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The motion of electron-hole drops is analysed when nucleated in a non-uniform density 
of free excitons. The exciton condensation on the drop surface gives rise to a driving force 
towards regions with lower densities. This force and the internal friction of the exciton 
gas lead to a drift velocity which is proportional to the drop radius. In  typical excitation 
geometries this motion is more important than drop diffusion, and the flight towards low 
density regions influences strongly the drop growth. It is pointed out that very large 
drops can be formed in a local minimum of the exciton density. 

Es wird die Bewegung der Elektron-Loch-Tropfchen in einem Exzitonengas mit inhomo- 
gener Dichte berechnet. Die Kondensation von Exzitonen euf der TropfchenoberflLche 
vernrsacht eine Kraft in Richtung niedrigen Exzitonendrucks. Diese Kraft und die Rei- 
bungskraft des Exzitonengases ergeben eine Geschwindigkeit, die dem Radius der Tropf- 
chen proportional ist. Es wurde gefunden, daB die entsprechende Bewegung in typischen 
Anregungsgeometrien vie1 wichtiger als die Diffusion ist und die Flucht nach Bereichen 
mit niedrigerer Dichte einen groBen EinfluB auf das Wachsen der Tropfchen hat. Sehr 
groBe Tropfchen werden erwartet, wenn die Exzitonendichte ein lokales Minimum hat. 

1. Introduction 
At present the condensation phenomena of excitons a t  high densities in ger- 

manium are well understood from a number of independent experimental 
methods and theoretical considerations [l, 21, and a well defined phase diagram 
governing the transition from free excitons (FE) to electron-hole drops (EHD) 
is generally accepted. However, little is known about motion of EHD. The 
spatial distribution of the condensed phase as observed in luminescence experi- 
ments has until now been explained in terms of EHD diffusion [3 to 51, although 
the inferred diffusion coefficients are unexpectedly large and in mutual disagree- 
ment. Similar uncertainties concern the transport of EHD from the region of 
EHD formation to drop collecting p-n junctions. 

In  this paper we shall draw attention tjo the influence of supersaturation in the 
exciton generation region on the transport of EHD. It is obvious that FE dif- 
fusion from a small supersaturated region establishes FE densities above satura- 
tion in a much larger volume since the diffusion length of FE is of the order 1 mm. 
Thus, in a considerable part of this enlarged volume the formation of EHD takes 
place in an F E  density gradient. Therefore we shall investigate the motion of 
EHD under such conditions and reveal a striking importance of the motion of 
drops due to  the momentum transfer of condensing excitons. 

2. Supersaturation and Diffusion of Free Excitons 
In  the interpretation of previous experiments [3, 41 it has been implicitly as- 

sumed that the formation of EHD is confined to the region of exciton generation, 
and that the existence of drops outside the region is due to drop transport. Here 
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we shall discuss some implications of these assumptions. Let n be the density 
of EE and no its value a t  the point of saturation given by the phase diagram. 
Then n - no expresses the degree of supersaturation in the EE gas. The overall 
density n* of excitons in the condensed phase is proportional to NR3, where N 
is the density of EHD and R is the drop radius. In  steady state R cc (n  - no) 
(see Section 3) and consequently 

n* cc N(n  - n J 3 .  (1) 
In  case of efficient drop nucleation n - no <no above the condensation threshold 
and n* is proportional to excess excitation power. In  the opposite extreme in- 
vestigated by Pokrovskii [I] N is assumed constant (determined by the density 
of nucleation centres) and n > no (large supersaturation) for excitation levels 
well above threshold. In  this case 

( 2 )  a* cc n3. 

Considering the excitation generation concentrated in a small volume (optical 
excitation) i t  is obvious that negligible supersaturation implies that EHD are 
not formed outside this volume since here the EE gas remains undersaturated. 
In  the case of large supersaturation, on the other hand, the FE density may well 
exceed the saturation value a t  some distance from the exciton generation region 
due to FE diffusion. Hence, in the absence of drop transport, the densityprofiles 
of free and condensed excitons are coupled by (2), and in cw experiments the 
apparent diffusion length of EHD will be L B E I ~ ,  where LpE is the diffusion 
length of free excitons. Therefore the profile of the steady state luminescence 
from EHD 13, 51 is not directly related to  the transport of EHD if the generation 
region is considerably supersaturated. Similar difficulties arise in the interpre- 
tation of pulsed experiments [4] since diffusion of FE during the excitation pulse 
.and the time for TL to  decay below the saturation value no may contribute to the 
spatial broadening of the EHD luminescence profile. 

The above interpretational difficulties are present in all optical experiments 
(luminescence and Rayleigh scattering [6]) and give rise to the question whether 
the extention of the drop motion is substantially larger than the linear dimensions 
of the drops. However, the photovoltaic detection of EHD [?I is a clear evi- 
dence of considerable drop transport, since the FE density is zero in a collecting 
p-n junction due to dissociation of FE. 

