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The motion of electron—hole drops is analysed when nucleated in a non-uniform density
of free excitons. The exciton condensation on the drop surface gives rise to a driving force
towards regions with lower densities. This force and the internal friction of the exciton
gas lead to a drift velocity which is proportional to the drop radius. In typical excitation
geometries this motion is more important than drop diffusion, and the flight towards low
density regions influences strongly the drop growth. It is pointed out that very large
drops can be formed in a local minimum of the exciton density.

Es wird die Bewegung der Elektron-Loch-Tropfchen in einem Exzitonengas mit inhomo-
gener Dichte berechnet. Die Kondensation von Exzitonen auf der Tropichenoberfliche
verursacht eine Kraft in Richtung niedrigen Exzitonendrucks. Diese Kraft und die Rei-
bungskraft des Exzitonengases ergeben eine Geschwindigkeit, die dem Radius der Trépf-
chen proportional ist. Es wurde gefunden, daf die entsprechende Bewegung in typischen
Anregungsgeometrien viel wichtiger als die Diffusion ist und die Flucht nach Bereichen
mit niedrigerer Dichte einen groBen EinfluB auf das Wachsen der Tropfchen hat. Sehr
groBe Tropfchen werden erwartet, wenn die Exzitonendichte ein lokales Minimum hat.

1. Introduction

At present the condensation phenomena of excitons at high densities in ger-
manium are well understood from a number of independent experimental
methods and theoretical considerations [1, 2], and a well defined phase diagram
governing the transition from free excitons (FE) to electron-hole drops (EHD)
is generally accepted. However, little is known about motion of EHD. The
spatial distribution of the condensed phase as observed in luminescence experi-
ments has until now been explained in terms of EHD diffusion [3 to 5], although
the inferred diffusion coefficients are unexpectedly large and in mutual disagree-
ment. Similar uncertainties concern the transport of EHD from the region of
EHD formation to drop collecting p-n junctions.

In this paper we shall draw attention to the influence of supersaturation in the
exciton generation region on the transport of EHD. It is obvious that FE dif-
fusion from a small supersaturated region establishes FE densities above satura-
tion in a much larger volume since the diffusion length of FE is of the order 1 mm,
Thus, in a considerable part of this enlarged volume the formation of EHD takes
place in an FE density gradient. Therefore we shall investigate the motion of
EHD under such conditions and reveal a striking importance of the motion of
drops due to the momentum transfer of condensing excitons.

2. Supersaturation and Diffusion of ¥Free Excitons

In the interpretation of previous experiments [3, 4] it has been implicitly as-
sumed that the formation of EHD is confined to the region of exciton generation,
and that the existence of drops outside the region is due to drop transport. Here
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we shall discuss some implications of these assumptions. Let n be the density
of FE and n, its value at the point of saturation given by the phase diagram,
Then » — n, expresses the degree of supersaturation in the FE gas. The overall
density n* of excitons in the condensed phase is proportional to N k3, where N
is the density of EHD and R is the drop radius. In steady state B oc (n — n,)
(see Section 3) and consequently

n¥ oc N(n — ng)3 . (1)

In case of efficient drop nucleation n — n, <€ ny above the condensation threshold
and n* is proportional to excess excitation power. In the opposite extreme in-
vestigated by Pokrovskii [1] NV is assumed constant (determined by the density
of nucleation centres) and n > n, (large supersaturation) for excitation levels
well above threshold. In this case

n* oc m3 . (2)

Considering the excitation generation concentrated in a small volume (optical
excitation) it is obvious that negligible supersaturation implies that KHD are
not formed outside this volume since here the FE gas remains undersaturated.
In the case of large supersaturation, on the other hand, the FE density may well
exceed the saturation value at some distance from the exciton generation region
due to FE diffusion. Hence, in the absence of drop transport, the density profiles
of free and condensed excitons are coupled by (2), and in cw experiments the
apparent diffusion length of EHD will be Lyg/3, where Lyg is the diffusion
length of free excitons. Therefore the profile of the steady state luminescence
from EHD (3, 5] is not directly related to the transport of EHD if the generation
region is considerably supersaturated. Similar difficulties arise in the interpre-
tation of pulsed experiments [4] since diffusion of FE during the excitation pulse
and the time for n to decay below the saturation value n, may contribute to the
spatial broadening of the EHD luminescence profile.

The above interpretational difficulties are present in all optical experiments
(lnminescence and Rayleigh scattering [6]) and give rise to the question whether
the extention of the drop motion is substantially larger than the linear dimensions
of the drops. However, the photovoltaic detection of EHD [7] is a clear evi-
dence of considerable drop transport, since the FE density is zero in a collecting
p-n junction due to dissociation of FE.

