculated distributions are obtained by repeatedly

running single particle simulations (in view of the low particle-

loading in the experiments), and assuming radial uniformity of

the particle initial positions. More specifically, we use the

following procedure: 1) we find the two trajectories passing

through the internal and external boundaries of a band k (for k¼
1 we only need the external boundary); 2) we determine the initial

radial positions rk,in and rk,out of such trajectories; 3) the

normalized fraction fk(Lz) is calculated as: fk(Lz)¼ (r2k,out� r2k,in)/

R2. Of course, for k ¼ 1, r1,in ¼ 0.

Fig. 5 shows the comparison of the calculated (bars) and the

experimentally measured (symbols) distribution function of

particles at different axial positions along the pipe. A progressive

crowding around the pipe centerline is apparent, and a complete

3D focusing is eventually achieved within a few centimeters.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 Comparison of measured and predicted radial distribution fk at

various axial positions Lz. At each axial position the bars are the calcu-

lated particle fraction within r < 2a (cyan), 2a < r < 4a (green), and 4a < r

< 6a (red); symbols are the corresponding measured fractions.
Good quantitative agreement is found between predictions and

experiments.

We observe that larger pressure drops (Dp > 2) promote

focusing, i.e., alignment is obtained at smaller axial distances

from the inlet section.We remark that no particle is detected near

to the channel wall, in agreement with the simulation results,

because of the virtual absence of shear-thinning of the sus-

pending fluid.

According to the simulation results, wall attraction becomes

effective when shear-thinning of the suspending liquid is

substantial. We tested such a prediction by using the robustly

shear-thinning water solution of PEO. Experimental results with

PEO solution do confirm the numerical simulations, as shown in

Fig. 6, where the coexistence of particles flowing at the pipe

centerline and particles flowing at the wall is observed, thus

demonstrating the bistability scenario.
5 Design criteria for 3D-focusing in micropipes

We have just demonstrated the possibility of obtaining the

focusing on a single line in a pressure-driven straight microfluidic

cylindrical channel by exploiting the viscoelasticity of the sus-

pending medium. We remark again that the focusing mechanism

under consideration is a purely elastic effect.

It is worth mentioning that this kind of focusing mechanism is

found to be effective over a wide range of flow rates: for the

channel length used in the experiments flow focusing is observed

over an interval of flow rates spanning more than one order of
Fig. 6 Experimental particle distribution in a straight cylindrical

microchannel at 8 cm from the inlet for 1% water solution of PEO. The

applied pressure drop is Dp ¼ 0.2 bar, corresponding to a flow rate Q ¼
4.4 x 10�3 ml min�1 and a Deborah number De y 0.03. A bistability

scenario is apparent, with some particles flowing at the wall.

This journal is ª The Royal Society of Chemistry 2012
magnitude. Thus, the viscoelastic flow-focuser is extremely flex-

ible. Some care, however, must be taken in choosing the sus-

pending liquid, as the rheological properties may drive the

particles towards the channel wall for the bistability behavior

discussed above. In this sense, the flow focuser must be accu-

rately rheo-engineered.

In order to properly design a viscoelasticity-based flow-

focuser, we develop a simple heuristic argument, which is able

to describe the essential features of the viscoelasticity induced

cross-flow migration in micro-pipes. We consider the local flow

field around the particle in terms of local shearings, namely, an

upper and a lower (i.e., along the radius) shear rate that have

to account for the actual particle translational velocity in the

main flow direction. In view of the non-Newtonian nature of

the liquid, an elastic transverse force on the particle results

from such local shear rates. Indeed, different shear rates

around the particle give different local radial components srr of
the stress. Such stress components give forces of the order srra2,
hence a net transverse force to be balanced (in inertia-less

situations) by a drag force FD y –6ph0aVM, with VM the

cross-flow migration velocity.

The translational horizontal velocity of the particle VT(r) is

needed to estimate how the local shear rate _g differs, in confined

flows, from the velocity v(r) of the unperturbed liquid at the same

height in the channel.25 Indeed, the particle can either lead or lag

the flow, i.e., VT(r) ¼ v(r) + Vs(r) with Vs(r) (positive or negative,

respectively) the so-called slip velocity. By considering that, in

the limit of small De values, the normal stress is given as srr ¼
(J1 + 2J2) _g

2,26 the above mentioned force balance gives:

VM ðrÞf�J1 þ 2J2

h0

a2Q2

R8
r

�
1þ R4 VS ðrÞ

a2Q

�
(9)

where, coherently with the low De assumption, we used the

Newtonian result _g(r) y �Q/R4r. Eqn (9) predicts viscoelas-

ticity-induced migration for a pressure-driven flow. The slip

velocity in eqn (9) must be evaluated in the Newtonian limit. It

was shown by Higdon and Muldowney24 that it is always nega-

tive, and grows in absolute value with increasing r, i.e., the

particle always lags the fluid. Around the centerline, the term in

square brackets turns out to be positive, hence, the migration

velocity is negative there, i.e., towards r ¼ 0. On the other hand,

a radial position r ¼ r* exists, beyond which the migration

velocity is towards the pipe wall. The neutral surface corresponds

to VM(r*) ¼ 0. It should be remarked that, if the effective shear

rate is evaluated by neglecting the particle disturbance to the flow

field (i.e., by neglecting the slip velocity), the bistability is not

captured.