3. Equations of Motion of EHD in Non-Uniform FE Densities 
In  this section we shall evaluate the dynamics of EHD derived from the mo- 

mentum transfer due to  electron-hole recombination and exciton exchange 
through the drop surface. We include the presence of an EE density gradient 
Vn which contribute to  the drift since the condensation supplies the drops with 
excess momentum in the opposite direction of Vn. For simplicity we neglect all 
other forces than those derived from the above mentioned momentum transfer. 
We further assume that the mean free path of FE is much larger than R which 
implies that condensing cxcitons are in thermal equilibrium with the lattice. 

Let m and (v) be mass and thermal velocity of FE, respectively, and let V 
be the velocity of the drop considered. Denoting the life time and density in the 
condensed phase by z, and n,, respectively, the drop mass M is expressed by 

Jf = $azR3n,m. (3) 



Drift of Electron-Hole Drops in Exciton Density Gradients 533 

The growth rate of the drop is given by 
4 n, 

= n R 2 ( v )  (n - n,j - - nR3 2. 1 dM -~ 
m dt 3 t, 

The change of momentum due to condensation is calculated to be 

(4) 

where (v2) is the mean square of the thermal velocity of FE to be approximated, 
for simplicity, by ( v ) ~ .  

Since the velocity distribution of evaporating excitons is isotropic in the frame 
of the drop, each evaporating exciton removes the rriomentum mV from the 
drop. When calculating the momentum transfer due to recombination we assume 
that the phonon participation removes the correlation between the momenta of 
the electron and hole involved. Consequently. the recombining particles are 
randomly chosen, and the average crystal momentum transfered to the lattice 
is mVDer recombining pair. The momentum change (dp/dt)- due to  evaporation 

I 

and recombination 

Furthermore 

is then given by 

dV dM 
dt dt . 

Combining (3) to ( 7 )  we obtain 

and 
d R  n - n o  R 

( t :> - -. 
dt 4n, 3 t c  
- 

~ ~- - 

The absence of no and t, in (8) indicates that only condensation processes con- 
tribute to  the accelleration as implicitly assumed in (6). 

The last term in (8) is a frictive force which transforms into Stoke’s law for 
radii larger than the mean free path of FE. This friction defines a velocity relaxa- 
tion time 

and a mobility p = t , /M. Using Einstein’s relation we are able to assign to the 
random walk the diffusion coefficient 

In  steady state (8) defines a drift velocity 
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which has physical meaning if the quantities determining it change little during 
the relaxation time z,. (9) defines a steady state radius 

The relaxation time for the change of R towards R, is 32, during which n - no 
of the FE gas surrounding the drop must change little for obtaining R N R,. 

4. Motion of Drops in Typical FE Density Profiles 
We shall discuss the motion of drops and the simultaneous change of their size 

given by (8) and (9) using parameters typical for Ge a t  2K: no/n, N [ 8 ] ,  
n, = 2 x lo1' ~ m - ~ ,  (v) = lo6 cm/s and z, = 50 ps [ l ,  21. With these values 
we have performed a numerical integration of (8) and (9) for the drop motion 
in an appropriate one-dimensional FE density profile with nmax N 2n,. In  Fig. 1 
are shown calculated t,rajectories for the spatial variation of R for drops nucleat- 
ed with negligible radius and zero velocity a t  different positions in the supersatu- 
rated region. Inserting in (10) to  (12) the typical parameters .n N no, v n / n  = 
= 10 cm-l (a reciprocal Fk: diffusion length) and R N 10-3 cm we obtain 
z, = 6 ps, DEHD = 0.003 cm2/s and Vd = 1.03 cm/s. 

From this analysis the most important conclusions are the following : 
1. The velocities obtained from t,he numerical integration indicate an effi- 

cient relaxation towards the drift velocity 8, of (12). I n  the relevant parts of 
the motion V deviates less than 2% from Vd. This can be explained from a 
detailed analysis of (8) to (9) giving the simple result that the relat,ive change 
rate of R, d In R/dt, is smaller than (6 r,)-l if n > +no and z, > z,. Thus V d  
changes less than 17% within a velocityrelaxation time z, under these conditions 
and if Onln is assumed constant. 

2. The velocities are too high for a noticeable relaxation towards the steady 
state radius R,. Consequently, drops are ejected into t,he undersaturated region 
with a considerable size (see Fig. 1). 

3. The drops must be nucleated extremely close to the FE density maximum 
to be able to  attain radii comparable t.0 the maximum steady state radius. 

4. The time from nucleation to complete evaporation is of the order 300 ps. 
The random walk found from the estimated diffusion coefficient (equation (11)) 

Fig. 1. Results of numerical integrations of equa- 
tions (8) to (9) for a typical one dimensional free 
exciton density profile n(a). The region with 
s< 0.2 mm is considered as the exciton generation 
region and characterized by a parabolic decay of 
n(x )  from nmax = n(0) = 2.2n0. For x = 0.2 mm 
n(x) equals 2n0 and decays exponentially with a 
decay length of 1 mm. This corresponds to an 
edge of the saturated region at x = 0.9 mm. In  the 
figure are shown the local steady state radius Ro(z) 
and trajectories R(s) for drops nucleated a t  dif- 
ferent positions with zero velocity and radius. The 
trajectory with the largest maximum radius cor- 
respond to nucleation a t  il: = 0,001 mm. The 

0 05 1.0 1.5 parameters used in equations (8) t o  (9) are: 

.$ 
- 3  2 

2 ' 

position (mm) --* no/n, = z, = 50 ps, and (v> = lo6 cm/s 
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is negligible on this time scale. Therefore diffusion is of no importance in the 
motion of EHD except in regions with very small FE density gradients. At the 
point of maximum density the role of diffusion is to prevent excessive growth 
during “balancing” on the density maximum. 