3. Equations of Motion of EHD in Non-Uniform FE Densities

In this section we shall evaluate the dynamics of EHD derived from the mo-
mentum transfer due to electron-hole recombination and exciton exchange
through the drop surface. We include the presence of an FE density gradient
¢¥n which contribute to the drift since the condensation supplies the drops with
excess momentum in the opposite direction of Yn. For simplicity we neglect all
other forces than those derived from the above mentioned momentum transfer.
We further assume that the mean free path of FE is much larger than R which
implies that condensing excitons are in thermal equilibrium with the lattice.

Let m and (v) be mass and thermal velocity of FE, respectively, and let ¥V
be the velocity of the drop considered. Denoting the life time and density in the
condensed phase by 7, and n,, respectively, the drop mass M is expressed by

M =~ zRm . (3)
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The growth rate of the drop is given by

1 dM 4 7
S _aR? — m) — — R3S,
T AR vy (n — ) 3 7R . (4)

The change of momentum due to condensation is calculated to be

(%’—?Y - %ﬂR"‘m@% Vn — 2 R2mdv) Vn )

where (v?) is the mean square of the thermal velocity of FH to be approximated,
for simplicity, by {(v)2.

Since the velocity distribution of evaporating excitons is isotropic in the frame
of the drop, each evaporating exciton removes the momentum mV from the
drop. When calculating the momentum transfer due to recombination we assume
that the phonon participation removes the correlation between the momenta of
the electron and hole involved. Consequently. the recombining particles are
randomly chosen, and the average crystal momentum transfered to the lattice
is mV per recombining pair. The momentum change (dp/df)~ due to evaporation
and recombination is then given by

dp\~ . 4 .7
<E) = — (nR vy + gnR P mV . (6)
Furthermore
dp (dp)+ (dp)“ 1 am
o \a) ) =T E Tt Vae @
Combining (3) to (7) we obtain
v (? 3ndv)
T T 6n, V" T 2Rm, ¥ (8)
and
dR  n —n, R
¥ 4nc‘<@>—§§;- 9)

The absence of n, and 7, in (8) indicates that only condensation processes con-
tribute to the accelleration as implicitly assumed in (6).

The last term in (8) is a frictive force which transforms into Stoke’s law for
radii larger than the mean free path of FE. This friction defines a velocity relaxa-
tion time
__ 2Rn,
EITE

Ty (10)

and a mobility y = 7,/M. Using Einstein’s relation we are able to assign to the
random walk the diffusion coefficient

_hE o
Duwo = == = 5 py (L
In steady state (8) defines a drift velocity
. R

In
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which has physical meaning if the quantities determining it change little during
the relaxation time 7,. (9) defines a steady state radius

P AN IOy

o (13)

The relaxation time for the change of R towards R, is 37, during which n — =,
of the FE gas surrounding the drop must change little for obtaining B ~ R,

4. Motion of Drops in Typical FE Density Profiles

We shall discuss the motion of drops and the simultaneous change of their size
given by (8) and (9) using parameters typical for Ge at 2K: ny/n, =~ 10~ [8],
n, = 2% 1017 em~3, {v) = 108 cm/s and 7, = 50 ps [1, 2]. With these values
we have performed a numerical integration of (8) and (9) for the drop motion
in an appropriate one-dimensional FE density profile with 7myay == 21, In Fig.1
are shown calculated trajectories for the spatial variation of R for drops nucleat-
ed with negligible radius and zero velocity at different positions in the supersatu-
rated region. Inserting in (10) to (12) the typical parameters n ~ n,, Ynjn =
= 10 em~? (a reciprocal FE diffusion length) and R =~ 10-3c¢m we obtain
Ty = 6 us, Dgap = 0.003 cm?/s and V4 = 10° cm/s.

From this analysis the most important conclusions are the following:

1. The velocities obtained from the numerical integration indicate an effi-
cient relaxation towards the drift velocity V4 of (12). In the relevant parts of
the motion V deviates less than 29, from V4. This can be explained from a
detailed analysis of (8) to (9) giving the simple result that the relative change
rate of R, d In R/ds, is smaller than (6 7,)~* if » > +tn, and 7, > 7,. Thus V4
changes less than 179, within a velocity relaxation time 7, under these conditions
and if Yn/n is assumed constant.

2. The velocities are too high for a noticeable relaxation towards the steady
state radius E,. Consequently, drops are ejected into the undersaturated region
with a considerable size (see Fig. 1).

3. The drops must be nucleated extremely close to the FE density maximum
to be able to attain radii comparable to the maximum steady state radius.

4. The time from nucleation to complete evaporation is of the order 300 ps.
The random walk found from the estimated diffusion coefficient (equation (11))

Fig. 1. Results of numerical integrations of equa-
tions (8) to (9) for a typical one dimensional free
exciton density profile n(x). The region with
£< 0.2 mm is considered as the exciton generation
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region and characterized by a parabolic decay of
n{x) from nmax = n(0) = 2.2n,. For x = 0.2 mm
n(z) equals 2n, and decays exponentially with a
decay length of 1 mm. This corresponds to an
edge of the saturated region at 2 =~ 0.9 mm. In the
figure are shown the local steady state radius Ry(x)
and trajectories R(x) for drops nucleated at dif-
ferent positions with zero velocity and radius. The
trajectory with the largest maximum radius cor-
respond to nucleation at x = 0.001 mm. The
parameters used in equations (8) to (9) are:
ne/ne = 1074, 7, = 50 ps, and (v) = 10% cm/s
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is negligible on this time scale. Therefore diffusion is of no importance in the
motion of EHD except in regions with very small FE density gradients. At the
point of maximum density the role of diffusion is to prevent excessive growth
during ‘balancing” on the density maximum.