Even though eqn (9) has been deduced by a simple heuristic

argument, it correctly reproduces the simulation results. To

illustrate this point, let us consider its predictions close to the

pipe centerline, i.e., where the square brackets is unity. Indeed,

within this limit eqn (9) reads:

VM ðrÞ
Q

R2

f�De

�
1þ 2

J2

J1

�
b2 r

R
(10)

with j1/h in eqn (9) giving the liquid relaxation time l entering

De. The linearity in De directly comes from the perturbative

nature of the heuristic argument. On the other hand, the
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Fig. 7 Dimensionless particle migration velocity as a function of the

blockage ratio computed by numerical simulations (symbols) at r/R ¼
0.1. The solid line is the best-fit curve �mb2 with m obtained by consid-

ering the data up to b ¼ 0.11. Deviations from the quadratic trend are

observed for higher b-values. To give an idea of the range of b-values

investigated, the relative dimensions of the particle and the channel are

shown for three different values of the blockage ratio.
predicted dependence on the blockage ratio is verified in Fig. 7

where the migration velocity simulation data at r/R ¼ 0.1 are

successfully fitted with a parabolic law up to at least b ¼ 0.12.

We are now in the position of deriving a simple tool for

designing the flow-focusing micro-pipe. Let us define an align-

ment length LA as the distance from the channel inlet needed to

focus particles within a region of radius rA around the centerline.

This latter quantity is in fact a measure of the aligning efficiency.

A design equation must then give LA once a desired efficiency is

prescribed with a given rA value. Of course, the relationship

between LA and rA will depend on the fluid and geometrical

parameters.

The two non-zero components of the particle equation of

motion are:
Fig. 8 (a) Dimensionless critical length as a function of the Deborah number

fits of the simulation data (symbols) through an hyperbola. The fit procedu

deviations are observed. (b) Dimensionless critical length as a function of the d

solid curves are fits of the simulation data (symbols) through a logarithmic f

1644 | Lab Chip, 2012, 12, 1638–1645
dz

dt
¼ VT ðrÞ (11)

dr

dt
¼ VM ðrÞ (12)

For the sake of simplicity, the horizontal velocity VT(r) in eqn

(11) is approximated by its average value Q/(pR2). For the

migration velocity VM(r) we take the expression given by eqn

(10), assuming that the second normal stresses are negligible.

After integrating eqn (12) over the accessible channel cross

section, and with some straightforward manipulation, we end up

with:

LA

R
¼ �

A log
� rA

R� a

�
b2 De

(13)

where A is a constant.

Eqn (13) is the required design equation. We note that eqn (13)

correctly predicts the asymptotic behaviors: i) for De ¼ 0, i.e. for

a Newtonian fluid, LA is infinite, i.e. no alignment is possible (in

the inertialess case); ii) for b/ 0, LA /N, since the gradient of

normal stresses around the particle reduces as the particle size is

smaller. Notice further that the logarithmic dependence in eqn

(13) stems from the linearity in r of eqn (10).

In view of the quantitative agreement between simulations and

experiments, we rely on the numerical tool to validate the

heuristic eqn (13), and to evaluate the constant A. In Fig. 8a–b,

the simulation results for LA/R are used to verify the De�1 and

log(rA) scalings predicted from eqn (13), the validity of the b2

scaling was in fact demonstrated in Fig. 7.

So it appears that both scalings are fully obeyed by simulation

data, and thus eqn (13) can be safely applied for designing

purposes. Then, the value of the parameter A is readily estimated

to be 0.34. It seems worth mentioning that for rA/(R � a) ¼ 0.17,

corresponding to the blue symbols/bars in Fig. 5, the alignment

length is LA ¼ 4.1 cm. For LA/(R � a) ¼ 0.35, corresponding to

the sum of the blue and green symbols/bars in Fig. 5, we estimate

LA ¼ 2.6 cm. Both numbers are in very good agreement with the
for three values of the dimensionless critical radius. The solid curves are

re is performed by using the data up to De ¼ 0.1. For higher De values

imensionless critical radius for three values of the Deborah number. The

unction.
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Box 1. Design rules for viscoelastic focusing

Provided that the following assumptions hold:

� Dilute suspension (f < 0.1%–0.2%)

� Negligible inertia (Re < 0.1)

� Weak shear-thinning fluid

� Relatively small blockage ratio (b # 0.15)

the channel length LA required to focus particles within a circular cross-section of radius rA around the channel centerline is:

LA ¼ �
2 p A log

� rA

R� a

�
R6

a2 lQ

with A y 0.34.

In terms of pressure drop Dp, the previous equation reads as:

LA ¼ �
16h0 Ltot A log

� rA

R� a

�
R2

a2lDp

where h0 is the zero-shear viscosity and Ltot is the total channel length.
experimental results. Designing recipes stemming from eqn (13)

together with the assumptions required for its validity are

summarized in Box 1.

6 Conclusions

We have shown that 3D focusing of particles (i.e., focusing on

a line) in simple pipe flow can be attained by exploiting visco-

elastic forces in flowing suspending liquids. Full 3D fluid

dynamic simulations demonstrate that focusing can be finely

tuned with proper rheo-engineerization of both the flow cell and

the properties of the suspending liquid. Typical time and spatial

scales for transversal migration make focusing attainable in

microfluidic applications. Experimental results confirm visco-

elasticity-induced migration of particles. Quantitative agreement

between predictions and experiments is found. Simulation results

support scalings deduced by a heuristic argument. Simple design

criteria are then proposed to realize actual applications.

Contrarily to focusing techniques based on inertial (or inertio-

elastic) effects, the viscoelastic focusing is found to work at both

low and high flow rates. The lower limit is dictated by the

available length of the channel whereas a reduction of the

focusing efficiency at high flow rates may be induced by

the arising of inertial effects. However, our experimental data

shows that, in a few centimeters of channel length, one can tune

the flow rate over two order of magnitude, making the visco-

elastic focusing extremely flexible.

Part of our future work will be the extension of the design

formula to strong shear-thinning fluids. The effect of inertia on

the focusing efficiency will be also investigated.
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