5. An analysis with linear density profiles in the region 0 < n < no (not shown) 
leads to trajectories which are essentially the same as for exponential profiles 
with equal slope a t  n = no. This last result is important in the interpretation of 
experiments on drop dissociation in a p-n junction which is an efficient drain 
for FE. 

Approximate analytical solutions to equation (8) to (9) provide information 
on the influence of changing the parameters involved. Here we shall put 
drldt = V = V d  also in undersaturated regions. Then t can be eliminated from 
(8) to (9), and in one dimension we obtain 

(14) 
dR dn R(v) n - n o  R 

( e )  - ;-. 
dx dt dx dx 9n 4% 3% 

- - - 
dR dx ___ 

Let n = no a t  x = 0 and n = no exp ( - x / L )  with L> R. For negligible re- 
combination and Iz! & L (14) has the solution 

where a = 3(n,/r~,)l/~/2 and R, is the maximum radius a t  x = 0. Thus the spa- 
tial range from “birth” to “death” of a drop is 2R,/a N 130Rm if no/n, = 
The corresponding time is 9nL/(a(v)) independent of R,. In  case of considerable 
recombination it is convenient to introduce the length e = 4t,(v) no/4n,. 
Then, to first order in .R/Q (15) should be changed into 

R(x) = (I?; - (ax)2)1/2 , (15) 

R(x) = RL - ( 
where R, is the maximum drop radius a t  x = -LRm/e. This solution agrees 
well with the trajectories in Pig. 1 for R, < cm with the parameters 
e = 4~ cm and cx = 0.015. For a linear FE density profile with dnldx = 
- - - n,/L it is relevant to express the radius of drops reaching the zero density 
point a t  x = L: 

For a given distribution of the maximum radius (17) can be used in estimating 
the size distribution of drops collected in p-n junctions. The general trend in 
such studies is that an increase of L (increased distance between generation re- 
gion and junction) leads to  an increase in typical size of collected drops and a de- 
crease of the drop collection rate. 

6. Experimental Consideration 
Previous luminescence experiments are unable to verify clearly the above 

conclusions about the importance of drop drift in FE density gradients, since 
FE diffusion in a supersaturated region has the same effect on the EHD lumi- 
nescence profile as drop drift, namely to broaden the profile of the overall 
density of the condensed phase beyond the region of exciton generation. A slight 
indication of drop drift in luminescence experiments might be the observed 
temperahre dependence of the FE density profile a t  constant, high excitation 
level observed by Martin [5]. The half width increases noticeably a t  temperatures 
below 5 K which can be explained by PE transport via the process: condensa- 
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tion-drop drift-evaporation. Comparing the theory of the present paper with 
the Rayleigh scattering experiments [6] i t  is worth noting that the observed 
drop radii of 3 to  9 pm are in agreement with the numerical example in Fig. 1. 

Dissociation of EHD in p-n junctions provides valuable information on the 
importance of drop drift. The observed size distribution as a function of distance 
between the excited region and the p-n junctionl) agrees qualitatively with the 
prediction that large drops should be dominant for excitation far away from the 
junction. A diffusive theory would give the opposite result. The discrete size 
distribution of EHD observed recently [9] may be a consequence of the non- 
statistical nature of the drop motion in connection with very low density of 
nucleation centres. 

There are several photovoltaic detection experiments suitable for a detailed 
study of the EHD motion mentioned here. Presently performed investigations2) 
on charge distribution of collected drops concern the dependence on temperature. 
excitation level, bias and geometry. A very spectacular verification would be 
experiments in which a suitably arranged excitation on more than one surface 
of a Ge sample establishes a local FE density minimum at  a level above satura- 
tion. Jn this case the present theory predicts very large drop radii which would 
otherwise be unattainable (Bu = 0.4 min for 12 N lono). 

6. Conclusion 
We have proposed a transport mechanism of electron-hole drops which has 

classical origin and does not involve stress gradients, electric fields or scattering 
processes conventionally included in solid state physics. The important quali- 
tative result is that diffusion of EHD is found negligible compared with the drift 
motion due to unavoidable PE density gradients. This motion is analogous to 
that of a particle with constant mass moving in a potential proportional to the 
density n and with a friction proportional to n/R. As drops are nucleated they 
grow and accelerate towards lower densities. Close to the edge of the supersat- 
urated region the radius and velocity start decreasing and become zero a t  a 
range determined by the position of the nucleation centre. The model predicts 
that giant drops are formed if trapped in a three dimensional FE  density mini- 
nium a t  a level well above saturation. 
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