5. An analysis with linear density profiles in the region 0 < n < ny (not shown)
leads to trajectories which are essentially the same as for exponential profiles
with equal slope at n = n,. This last result is important in the interpretation of
experiments on drop dissociation in a p—n junction which is an efficient drain
for FE.

Approximate analytical solutions to equation (8) to (9) provide information
on the influence of changing the parameters involved. Here we shall put
dr/dt = ¥V = V4 also in undersaturated regions. Then ¢ can be eliminated from
(8) to (9), and in one dimension we obtain

dR dx dR dn R{v) _n—m,
dr &t " de Az On - dn, VT3 (14)
Let n =nyat x =0 and n = n, exp (—=/L) with L> R. For negligible re-
combination and |z{ 5 L (14) has the solution
R(z) = (Rn — (a)?)!2, (15)
where o = 3(ny/n,)"/?/2 and R, is the maximum radius at « = 0. Thus the spa-
tial range from “birth” to “death” of a drop is 2R Jx =~ 130R if ny/n, = 1074,
The corresponding time is 9 L/(x{v)) independent of R . In case of considerable
recombination it is convenient to introduce the length g = 37.v) ny/dn,.
Then, to first order in Rfp (15) should be changed into

R(x) = (R?n — "QL: (x + LR;n)z)llz, (16)

where R, is the maximum drop radius at * = —LR_Jo. This solution agrees
well with the trajectories in Fig. 1 for R <1072 cm with the parameters
p = 4Xx1073 cm and o« = 0.015. For a linear FE density profile with dn/dzx =
= —mn,/L it is relevant to express the radius of drops reaching the zero density
point at x = L 22 1/2

R(L) = (Rﬁ, e 1+ Rm)Z) . ‘ (17)

For a given distribution of the maximum radius (17) can be used in estimating
the size distribution of drops collected in p-n junctions. The general trend in
such studies is that an increase of L (increased distance between generation re-
gion and junction) leads to an increase in typical size of collected drops and a de-
crease of the drop collection rate.

5. Experimental Consideration

Previous luminescence experiments are unable to verify clearly the above
conclusions about the importance of drop drift in FE density gradients, since
FE diffusion in a supersaturated region has the same effect on the EHD lumi-
nescence profile as drop drift, namely to broaden the profile of the overall
density of the condensed phase beyond the region of exciton generation. A slight
indication of drop drift in luminescence experiments might be the observed
temperature dependence of the FE density profile at constant, high excitation
level observed by Martin [5]. The half width increases noticeably at temperatures
below 5 K which can be explained by FE transport via the process: condensa-
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tion—drop drift—evaporation. Comparing the theory of the present paper with
the Rayleigh scattering experiments [6] it is worth noting that the observed
drop radii of 3 to 9 um are in agreement with the numerical example in Fig. 1.

Dissociation of EHD in p-n junctions provides valuable information on the
importance of drop drift. The observed size distribution as a function of distance
between the excited region and the p—n junction') agrees qualitatively with the
prediction that large drops should be dominant for excitation far away from the
junction. A diffusive theory would give the opposite result. The discrete size
distribution of EHD observed recently [9] may be a consequence of the non-
statistical nature of the drop motion in connection with very low density of
nucleation centres.

There are several photovoltaic detection experiments suitable for a detailed
study of the EHD motion mentioned here. Presently performed investigations?)
on charge distribution of collected drops concern the dependence on temperature,
excitation level, bias and geometry. A very spectacular verification would be
experiments in which a suitably arranged excitation on more than one surface
of a Ge sample establishes a local FE density minimum at a level above satura-
tion. In this case the present theory predicts very large drop radii which would
otherwise be unattainable (B, = 0.4 mm for n =~ 10n,).

6. Coneclusion

We have proposed a transport mechanism of electron-hole drops which has
classical origin and does not involve stress gradients, electric fields or scattering
processes conventionally included in solid state physics. The important quali-
tative result is that diffusion of EHD is found negligible compared with the drift
motion due to unavoidable FE density gradients. This motion is analogous to
that of a particle with constant mass moving in a potential proportional to the
density n and with a friction proportional to n/R. As drops are nucleated they
grow and accelerate towards lower densities. Close to the edge of the supersat-
urated region the radius and velocity start decreasing and become zero at a
range determined by the position of the nucleation centre. The model predicts
that giant drops are formed if trapped in a three dimensional FE density mini-
mum at a level well above saturation.
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